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International migration will play an increasing role in the demo-
graphic future of most nations if fertility continues to decline
globally. We developed an algorithm to project future numbers of
international migrants from any country or region to any other.
The proposed generalized linear model (GLM) used geographic and
demographic independent variables only (the population and area
of origins and destinations of migrants, the distance between origin
and destination, the calendar year, and indicator variables to quantify
nonrandom characteristics of individual countries). The dependent
variable, yearly numbers of migrants, was quantified by 43653 re-
ports from 11 countries of migration from 228 origins and to 195
destinations during 1960–2004. The final GLM based on all data
was selected by the Bayesian information criterion. The number of
migrants per year from origin to destination was proportional to
(population of origin)0.86(area of origin)�0.21(population of
destination)0.36(distance)�0.97, multiplied by functions of year and
country-specific indicator variables. The number of emigrants from
an origin depended on both its population and its population
density. For a variable initial year and a fixed terminal year 2004,
the parameter estimates appeared stable. Multiple R2, the fraction
of variation in log numbers of migrants accounted for by the
starting model, improved gradually with recentness of the data:
R2 � 0.57 for data from 1960 to 2004, R2 � 0.59 for 1985–2004, R2 �

0.61 for 1995–2004, and R2 � 0.64 for 2000–2004. The migration
estimates generated by the model may be embedded in determin-
istic or stochastic population projections.

generalized linear model � geography � population density �
spatial interaction model � stochastic population projection

International migration will play an increasing role in the demo-
graphic future of nations if fertility continues to decline in most

countries. In projecting international migration, the United Nations
Population Division (ref. 1, paragraphs 57–59) identified the need for
a demographically plausible, programmable algorithm that automat-
ically projects a zero world balance of net migration and prevents
projected net emigration from completely depleting the population
of any sending country. To meet this need, we propose an algorithm
(based only on demographic and constant geographic variables) for
projecting future numbers of international migrants from any
country or region to any other. It is comparable in transparency and
generality to standard cohort-component methods of projecting
births and deaths. The approach presented here is different from
methods of projecting migrant flows currently practiced in inter-
national demographic institutions, the United States, European
countries, and other developed countries (2–6).

Most theories of international migration draw on social, eco-
nomic and/or political factors to explain migration (4, 7–9), such as
differences among countries in gross domestic product, labor
markets, migration policies, social networks of prior migrants, and
cognitive and behavioral attributes of individuals (3, 10–11). For
multidecadal demographic projections, it seems more difficult to
project such nondemographic variables than it is to project demo-
graphic variables such as fertility and mortality. The proposed
model assumes the availability only of constant geographic variables

and of population sizes that can be projected incrementally in time
by accepted demographic procedures. The model makes possible
both deterministic and stochastic projections of migration and
hence of population.

The intellectual antecedents of the proposed model include
Zipf’s (12, 13) model of intercity migration, which is one of several
‘‘gravity’’ models in the social sciences (6). Zipf (12) aimed to ‘‘show
with supporting data that the number of persons that move between
any twocommunities in theUnitedStateswhoserespectivepopulations
are Pl and P2 and which are separated by the shortest transportation
distance, D, will be proportionate to the ratio, Pl�P2/D, subject to the
effect of modifying factors.’’ Unlike Zipf, we distinguish the number
of people who move from community 1 to community 2 from the
number of people who move from 2 to 1. Taking logarithms of
Pl�P2/D and adding an error term yields a linear model in log-
transformed variables, log(migrants) � a0 � a1 log(ppnorig) � a2
log(ppndest) � a3 log(distance) � error, where ppnorig is the popu-
lation of the origin, ppndest is the population of the destination, and the
error term characterizes random deviations. Here and throughout,
log refers to log10, and ln refers to the natural logarithm loge. Zipf posits
that a1 � 1, a2 � 1, and a3 � �1. We estimate all coefficients from
data using a generalized linear model (GLM) (14).

Zipf (12) treated cities as points of negligible spatial extent. Our
communities are countries or regions and our subject is international
migration. To let the data reveal whether the area of a country
influences its numbers of migrants, we add two terms to the above
equation: log(areaorig), the log area of the origin, and log(areadest), the
log area of the destination. By definition, the population density of the
origin is ppnorig/areaorig, so log(density) � log(ppnorig) �
log(areaorig). If the number of migrants from origin to destination
depends on ppnorig and ppndest and not on their areas, then the
estimated coefficients of log(areaorig) and log(areadest) should be
close to zero. However, if the number of migrants from origin to
destination depends on the population density of the origin and the
population density of the destination, but not on their respective
population numbers per se, then the estimated coefficients of
log(areaorig) and log(areadest) should be nearly the negative of the
respective estimated coefficients of log(ppnorig) and log(ppndest).
The estimated coefficients of the terms for log population and log
area of origin and destination reveal the relative importance of
population per se and population density.

To allow for differences in migratory intensities among origins or
destinations, we let the data reveal whether different origins and
destinations had numbers of migrants different from the numbers
of migrants expected on average from their respective populations,
areas, and distances. We introduced four indicator variables for
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each country that provided data. For example, Australia was a
source of data on numbers of emigrants and immigrants by year.
One indicator variable for Australia, orig.indicator$Australia,
equaled 1 whenever Australia was the origin and equaled 0 if any
other country or area was the origin. A second indicator variable,
dest.indicator$Australia, similarly equaled 1 whenever Australia
was the destination and equaled 0 if any other country or area was
the destination. A third indicator variable, orig.is.datasource$Aus-
tralia, equaled 1 if Australia was the origin and was the source of
the data and otherwise equaled 0. A fourth indicator variable,
dest.is.datasource$Australia, equaled 1 if Australia was the desti-
nation and was the source of the data and otherwise equaled 0.
Similar indicator variables were defined for each country that
provided data on its flows of immigrants and/or emigrants.

To allow for the possibility that migration rates changed over
time and for the simultaneous effects of the other independent
variables (populations, areas, distance, and indicator variables),
we introduced year as an independent variable. We used the
centered variable year minus 1985 to assure the stability of the
model’s estimated intercept.

To summarize in notation similar to that of Zipf’s gravity
model, let P be population, A be area, and D be distance.
Detailed definitions of these variables are given in Methods. Our
‘‘starting’’ model was the logarithmic transformation of model
Eq. 1. This logarithmic transformation guaranteed that the
number of migrants estimated by the model was positive.

migrants from origin to destination [1]

� constant � Porig
a Pdest

b Aorig
c Adest

d Dorig,dest
f �

[10 if origin is Australia; 1 otherwise]g �

[10 if destination is Australia; 1 otherwise]h �

[similar indicator variables for seven other origins and ten

other destinations]coef �

[10 if origin is Australia and Australia is the source of the

data; 1 otherwise]i �

[10 if destination is Australia and Australia is the source of

the data; 1 otherwise]j �

[similar indicator variables for seven other origins and ten

other destinations]coef �

10k�year-1985� �

�lognormal error term exp���� ,

where � 	 N(0,�2) are independent.
This model contains factors of the form [10 if origin is

Australia; 1 otherwise]g. The common logarithm of this expres-
sion is g � [1 if origin is Australia; 0 otherwise], and the
expression in square brackets is an indicator (or dummy) vari-
able. The coefficient g summarizes the nonrandom effects on the
expected number of migrants from Australia (in this case) apart
from those due to calendar year, the populations and areas of
origin and destination, and distance. The indicator variables
quantified how numbers of migrants were affected by nonran-
dom characteristics of individual countries: migratory history,
policy, and statistical completeness; economic, geographic, and
cultural affinities or disparities; and effects of geographical
adjacency not captured by the chosen measure of distance.

We estimated the intercept (log constant) and exponents a, b, c,
d, …, which were linear coefficients in the GLM. We fitted this and
other models to data from 11 countries (Australia, Belgium,
Canada, Denmark, Germany, Italy, the Netherlands, Spain, Swe-
den, the U.K., and the U.S.A.). These countries were selected on
the basis of the quality of their data on international migrants by
year and places of origin and destination from 1960 to 2004. The
data included 228 origins and 195 destinations of migrants. Oceania
was the only destination not also an origin, so 229 countries or
regions in total were named in these data.

Because of the limited quantity and quality of migration data, this
article demonstrates a method and illustrates a modeling approach,
rather than specifying numerical parameters definitively. Parameters
and models will evolve as more and better data become available. The
analysis showed that statistically simple and demographically inter-
pretable modeling accounted for more than half the variation in the
migration data. How much more than half could be accounted for
by this approach with better data remains to be determined.

Results
Descriptive Bivariate Relationships. On average, but with enormous
variability, the log number of migrants increased with increasing log
population of origin (r � 0.43), increasing log area of origin (r �
0.18), increasing log population of destination (r � 0.27), and
increasing log area of destination (r � 0.10) (Fig. 1 A–D). The log
number of migrants decreased, on average but with enormous
variability, with increasing log distance from origin to destination
(r � �0.24) and increased weakly with year (r � 0.01) (Fig. 1 E and
F). Log population and log area were highly correlated (Fig. 1 G
and H) for origins (r � 0.74) and destinations (r � 0.64). Because
these were the two highest-magnitude correlations, collinearity was
not a problem in fitting the GLM. Correlations between year and
log migrants, and between log(ppnorig) and log(distance), were
insubstantial.

Log(ppnorig) and log(ppndest) were negatively correlated
(r � �0.19) (Fig. 1I). This negative correlation could reflect the
absence of data sources among countries with four million or
fewer people, which may account for the absence of data points
in the lower left quadrant of Fig. 1I. The long horizontal and
vertical streaks in Fig. 1I represent the populations of countries
that were data sources as origins and destinations, respectively,
whereas the short diagonal streaks largely reflect population
growth of a given (origin, destination) pair.

Model Selection. The starting linear model was fitted [supporting
information (SI) Table S1] with the dependent variable log(mi-
grants) and with the six independent variables that we call
‘‘basic’’ [year minus 1985, log(ppnorig), log(areaorig), log(ppn-
dest), log(areadest), log(distance)] and all indicator variables
(orig.indicator, dest.indicator, orig.is.datasource, dest.is.data-
source). The Multiple R2 was 0.5693 and the Adjusted R2 was
0.5689 (see Methods).

When the stepwise algorithm with Bayesian information crite-
rion (15) was applied to this starting model, log(areadest) was
eliminated and all other independent variables were retained in the
resulting ‘‘final’’ model (Table 1). To the four significant digits
shown, the Multiple R2 and the Adjusted R2 were unchanged
between the starting and the final models.

When the values of log(migrants) were independently and ran-
domly permuted in each of 100 simulations, the maximum of the 100
simulated multiple R2 values was 0.00147, far smaller than the multiple
R2 value of 0.5693 for the data. Hence, the latter multiple R2 value
could not have been an artifact of the fitting procedure alone.

When all indicator variables were suppressed and only the six
‘‘basic’’ independent variables were retained, the multiple R2 value
dropped to 0.4345 (Table S3). The only notable change in the
coefficients of the six ‘‘basic’’ independent variables was the in-
crease in the coefficient of log(areadest) from 0.0239 to 0.1604. A
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model that omitted the indicator variables would have misleadingly
suggested that log(areadest) was fairly influential. The stepwise
algorithm, however, retained the indicator variables and dropped
log(areadest).

Residuals. In the final model, the interquartile range of the
residuals was �0.4352 to 0.4414 log(migrants), meaning that half
the time, the observed numbers of migrants fell in the interval
from 36.7% to 2.763 times the predicted number of migrants (the
predicted number was 10expected log(migrants)). The smallest and
largest residuals were �3.2449 and 3.2918, corresponding to
cases where the observed number of migrants was 
1,000 times
smaller or larger than the predicted number.

The largest residuals occurred at intermediate fitted values from
0.5 to 3.5, corresponding to predicted numbers of migrants from �3
to 3,000 (Fig. S1A). The scatter of the residuals was clearly not
constant over the range of fitted values. This lack of homoscedas-
ticity justified the use of the Bayesian information criterion for
model selection instead of a probabilistic interpretation of F tests
for omitted variables. The validity of the latter approach assumes
homoscedasticity of residuals and independence of observations.

When the fitted values were 
4 on the log10 scale (corresponding
to 10,000 migrants per year or more), residuals were systematically
negative, indicating fewer reported migrants than predicted. This
pattern could result, among other possible causes, from underre-
porting of large migrant flows or from systematic policies intended
to diminish the largest predicted flows.

Model Coefficients. In the final model (Table 1), the predicted
number of migrants increased by 0.38% � 100.00163 per year, in
addition to the changes in numbers of migrants resulting from
changes over time in log(ppnorig) and log(ppndest). The predicted
number of migrants was proportional to the population of origin
raised to 0.86 and to the population of destination raised to 0.36.
Increases in log(ppnorig) increased log(migrants) more than twice
as much as increases in the log(ppndest). In light of the small
standard errors of these estimates (Table 1), these exponents very
probably differed from the exponents of 1 in Zipf’s (12) gravity
model, even if the distributional assumptions of the linear model
were not precisely met. The predicted number of migrants was
proportional to the distance raised to �0.97, a bit more than three

standard errors from Zipf’s posited exponent of �1. The predicted
number of migrants was proportional to the area of origin to the
power �0.21. Because P0.86A�0.21 � P0.65(P/A)0.21, the number of
migrants increased with both the population of origin (to the power
of 0.65) and the population density of origin (to the power 0.21), and
the population of origin contributed more to the number of
migrants than did the population density of origin.

The indicator variables revealed substantial heterogeneity among
countries in their propensity to send or receive migrants and in their
reporting practices, given the other independent variables. Accord-
ing to its coefficient for orig.indicator, Australia had 13.47 � 101.1295

times as many emigrants as expected. At the opposite extreme,
Belgium had 56% as many emigrants as expected from its other
characteristics. Denmark, Germany, and the Netherlands had ap-
proximately as many emigrants as expected. According to its
coefficient for dest.indicator, Australia had 27.31 times as many
immigrants as expected from its geographic and demographic
characteristics, followed by the U.S.A. and Canada with 13.95 and
7.17 times as many immigrants as expected, respectively. At the
opposite extreme, Belgium had 1.35 times as many immigrants as
expected, the smallest multiple among the countries that provided
data in this study. According to dest.indicator, all reporting coun-
tries had more immigrants than expected on average. The countries
that provided data for this study are countries with the resources to
support effective statistical systems, and such countries are likely to
be attractive destinations of migration.

According to its coefficient for orig.is.datasource, when Australia
reported the number of emigrants from Australia, it reported on
average 50% � 10�0.3038 of the number of emigrants from Australia
that the average country that reported emigration data in this study
would have reported, given Australia’s population and area, the
destination and year, and the propensity to emigrate from Australia
estimated without regard to the source of the data. For example,
Australia reported 3,971 migrants from Australia to the U.K. in 1998,
whereas the U.K. reported 41,800 migrants from Australia to the U.K.
in 1998 (see Methods). Australia reported emigrants leaving perma-
nently. The U.K. reported immigrants staying for 1 year or longer.

At the opposite extreme from low reporters of emigration like
Australia (50%) and Italy (33%), the U.K. reported 22.54 times as
many emigrants as would be expected otherwise, whereas Germany
reported 3.07 times as many. The U.K. data are estimates derived

Fig. 1. Bivariate relationships in interna-
tional migration data, 1960–2004. (A) Log
number of migrants versus log population of
origin. (B) Log number of migrants versus log
area of origin. (C) Log number of migrants
versus log population of destination. (D) Log
number of migrants versus log area of desti-
nation. (E) Lognumberofmigrantsversus log
distance from origin to destination. (F) Log
number of migrants versus year. (G) Log pop-
ulation of origin versus log area of origin. (H)
Logpopulationofdestinationversus logarea
of destination. (I) Log population of origin
versus log population of destination. Each
plot has 43,653 points.
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mainly from a survey of arriving and departing international
passengers; U.K.’s recording of emigration and immigration flows
is equally complete. Australia, by contrast, focuses on entries. These
differences between countries are detected by the statistical analysis
and reflected in the estimated coefficients of the model.

According to its coefficient for dest.is.datasource, when the U.K.
reported the number of immigrants to the U.K., its reports were on
average 31.47 times the number of immigrants that would have been
reported by the average reporting system over all countries in the
study, given the U.K.’s population and area, the destination and
year, and the propensity to immigrate to the U.K. estimated without
regard to the source of the data. At the opposite extreme, Spain and
Italy reported 59% and 58%, respectively, of the numbers of
immigrants expected from other factors.

In general, immigration is better recorded at destinations than
emigration is recorded at origins, in part because migrants often
have more formal incentives to register at their destination than to
deregister at their origin. The estimated coefficients of the indicator
variables (Table 1) are consistent with this belief, although other
interpretations are possible. For example, dest.indicator for Aus-
tralia had coefficient 1.4362, greater than the coefficient 1.1295 of
orig.indicator for Australia. The same inequality, dest.indicator
coefficient 
 orig.indicator coefficient, held for all eight countries
that supplied both immigration and emigration data. Similarly, the
comparable inequality, dest.is.datasource coefficient 
 orig.is.
datasource coefficient, held for all eight countries that supplied
both immigration and emigration data. These inequalities indicated
greater detection (or greater intensity, an alternative interpreta-
tion) of immigration than emigration in every country for which the
comparison could be made.

Parameter Stability: How Much of the Past Is Relevant to the Future?
Estimated coefficients varied systematically as a function of the
time interval from which data were drawn and as a function of the
subset of variables selected from the starting model Eq. 1 (Table
S3). The starting model rather than the final model was used for this
analysis to allow for the possibility that the log area of destination
might become dramatically important for some subset of 1960–
2004. As it turned out, this possibility did not occur.

For each set of independent variables, the most recent five years
(2000–2004) gave the highest multiple R2. Using all variables, all
data from 1960 to 2004 gave a multiple R2 value of 0.57, whereas
the 2000–2004 data gave a multiple R2 value of 0.64 (Table S3). This
higher value of the multiple R2 may be partially due to improved
quality of data in more recent years but may also be due to fewer
external perturbations to migratory flows during 2000–2004 than
during 1960–2004. For example, during the 45-year period of
1960–2004, the Berlin wall and the Soviet Union fell, and Germany
was reunified, whereas no such events marked the 5-year period of
2000–2004, an interval only one-ninth as long. For each set of
independent variables, as the initial year moved forward while the
terminal year was 2004, the multiple R2 value increased. Each set
of independent variables accounted for more variation in log(mi-
grants) when using the data from 1985 to 2004 than by adding
additional data from earlier years.

All estimated coefficients were stabler when using a moving
initial year than when using a moving terminal year. They were least
stable when using moving tranches of 5 or 10 years’ duration (Table
S3). For the starting model with all variables, the standard deviation
0.3877 of the estimated intercept for the five time intervals with
moving terminal year 1960–1984, 1960–1989, 1960–1994, 1960–
1999, and 1960–2004 was larger than the standard deviation 0.2489
of the estimated intercept for the five time intervals with moving
initial year 1965–2004, 1970–2004, 1975–2004, 1980–2004, and
1985–2004. The same inequality held for the standard deviations of
the estimates of the coefficients of all six basic variables when the
five time intervals with moving terminal year were compared with
the five time intervals with moving initial year.

Table 1. The �final� model of log migrants as a function of year,
log population of origin, log area of origin, log population of
destination, log distance, and indicator variables; specification
of the model in R and resulting coefficients and statistics

Call:
lm (formula � logmigrants 	 I (year�1985) � logppnorig �

logareaorig � logppndest � logdistance � orig.indicator �

dest.indicator � orig.is.datasource � dest.is.datasource)

Coefficients Estimate SE t value

(Intercept) �2.5135 0.0886 �28.3730
I (year–1985) 0.0016 0.0003 5.1670
Logppnorig 0.8631 0.0083 103.6400
Logareaorig �0.2103 0.0066 �31.9050
Logppndest 0.3604 0.0089 40.7010
Logdistance �0.9685 0.0102 �94.5470
orig.indicatorAustralia 1.1295 0.0436 25.8900
orig.indicatorBelgium �0.2557 0.0404 �6.3300
orig.indicatorDenmark �0.0441 0.0409 �1.0760
orig.indicatorGermany 0.0699 0.0409 1.7080
orig.indicatorItaly 0.1844 0.0401 4.5960
orig.indicatorNetherlands 0.0250 0.0408 0.6120
orig.indicatorSweden 0.1602 0.0473 3.3840
orig.indicatorUnited Kingdom 0.2486 0.0397 6.2580
dest.indicatorAustralia 1.4362 0.0558 25.7360
dest.indicatorBelgium 0.1314 0.0524 2.5090
dest.indicatorCanada 0.8557 0.0457 18.7160
dest.indicatorDenmark 0.2560 0.0523 4.8980
dest.indicatorGermany 0.5875 0.0502 11.7020
dest.indicatorItaly 0.7551 0.0493 15.3090
dest.indicatorNetherlands 0.4805 0.0509 9.4480
dest.indicatorSpain 0.6400 0.0470 13.6210
dest.indicatorSweden 0.2528 0.0696 3.6340
dest.indicatorUnited Kingdom 0.6284 0.0491 12.7910
dest.indicatorUnited States of

America
1.1444 0.0457 25.0180

orig.is.datasourceAustralia �0.3038 0.0633 �4.8010
orig.is.datasourceBelgium 0.4595 0.0626 7.3410
orig.is.datasourceDenmark 0.2340 0.0642 3.6450
orig.is.datasourceGermany 0.4872 0.0613 7.9500
orig.is.datasourceItaly �0.4761 0.0630 �7.5620
orig.is.datasourceNetherlands 0.2112 0.0645 3.2750
orig.is.datasourceSweden �0.0733 0.0658 �1.1140
orig.is.datasourceUnited

Kingdom
1.3529 0.0682 19.8440

dest.is.datasourceAustralia �0.0317 0.0719 �0.4420
dest.is.datasourceBelgium 0.5479 0.0716 7.6510
dest.is.datasourceCanada 0.1462 0.0638 2.2930
dest.is.datasourceDenmark 0.2687 0.0721 3.7270
dest.is.datasourceGermany 0.5646 0.0674 8.3730
dest.is.datasourceItaly �0.2356 0.0687 �3.4280
dest.is.datasourceNetherlands 0.4550 0.0718 6.3360
dest.is.datasourceSpain �0.2294 0.0678 �3.3850
dest.is.datasourceSweden 0.1258 0.0831 1.5140
dest.is.datasourceUnited

Kingdom
1.4979 0.0762 19.6680

dest.is.datasourceUnited
States of America

NA NA NA

Residual standard error: 0.6957 on 43610 degrees of freedom
Multiple R2: 0.5693, Adjusted R2: 0.5689
F statistic: 1,372 on 42 and 43,610 DF, nominal P value: � 2.2e-16

Because the assumption of independence among observations was
implausible, conventional measures of statistical significance were proba-
bly inapplicable. The destination.is.data.source parameter for the U.S. is
labeled NA because one of the destination.is.data.source variables must
be eliminated to prevent a singularity in estimating the coefficients. See SI
Text for details.
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Discussion
We assembled annual data on immigrants and emigrants from 11
countries’ sources and combined them with data on the populations
and areas of 228 origins and 195 destinations and the distances
between origins and destinations. These 43,653 reports did not
suffice to cover the 228 � 195 � 44,460 possible origin-destination
pairs in a single year and offered very sparse coverage over 45 years.
A simple GLM was able to account for more than half the variation
in log(migrants). Despite the present limitations of data, this approach
may improve on existing demographic procedures for projecting inter-
national migration and may motivate the collection of better data.

The bivariate relations among variables demonstrated the
need for a multivariate model. For example, the number of
migrants increased with the population of origin and the pop-
ulation of destination, but the population of origin and the
population of destination were negatively correlated. Only a
multivariate model could reveal how the number of migrants
depended on the populations of origin and of destination jointly.

In the final GLM, the coefficients of log(ppnorig) and log(ppn-
dest) were both positive and �1. If either coefficient had been
negative, then the estimated number of migrants could have
diverged to infinity as the population of origin or destination
became smaller. Because the coefficients were �1, the numbers
of migrants did not increase in proportion to ppnorig or ppndest.

The GLM served two distinct purposes: understanding and
prediction. For scientific understanding, we eliminated superfluous
independent variables to obtain the most economical model, then
interpreted the values of the coefficients in the model. For predic-
tion, we sought as much predictive power as possible by adding
variables that gave the highest coefficient of determination, pro-
vided that the parameter estimates did not become unstable
(sensitive to the inclusion or exclusion of a small number of data
points and/or other predictor variables). The starting and final
models considered here balanced interpretability and predictive
ability. Other models are discussed in SI Text (Table S2).

The principal problems with this method were the lack of data
and the lack of comparability (discrepancies between countries in
definitions and measurements) where the data existed (Methods).
Most countries lack a system to record migration flows. Many do
not publish their information on migration. The data did not
consistently distinguish moves from movers (6); individuals who
crossed borders multiple times may have been interpreted as
multiple migrants.

Comparisons with Some Related Studies. The 2003 Technical Panel
on Assumptions and Methods of the Social Security Administration
(16) suggested assuming that the number of net migrants to the U.S.
will grow, at least in the long run, in direct proportion to the size
of the U.S.A. population. The coefficients in the final model (Table
1) suggested, by contrast, that immigration to the United States is
expected to grow in proportion to the population of the United
States raised to the power 0.36, times independent multiplicative
effects of the calendar year. The final model also anticipates
changing log(migrants) as a result of population growth in countries
of origin. Likewise, according to the final model, emigration from
the United States should be expected to grow in proportion to the
population of the United States raised to the power 0.86, times
multiplicative effects that depend on year and country-of-
destination populations.

If countries’ populations changed by a factor of � 
 0, holding
constant all other variables and GLM coefficients, the number of
migrants would be multiplied by a factor of �a�b because
(��ppnorig)a(��ppndest)b � �a�b�ppnoriga�ppndestb, where a � b is
the sum of the coefficients of log(ppnorig) and log(ppndest). In the
final model (Table 1), a � b � 1.22; so if ppnorig and ppndest both
doubled, the predicted number of migrants from origin to desti-
nation would increase by a factor of 21.22 � 2.34. For moving time

intervals in the starting model with all variables (Table S3), a � b
tended to increase with the moving initial year or moving final year
or tranche. For example, for data in the time intervals 1980–2004
and 1985–2004, a � b � 1.26 and 1.30, respectively.

Bijak et al. (17) projected migratory flows among 27 European
countries by multiplying the initial emigration rates by an overall
trend (mobility increasing by 0.5% yearly) and temporal effects of
labor market policies. For comparison, our final model estimated
that the global number of migrants rose by 100.00163 � 1.0038 �
0.4% per year in the data of 1960–2004, apart from the multipli-
cative effects of population growth or decline and the indicator
variables of the countries or regions of origin and destination. This
agreement in estimates is remarkable considering the difference in
methods, data, and context (Europe versus the globe). Raymer (18)
reconstructed the migratory flows for the European Union using a
different log-linear model with multiplicative components.

Some migration models are based on transition probability matri-
ces (6). In such models, the number of immigrants is independent
of the destination’s population and proportional to a weighted sum
of the populations of origins or of the fractions of global population
in different origins. The GLMs estimated here suggest that each
destination’s number of immigrants is a nonlinear function of the
populations of both origin and destination and of other variables.

Use in Population Projection. The projected number of migrants can
be embedded in a population projection algorithm, initially ignoring
age structure and then incorporating it. The initial goal is, given a
vector of country population sizes P(t) with elements P(i,t) for
country i at time t, to compute the population vector P(t�1) at the
next time step. The GLM can estimate the number of migrants
M(i,j,t) from country i to country j between t and t�1. Let M(i,i,t) �
0 for all i (despite some countries’ reporting positive numbers of
migrants from the country to itself). The matrix M(t) with elements
M(i,j,t) is called the migration matrix at time t. It will be assumed
that M(i,j,t) obtained from the GLM approximates the number
of people who were in country i at time t and in country j (�i) at
time t � 1.

The number of emigrants from country i between t and t�1,
denoted E(i,t), is then E(i,t) � �jM(i,j,t). The vector E(t) with
elements E(i,t) is called the emigration vector at time t. The number
of immigrants to country i between t and t � 1, denoted I(i,t), is
I(i,t) � �hM(h,i,t). The vector I(t) with elements I(i,t) is called the
immigration vector at time t. The number of net migrants to country
i between t and t � 1, denoted N(i,t), is N(i,t) � I(i,t) � E(i,t). The
vector N(t) with elements N(i,t) will be called the net migration
vector at time t. Then populations of countries or regions can be
projected as

P�i,t � 1� � P�i,t� � N�i,t� � B�i,t� � D�i,t�, [2]

where B(i,t) is the number of births and D(i,t) is the number of
deaths projected for country i from separate models of fertility
and mortality.

It has been assumed thus far that the elements of the migration
matrix would be the predicted values 10expected log(migrants) produced
by the GLM, yielding a deterministic population projection. A
stochastic (Monte Carlo) method would be to sample numerically
from the distribution of residuals for given values of the indepen-
dent variables. Then the number of migrants from an origin to a
destination would become a random variable, and a population
projection that incorporated the migration matrix would become a
probabilistic ensemble of projections.

The migration matrix at time t depends on the indicator variables,
which are estimated from data up to and including t. Given P(t�1)
from Eq. 2, the simplest approach to computing the migration
matrix at time t � 1 would be to keep the coefficients of the
indicator variables constant and to update only the population
vector P(t � 1). A more sophisticated approach would be to
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examine trends over time in the coefficients of the indicator
variables and to extrapolate those trends forward to obtain updated
coefficients for the indicator variables of future migration matrices.

To obtain an age-specific net migration vector, one could apply
age-specific models of migration patterns for different countries
and regions to E(i,t) and to I(i,t) (19–21) and combine that with the
projected age-specific fertility and mortality vectors as in Eq. 2.

This method of projecting international migration in combination
with cohort-component methods of projecting fertility and mortality
solves the two problems identified by the United Nations Popula-
tion Division (1). First, the global sum of net migrants is guaranteed
to be 0 when the numbers of emigrants, immigrants, and net
migrants are derived from a migration matrix (22). Second, net
emigration should not completely deplete the population of any
sending country for realistic model parameters. In all models
considered here, the exponents of the populations of origin and
destination are positive and the predicted number of emigrants is
a small fraction of the population of origin. Consequently, the
projected number of emigrants from an origin declines to 0 as its
population declines to 0. Likewise, if the destination’s population
declines, the models predict that fewer people will migrate there.
This feature of the model depends on realistic parameter values and
may not hold in all mathematically possible cases. If the coefficients
of the model were unrealistic and gave an unrealistically large
number of emigrants, then it is possible that the origin population
could be depleted.

Open Research Questions. Many open questions remain. Why did the
area of the destination influence the numbers of migrants much less
than the area of origin? How well would the proposed models work
for migration within a country, taking account of international
migration? For a given origin-destination pair, were the residuals
correlated over time or independent as the error term in the model
assumed?

International migrants are mainly younger individuals of working
age and their families. Migratory flows of elderly individuals may
also be important. Would the fit of the models be improved by
replacing total population size with a weighted average that em-
phasized age groups most prone to migrate, or by a simple index
such as the proportion of the population age 20–34 years? Age-
structure seems likely to matter to migration increasingly as all
countries undergo population aging (23).

What is the long-run behavior of the projection model Eq. 2
assuming constant birth rates and death rates and constant coef-
ficients in Eq. 1? For example, when, if ever, does there exist a fixed
vector P of population size by country and a stable growth rate �
such that limt3 � P(t)/�t � P? If this case arises, how does � depend
on the parameters of the basic model Eq. 2? What irreducibility

conditions on the migration matrix assure the uniqueness of P?
When the migration matrix is reducible, could different ‘‘ergodic
sets’’ of countries (sets of countries linked through migration flows)
have different fixed vectors P of population size by country and
different stable growth rates �? Under what conditions on the
coefficients of log(ppnorig) and log(ppndest) can country popula-
tions snowball to infinity (in finite time or with infinite time) or
vanish? How sensitive to the initial conditions P(i,0) are each
country’s proportion of world population P(i,t)/�h/P(h,t) for large t,
where the summation runs over all countries? How sensitive are
country-specific population growth rates P(i,t�1)/P(i,t), for large t,
to initial conditions? In short, what ergodic theorems hold (24)?

Methods
Data. All 43,653 data records are provided in Dataset S1. Each record contains 12
variables: a unique serial number, the year in the Western calendar (1960–2004),
thenameof thecountryor regionoforiginofmigrants, the logpopulationof the
origin in that year, the name of the country or region of destination of migrants,
the log population of the destination in that year, the log number of migrants
from origin to destination in that year, the log area (square kilometers) of the
origin, the log area (square kilometers) of the destination, the log great circle
distance (kilometers) from the capital of the origin to the capital of the destina-
tion, the source of the migration data, and “neighbor” (see SI Text). Records for
which the value of any variable was missing were excluded.

Each country’s definitions of what constituted a migrant, of the origin or
destination of a migrant, and of the accounting year were used (Table S4).
Differences among definitions and in the effectiveness of collecting migration
data led to hundreds of discrepancies when both the origin and the destina-
tion reported migration data in the same year. In SI Text, sources are listed and
methods of collecting migration data are discussed.

Data Analysis. A GLM was fitted to a starting model with dependent variable
log(migrants) and with all six basic independent variables [year minus 1985,
log(ppnorig), log(areaorig), log(ppndest), log(areadest), and log(distance)] and
all indicator variables (orig.indicator, dest.indicator, orig.is.datasource, dest.is-
.datasource).ThestepwiseregressionalgorithmstepAICwasappliedtothis linear
model to obtain a final model. Details of data management and statistical
software are in SI Text.
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