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Not everything turns out quite the way people 
expect. Very few people shoot holes-in-one in 
golf, bowl perfect games or score 1600 on their 

SAT exams. We all try our best to accomplish our goals 
and largely do, no matter whether we are at work or at play. 
This is certainly true for plant breeding and improvement. 
Unintended effects to composition and quality occur at 
some frequency no matter what method is applied to make 
a bigger ear of corn or a tastier apple. Unintended effects 
represent statistically significant differences in phenotype, 
which, for example, could be the disappearance of a partic-
ular protein or alterations in polysaccharide composition.1 
These differences may or may not have an impact on qual-
ity or ultimate safety. Unintended effects can be further 
classified as predictable or unpredictable, where predict-
able changes can be explained based on an understanding 
of the underlying biology, from prior knowledge of the 
genetics of the parental varieties, or from the function of 
a transgene or the site of genomic integration. Unpredict-
able changes fall outside obvious explanation.1 A National 

Research Council (U.S.) taskforce estimated the proba-
bility of unintended effects due to a variety of methods 
for crop improvement.2 They considered selection from 
homogenous populations to produce the smallest number 
of unintended effects (of any kind), with transformation 
of genes from closely related species producing similar 
outcomes to those observed by genetic crosses between 
existing germplasm pools. Genetic crosses between 
closely related species were estimated to produce a wider 
range of variance than the previous three methods. Trans-
formation with genes from distantly related species was 
estimated to produce an even greater incidence of unin-
tended effects, but fewer than those seen from mutational 
breeding methods, where deliberate mutagenesis using 
chemicals or ionizing radiation is used to induce novel 
genetic variation. 

Most new plant varieties are generated by cross-
ing highly related (homogenous) varieties together and 
selecting the small number that are more desirable than 
either parent. This style of plant improvement has lead 
to steady gains in many traits, such as yield in maize, but 
is not likely to produce crops with radical changes in 
quality, composition, or adaptation to a particular stress. 
That this strategy will succeed presupposes that genetic 
diversity exists within the “elite” panel of varieties. In spe-
cies with little genetic diversity, such as tomato, genetic 
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hybridization between closely related species has intro-
duced novel characteristics that are highly desirable. Cul-
tivated tomato (Solanum lycoperiscum) has been improved 
by replacing chromosomal segments with ones from wild 
relatives (e.g., S. pennellii), which contain pathogen resis-
tance or fruit quality genes not found in S. lycoperiscum.3,4 
Deliberate mutagenesis is a tool commonly used by geneti-
cists to discover new genes and their functions. At least 
fourteen genes important for carbohydrate metabolism in 
maize seeds have been described by mutagenesis. Eight 
of these genes have been commercialized to some greater 
or lesser degree in the form of sweet corn (3 genes) or to 
provide specialty starches for various ethnic cuisines (5 
genes).5 Sweet corn varieties can carry the sugary1 muta-
tion, the shrunken2 mutation, contain both sugary1 and sug-
ary-enhancer1, or carry all three mutations. Producers, con-
sumers, regulators, and other stakeholders accept these 
products as safe. This implicitly means that the degree of 
phenotypic variation away from “normal” is acceptable 
as well.

Transgenic crop improvement is widespread for some 
commodities and in some parts of the world, but its use is 
hotly debated. In 2005, transgenic crops were planted on 
87.2 million hectares around the world, including 47.4 mil-
lion hectares in the United States.6 In 2007, the majority 
of the major commodity crops in the United States were 
transgenic: soybean (91%), cotton (87%), and maize (73%), 
with wheat being the notable exception (crops with >5 mil-
lion hectares planted).7 Within a similar time frame, a poll 
conducted by the Mellman Group for the Pew Charitable 
Trusts determined that while 45% of Americans regard 
transgenic crops as “safe,” 29% regard them as “unsafe.”8 
A similar poll found that within the then 25-member state 
European Union, only 27% of respondents supported the 
use of transgenic crop improvement.9

There are many points of contention in the debate over 
transgenic crops, including arguments that rely upon cul-
tural, economic, or scientific underpinnings.10–14 Address-
ing cultural or economic concerns toward biotechnology 
is far beyond the scope of a minireview in a scientific 
journal. Thus, my comments will be confined to two of 
the scientific issues and how systems biology approaches, 
especially metabolomics, may help to constructively shape 
that debate.

Defining the debate
Proponents of transgenic crop improvement often speak 
to the “substantial equivalence” (SE) of transgenic crops 
relative to their nontransgenic parents.15 In this context, 
SE means that two varieties are so similar to one another 
that they can be taken to be same.16,17 On one level, the 
notion of SE makes sense—a transgenic daughter con-

tains the construct of interest, which may express one or 
a small number of genes, in addition to whatever distur-
bance may have arisen from the site of genomic integra-
tion, relative to the nontransgenic mother variety. This 
degree of difference is much smaller in an absolute sense 
than the differences between two conventional varieties of 
the same market class. Maize has a high degree of nucle-
otide polymorphism, similar to that seen in potato, and far 
more than in tomato.18–20 This is such a high degree that 
two maize varieties may be as different from each other 
as humans are from chimpanzees at the DNA level.21 Any 
one would recognize that humans and chimpanzees are 
different, although it may take a highly trained botanist 
to tell the difference between, say cultivars B73 and Mo17 
in maize. 

In a plant-breeding context, near isogenic lines (NIL) 
are often considered to be SE to their progenitors. NILs 
are constructed by crossing back into one parental variety 
repeatedly over several (5–8) generations, so that the new 
stock is largely identical to that recurrent parent. If one 
assumes that a typical crop plant has 50,000 genes, after 
5 generations of backcrossing, the parent and daughter 
will differ only 3.125% [i.e., (1/2)5], which still represents 
differences at ~1600 genes. If 8 generations of backcross-
ing are used, parent and daughter will differ at only 0.4% 
of their genome, or 200 genes. This degree of difference 
between parent and daughter varieties is acceptable and 
does not keep NILs from being considered to SE to their 
progenitor mother varieties. However, the parent and 
daughter varieties are significantly different in at least one 
regard—the target trait that was improved in the daughter. 
Of course, the standard proposed by the Organization for 
Economic Cooperation and Development was of “sub-
stantial” equivalence rather than of “complete” or “total” 
equivalence.

Two principle objections are made to the SE concept, 
and by extension to the regulation of transgenic crops. 
First, opponents of transgenic crop improvement dismiss 
SE, as there is no specific, statistical basis for the stan-
dard.22 In the original statement of principle, particular 
statistical tests were not explicitly defined to evaluate the 
SE standard.15 “Substantial” is an adjective rather than 
an F-score or p-value, which begs the obvious question: 
How different is acceptably different versus unaccept-
ability different? Opponents to transgenic crop improve-
ment also may willingly miss the point that SE is a part 
of rather than the complete risk determination.23 Second, 
opponents of transgenic crop improvement emphasize the 
possible consequences to food quality and composition 
due to unintended effects, either predictable or unpredict-
able ones. The original statement from the Organization 
for Economic Cooperation and Development emphasizes 
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testing for known toxins and quality biomarkers, examples 
of which can be found in the excellent review of Cellini 
et al. (2004).1 This second objection begs the next obvi-
ous question: How can one investigate unintended effects 
using directed testing methods? 

Systems biology can make a contribution to the trans-
genic crop debate by providing datasets that examine the 
composition of transgenic crops relative to their nontrans-
genic relatives. These hopefully comprehensive datasets 
can then be rigorously analyzed using the best statistical 
methods possible. To take full advantage of the literature 
available within a particular organism will require the 
existing data be easily compared from one study/labora-
tory to another and combined in meta-analyses. Trans-
genic varieties should not be the only subjects for analysis; 
a deeper understanding of naturally occurring variation, 
which represents the range of consumer-acceptable varia-
tion, should also be included and thus provide a frame 
of reference. Complete and unbiased information should 
facilitate decision-making by consumers, regulators, and 
other stakeholders and provide more substantial bases 
for those decisions. I would argue that the combination 
of analytical tools available to the community, in gene, 
protein, and metabolite expression analysis and identifica-
tion, are mature and useful to examine transgenic crops 
and potential unintended effects. Rather, our ability to 
design and analyze these experiments will be the factors 
that limit their utility and contributions to the transgenic 
crop debate.

Metabolomic data can be gathered  
from many platforms

To limit the scope of this review, I will confine my com-
ments to studies within tomato, although excellent exam-
ples can be found in many other crops.1 Tomato has sev-
eral notable features in this context. It is an economically 
important crop, with market classes that have divergent 
properties (e.g., fresh eating versus processing tomatoes; 
heirloom varieties versus improved hybrids).24 Tomato 
is a model organism for genomic studies, with genome 
sequencing underway, a large collection of molecular 
markers, cDNA and genomic libraries, and a worldwide 
community of researchers.25 Tomato also represents an 
early false-start in transgenic crop improvement (e.g., 
FlavrSavr), serving as a cautionary tale for future trans-
genic crops.26

Perhaps the principal agronomic consideration for 
tomato is the quality of the fruit, which is due to a large 
number of factors and has been the subject of intense 
research for many years.27 Research into fruit quality pro-
vides answers to basic scientific questions that have a sig-
nificant relevance to applied research. Many different cat-

egories of chemical compounds contribute to fruit quality, 
including sugars, organic acids, amino acids, fatty acids, 
isoprenoids, and polyphenolic compounds. This wide 
range of quality biomarkers means that a wide range of 
separation chemistries have been used to investigate the 
tomato metabolome, using both targeted and nontargeted 
metabolomics. Targeted metabolomics are by far the most 
common studies, as most research programs are focused 
on understanding or improving a single target trait. Thus, 
a great deal of information exists that describes the range 
of stakeholder acceptable phenotypic variation, while this 
information may not exist in an easily accessible format.

Small molecules can have large effects. The varia-
tion in the ratio between sweetness and acidity can cause 
tomatoes to taste sharp, sweet, insipid, or lovely.28 For 
breeding programs, simple, low-cost assays are required 
to accommodate the scale of research, where thousands 
of samples may need to be analyzed in a short period of 
time.29 While rather limited in their depth, phenotypic 
surveys of diverse germplasm have a very broad scope and 
help define the range of acceptable phenotypic variation. 
These kinds of organic acid and sugar data can be lever-
aged using gene expression analysis to look for the under-
lying genetic causes of fruit quality, leveraging applied 
data sets into more basic research results.30 The same 
trait information on carbohydrates and organic acids can 
also be developed using more sophisticated tools such as 
nuclear magnetic resonance (NMR) spectroscopy, which 
identify far more compounds per assay than enzymatic or 
colorimetric methods but at far lower throughput.31 NMR 
spectroscopy also offers a high probability of an unam-
biguous structural determination for a novel metabolite of 
particular interest. Gas chromatography (GC) paired with 
mass spectrometry (MS) (GC-MS) is an alternative plat-
form for broad-scope metabolomic profiling, with notable 
benefit of higher throughput relative to NMR.32 On the 
other hand, GC-MS does require chemical derivativiza-
tion, which may exclude classes of metabolites from the 
analysis, and also may not produce sufficient information 
for the unambiguous identification of a particular metabo-
lite. However, the intersection of multiple data sets devel-
oped on these complementary analytical platforms offers 
a powerful strategy to analyze metabolomes.

Color and aroma are other targets for tomato improve-
ment and study. Many of the pigments in tomato are 
isoprenoids, such as carotenoids, while others are poly-
phenolics, such as flavonoids.33 Traditionally, liquid chro-
matography (LC) protocols with commercial standards 
have been sufficient for carotenoid profiling.34 However, 
as investigators wish to build more complete estimates 
for various metabolomes, LC-MS is becoming more com-
mon for analysis of isoprenoids. The MS portion of the 
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experiment can occur either in-line with the LC or in an 
off-line mode.35,36 In-line MS simplifies work flow, while 
off-line MS may provide greater sensitivity due to the 
greater reduction of sample complexity.36 NMR spectros-
copy is also an option for isoprenoid profiling, which is 
effective at distinguishing E from Z isomers while MS 
methods cannot.37 This is significant, as different carote-
noid isomers may have different biological activities and 
thus nutritive qualities.38 Carotenoid composition can 
change through food preparation and processing, both in 
quality (i.e., isomerization) and identity (i.e., degradation 
by heat); analysis of both raw and cooked samples may be 
necessary to present a full description of the isoprenoid 
portion of a metabolome.39,40 In addition to color, carote-
noids also contribute to fruit aroma, as do fatty acid and 
amino acid derivatives.41 As all three categories represent 
volatile compounds, GC and GC-MS are the platforms 
of choice for separation and identification.41,42 A rela-
tively small number of compounds contribute to aroma, 
which has facilitated the discovery of key biosynthetic and 
regulatory genes using traditional genetic and transgenic 
approaches.41,43–46

Flavonoids, like carotenoids, contribute to both the 
color and nutritional quality of tomato fruit.47 Like caro-
tenoids, LC-based approaches have been widely utilized 
to quantitate and identify flavonoids, using either com-
mercially available standards or MS.48,49 Flavonoids can 
degrade during food/sample preparation so that analysis 
of raw and cooked samples may need to be performed 
to insure the relevance of the results.40 The regulation 
of flavonoid biosynthesis has been studied for decades 
and many genes are available for direct study.33 As a 
result, many studies in tomato utilize either conventional 
mutants (e.g., high-pigment1) or transgenic strategies to 
manipulate the flavonoid pathway and products.33,50–55 
A third method to manipulate the flavonoid pathway 
(and others) is to observe changes through developmen-
tal time; the ripening process makes dramatic changes to 
fruit composition.56 In addition, there is compartmental-
ization within fruit for many different compounds.35 Tis-
sue type explained far more variance in chemical species 
observed than did genetic differences in a small panel of 
fresh market/greenhouse adapted cultivars.56 Even greater 
resolution of variance was obtained by using a time-course 
approach to dissect the tissue-specific metabolomes in rip-
ening fruit. Nearly 70% of phenotypic variance observed 
was explained by a principal component analysis, with the 
obvious clustering according to tissue and developmen-
tal stage.56 With further application of this sophisticated 
experimental design, more of the phenotypic variance 
could be explained; however, this dramatically increased 

the number of samples analyzed, as five tissues and five 
developmental time points were examined.56

Nontargeted metabolomic approaches offer many 
advantages over targeted ones, if the goal is to charac-
terize unintended effects.57,58 If a primary concern is to 
understand the predictable and unpredictable unintended 
effects to composition and quality, then we need to look 
beyond the obvious quality and toxin biomarkers. How-
ever, this kind of survey does not require the unambigu-
ous identification of every compound in the first draft of 
the analysis. Molecular fingerprinting is likely sufficient 
in the first draft of a metabolomic comparison between 
conventional and transgenic varieties.1,57,59 For example, 
if there are 2000 negative ions produced by MS and only 
10 are different between the conventional and transgenic 
varieties, then obviously those require the most attention 
in the second round of metabolomic analysis. Nontargeted 
metabolomics also offer advantages to the analysis of con-
ventional varieties, as they have no preconceptions about 
what the so-called “interesting” molecules will be, beyond 
the limitations of whatever extraction or separation 
chemistry is utilized for sample preparation and analysis. 
Nontargeted surveys have been conducted using MS on 
conventional mutants, developmental time series, diverse 
germplasm, and transgenic varieties.35,56,60,61 Similar stud-
ies have been conducted with NMR spectroscopy.55,62 

One of the common difficulties with analyzing MS 
or NMR data is the need for a highly curated database to 
best understand the spectra produced during the course 
of the experiment. Fortunately, recent developments in 
tomato, in particular and within the larger metabolomics 
community, provide these resources. A metabolite survey 
of approximately 100 Dutch tomato cultivars was con-
ducted using LC-MS and MS/MS as necessary.63 A high-
throughput methodology was described in a separate pub-
lication; software for comparison of LC-MS and GC-MS 
spectra (MetAlign) and the tomato metabolite database 
(MoToDB) are both freely available.60,63 A more compre-
hensive (>20,000 compounds) public database has been 
organized to warehouse MS and NMR data.64 The latter 
group has also made their software (Sesame) freely avail-
able to encourage community participation in the curation 
of the metabolite database.65 As the Sesame software was 
originally written to manage proteomic data, comparative 
tools will hopefully be developed for the joint analysis of 
metabolite and protein data.66

Experimental design and analysis  
are the limiting factors

Many experiments executed to date have had well-defined 
goals but have lacked thorough descriptions of the 
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experimental protocols and results. This is a general prob-
lem that is now being addressed by the establishment of 
community standards for reporting the details of experi-
mental design and execution. This solution was first pro-
moted in the gene expression community as the MIAME 
standard (the Minimum Information About a Microarray 
Experiment).67 For tomato, several public databases are 
MIAME compliant, including the Tomato Expression 
Database, the Gene Expression Omnibus, and the Plant 
Expression Database.68–70 One of the limitations for gene 
expression data mining is this distribution of community-
generated results. In the cereals genomic community, com-
putational biology tools (“middleware”) have been devel-
oped to facilitate the invisible exchange of information 
between model organism databases and clade-oriented 
databases.71 Hopefully, the development of middleware 
tools will be expanded to promote the amalgamation of 
data between multiple web-accessible databases and thus 
encourage meta-analysis. The ability to consolidate all of 
the tomato gene expression data would be highly useful 
to help connect gene and metabolite expression analyses, 
especially as several microarray-based studies have been 
made on tomato fruit development.72–77 Tools have been 
developed for the Arabidopsis community, such that both 
gene and metabolite expression analysis can be conducted 
within a single website.78 At the SOL Genomics Network, 
the clade-oriented database that includes tomato, com-
parative genomics tools are apparently being developed, 
while some already exist at the Tomato Expression Data-
base, a model organism database.25,69 

The same issue of data exchange exists within the 
proteomic research community. As with MIAME, a 
similar community standard has been established for pro-
tein expression profiling (proteomics) and is called the 
MIAPE, for Minimum Information About a Proteom-
ics Experiment.79 For research groups that do apply both 
genomic and proteomic methods, tools have been devel-
oped to merge these data sets into single, coherent enti-
ties for consolidated analysis.80,81 Studies have described 
the tomato fruit proteome as it changes through develop-
mental time.82,83 These methods have not been applied 
to tomato, although there is sufficient information in the 
literature to make that joint comparison of gene and pro-
tein expression. 

There is at least one obstacle to effectively consolidat-
ing disparate data sources developed by different inves-
tigators. Data mining and middleware function are sty-
mied by the tendency of researchers to use idiosyncratic 
or incomplete language to describe what they did and how 
they did it. The use of controlled vocabularies to describe 
genes, traits, and phenotypes can overcome some of these 

difficulties.84,85 Once controlled vocabularies are in place, 
gene and protein expression profiling experiments can be 
analyzed much more easily.86–88 This is in large part due 
to the fact that more of the decision-making can be made 
automatically rather than subjectively by the particular 
researcher, which is a key consideration when there can be 
millions of data points. Controlled vocabularies allow data 
sets to be consolidated with confidence when assembled 
by multiple researchers since everyone has agreed upon 
the methods to be used for organization and for the clas-
sification of their results.

One of the driving forces for organization of metabo-
lomic, genomic, and proteomic datasets is their scale. All 
of these approaches generate waves of information that 
can quickly overwhelm the investigator, which make the 
visualization and appreciation of the results difficult. In 
the elegant study of Fraser et al.,32 normal and transgenic 
tomatoes overexpressing phytoene synthase1 were examined 
using directed metabolomics, gene expression, protein 
activity, and physiological parameters. This multidisci-
plinary approached allowed them to construct the most 
complete understanding of changes in the metabolism 
of the transgenic tomato fruit relative to nontransgenic. 
Their data were summarized in a color-coded metabolic 
pathway diagram, which made for a highly effective trans-
mission of the scope of the changes observed. However, 
these diagrams were drawn for only two of the ten pos-
sible comparisons that could have been made (two variet-
ies, five developmental stages tested) and focused only on 
a small subset of overall metabolic processes.32 For simi-
lar reasons, it seems highly likely that the sense of scale 
has interfered with reporting on the nondirected LC-MS 
studies on the panel of ~100 Dutch tomato varieties; all 
we have heard to date have been the descriptions of the 
methods necessary to process that many samples and the 
database that hosts some fraction of their results.60,63 It 
must be a difficult process to analyze and visualize a data-
set that contains hundreds of thousands of mass identifi-
cations derived from hundreds of LC runs, let alone parse 
this story into appreciable chapters. This work will provide 
a broad and deep description of the range of phenotypic 
variation observed and provide highly useful information 
to both basic and applied biologists working with tomato. 

However, this is precisely the kind of information that 
is required to fully examine the predictable and unpredict-
able unintended effects to the composition of transgenic 
crops. Given the scope and depth of experiments on this 
scale, it is unlikely that single investigators will be able to 
conduct and analyze these experiments. I think that only 
through well-organized community efforts, where indi-
viduals laboratories divide responsibilities and conduct 
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experiments that can serve multiple functions, will the 
data necessary to judge the existence and importance 
of unintended effects be possible. These efforts need 
to be sufficiently large to describe the phenotypic range 
observed among a diverse selection of conventional variet-
ies using metabolomic, genomic, and proteomic profiling 
methods. Once this is accomplished, the same metrics can 
be applied to a realistic panel of transgenic varieties with 
possible commercial application. While the characteriza-
tion of transgenic varieties will likely serve only a bio-
technology risk-assessment purpose, the natural diversity 
survey will provide broad and deep knowledge of food 
composition and quality. Such a systems biology approach 
should answer a large number of applied and basic biologi-
cal questions, thus justifying the investment.

Future prospects
The MIAME and MIAPE standards are now require-
ments for publishing microarray and proteomic experi-
ments in many journals. Hopefully, similar standards 
will be applied to metabolomic data as well. As more and 
more of these datasets are deposited in publicly accessible 
databases, meta-analyses that integrate multiple levels of 
information will allow us to ask many different systems 
biology questions. The adoption of controlled vocabular-
ies for gene, trait, and phenotypic ontologies will further 
assist these meta-analyses. The benefit of this ability to 
leverage large collections of data should be obvious to 
the scientific community. Likewise, the identification of 
genetically informative populations has been very effec-
tive to address important biomedical and agronomic ques-
tions, such as the identification of cancer risk factors and 
genes important for carotenoid biofortification in staple 
crops.89,90 If these genetically informative populations 
are studied using metabolomic, genomic, and proteomic 
methods, this should provide an immediately useful but 
also durable resource. From this base of knowledge, the 
range and identity of unintended effects to composition 
and quality of transgenic foods can be assessed in the most 
complete manner, and help inform consumers, regulators, 
and other stakeholders in their decision-making. 
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