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Camurati-Engelmann disease (CED) is a rare autosomal
dominant type of bone dysplasia. This review is based on
the unpublished and detailed clinical, radiological, and
molecular findings in 14 CED families, comprising 41
patients, combined with data from 10 other previously
reported CED families. For all 100 cases, molecular
evidence for CED was available, as a mutation was
detected in TGFB1, the gene encoding transforming growth
factor (TGF) b1. Pain in the extremities was the most
common clinical symptom, present in 68% of the patients.
A waddling gait (48%), easy fatigability (44%), and muscle
weakness (39%) were other important features.
Radiological symptoms were not fully penetrant, with 94%
of the patients showing the typical long bone involvement.
A large percentage of the patients also showed
involvement of the skull (54%) and pelvis (63%). The review
provides an overview of possible treatments, diagnostic
guidelines, and considerations for prenatal testing. The
detailed description of such a large set of CED patients will
be of value in establishing the correct diagnosis, genetic
counselling, and treatment.
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C
amurati-Engelmann disease (CED) or pro-
gressive diaphyseal dysplasia (MIM
131300) is an autosomal dominant condi-

tion belonging to the group of craniotubular
hyperostoses. Initially described by Cockayne in
1920,1 Camurati was the first to suggest its
hereditary nature in 1922.2 In 1929, Engelmann
reported a single case with muscular wasting and
marked bone involvement.3 The name progres-
sive diaphyseal dysplasia emphasises the pro-
gressive nature of the hyperostosis and the ever
present involvement of the diaphyses,4 but
currently, the eponym Camurati-Engelmann
disease is widely accepted.

The hallmark of the disorder is the cortical
thickening of the diaphyses of the long bones.
Hyperostosis is bilateral and symmetrical and
usually starts at the diaphyses of the femora and
tibiae, expanding to the fibulae, humeri, ulnae,
and radii. As the disease progresses, the meta-
physes may become affected as well, but the
epiphyses are spared.5 Sclerotic changes at the

skull base may be present. The onset of the
disease is usually during childhood and almost
always before the age of 30. Most patients
present with limb pain, muscular weakness, a
waddling gait, and easy fatigability. Systemic
manifestations—such as anaemia, leucopenia,
and hepatosplenomegaly—occur occasionally.6

Abnormal values for several markers of bone
formation and resorption have been reported in a
few patients.7 8

In this review, clinical, radiological, and
molecular data on 24 CED families were col-
lected. Presentation of families from Europe,
Asia, Africa, America, Australia, and Oceania
shows that CED is spread worldwide. Fourteen of
the families (41 patients) were examined by at
least one of us. Data on 10 additional families
(59 patients) were collected from published
reports.9–12 Including the families presented in
this paper, TGFB1 mutations in 45 CED families
have been described worldwide.10 11 13–18 For the
remaining 21 families, however, no published
clinical or radiological information was available.

RADIOLOGICAL, SCINTIGRAPHIC, AND
CLINICAL MANIFESTATIONS AND
PHENOTYPIC VARIABILITY
Table 1 summarises clinical, radiological, scinti-
graphic, and molecular data on all the patients.
Representative imaging studies and a clinical
picture are presented in figs 1–4. From the data,
several important conclusions can be drawn. In
94% of the patients—defined by the presence of a
molecular defect in TGFB1—radiological symp-
toms are penetrant, with cortical thickening of
the diaphyses of the long bones being the first
manifestation. The skull (54%) and pelvis (63%)
are other commonly involved sites. Scintigraphy
detected increased osteoblastic activity in the
affected regions (limbs, pelvis, skull, spine; see
fig 2) in 74% of the investigated patients (17/22).
As increased tracer uptake can be perceived even
before sclerosis becomes radiologically visible,
scintigraphy is a valuable technique for diagnos-
ing CED in an early stage of disease.

Most of the patients also express clinical
symptoms (74%). The most common symptoms
are pain in the extremities (68%), a peculiar
waddling gait (48%), easy fatigability (44%), and

Abbreviations: BMD, bone mineral density; CED,
Camurati-Engelmann disease; TGF, transforming growth
factor
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Table 1 Overview of clinical, radiological, scintigraphic, and molecular data on patients from the 24 families

Family 1 Family 2 Family 3 Family 4 Family 5

(Belgium) (Iraq) (UK) (Italy) (Belgium)

Mutation (DNA) 673TRC 653GRA 652CRT 28_36dup 241TRC
Mutation (protein) C225R R218H R218C L10-L12dup Y81H
Number of patients 3 5 3 2 3

Clinical symptoms 3/3 4/5 2/3 2/2 1/3
Pain in extremities 2/3 4/5 2/3 0/2 1/3
Easy fatigability 0/3 3/5 2/3 0/2 1/3
Muscle weakness 0/3 2/5 2/3 0/2 1/3
Waddling gait 1/3 3/5 1/3 0/2 1/3
Hearing loss 0/3 2/5 0/3 2/2 0/3
Reduced subcutaneous fat 1/3 2/5 0/3 2/2 1/3
Other Hyperthermia (1/3) Hepatosplenomegaly

(1/3)
ESR and CRPq (2/3) – Small stature (1/3)

Cranial nerve
compression (1/3)
Small stature (2/3)
Headache (1/3)

Radiological abnormalities 3/3 5/5 3/3 2/2 1/3
Cortical thickening diaphyses 3/3 5/5 3/3 2/2 1/3
Sclerosis of skull 1/3 2/5 ND 2/2 0/3
Other – – Spine osteoporotic

(2/3)
Spine, pelvis (1/2) –

Coxa valga (2/3)

Increased BMD ND ND + (hip) (2/3) 2/2 ND
2 (spine) (2/3)

Scintigraphic abnormalities ND 4/4 ND 1/1 1/1

Treatment GC (1/3) GC (1/5) GC (2/3) Calcitonin (1/2) GC (1/3)
NSAIDs (1/3) NSAIDs (2/3) BP (2/2) NSAIDs (1/3)

Analgesics (2/3) Analgesics (1/3)
BP (2/3)
Tibial osteotomy (1/3)
Femoral osteotomy
(1/3)

Family 6 Family 7 Family 8 Family 9 Family 10

(Belgium) (Italy) (Germany) (UK) (Tonga-Oceania)

Mutation (DNA) 241TRC 653GRA 653GRA 653GRA 653GRA
Mutation (protein) Y81H R218H R218H R218H R218H
Number of patients 6 2 3 2 2

Clinical symptoms 3/6 2/2 1/3 1/2 1/2
Pain in extremities 2/6 1/2 1/3 1/2 0/2
Easy fatigability 1/6 1/2 1/3 0/2 0/2
Muscle weakness 1/6 1/2 1/3 0/2 0/2
Waddling gait 2/6 2/2 1/3 0/2 0/2
Hearing loss 0/6 0/2 0/3 0/2 1/2
Reduced subcutaneous fat 0/6 1/2 0/3 0/2 0/2
Other – – – – Proptosis (1/2)

Radiological abnormalities 4/6 2/2 1/1 2/2 2/2
Cortical thickening diaphyses 4/6 2/2 1/1 2/2 2/2
Sclerosis of skull 1/2 0/2 ND ND 1/1
Other Pelvis (1/2) – – ND –

Increased BMD ND ND ND ND 1/1

Scintigraphic abnormalities 1/6 ND 1/1 ND 1/1

Treatment GC (1/6) – Penicillin Treated with
vitamin D for
presumed rickets
(1/2)

Orbital
decompression (1/1)BP (1/6) Gold salts

NSAIDs

Family 11 Family 12 Family 13 Family 14 Family 15*

(Morocco) (Belgium) (Spain) (Germany) (Israel)

Mutation (DNA) 463CRT 673TRC 652CRT 664CRG 652CRT
Mutation (protein) R156C C225R R218C H222D R218C
Number of patients 2 3 4 1 16

Clinical symptoms 2/2 2/3 4/4 1/1 10/16
Pain in extremities 2/2 2/3 2/4 1/1 8/8
Easy fatigability 1/2 1/3 0/4 1/1 ND
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Family 11 Family 12 Family 13 Family 14 Family 15*

(Morocco) (Belgium) (Spain) (Germany) (Israel)

Muscle weakness 0/2 1/3 4/4 1/1 4/8
Waddling gait 1/2 1/3 1/4 1/1 6/8
Hearing loss 0/2 0/3 0/4 0/1 0/8
Reduced subcutaneous fat Obese (2/2) Obese (1/3) 0/4 1/1 ND
Other ESR and CRPq

(1/2)
– Vision Q (1/4) Delayed puberty Inability to run quickly

(3/8)Mild splenomegaly (2/4) Small stature
Recurrent facial
paralysis (1/4)
Hypertension (1/4)

Radiological abnormalities 2/2 3/3 4/4 1/1 11/11
Cortical thickening diaphyses 2/2 3/3 4/4 1/1 11/11
Sclerosis of skull 0/2 0/3 4/4 0/1 ND
Other Enlarged mandible

(1/2)
Kyphoscoliosis (1/3) Pelvis (3/4) Genu valgum ND
Coxa valga (1/3) Spine (1/4) Pes valgus

Vertebrae (1/4) Coxa valga

Increased BMD ND ND ND ND ND

Scintigraphic abnormalities 2/2 1/2 4/4 ND ND

Treatment Analgesics (2/2) NSAIDs (2/3) GC (1/4) – ?
GC (2/2)

Family 16� Family 17` Family 18` Family 19` Family 20`

(Japan) (Portugal) (France) (Belgium) (France)

Mutation (DNA) 673TRC 653GRA 652CRT 673TRC 673TRC
Mutation (protein) C225R R218H R218C C225R C225R
Number of patients 12 12 2 3 3

Clinical symptoms 10/12 10/12 2/2 2/3 2/3
Pain in extremities 10/12 10/12 2/2 2/3 2/3
Easy fatigability ND 8/12 1/2 2/3 2/3
Muscle weakness 7/12 7/12 1/2 2/3 2/3
Waddling gait 5/12 7/12 1/1 1/3 2/3
Hearing loss 3/12 ND ND ND ND
Reduced subcutaneous fat ND ND ND ND ND
Other Marfanoid habitus

(3/12)
Headache (2/12)
Poor appetite (2/12)

Poor appetite (1/2) Headache (3/3)
Poor appetite (1/3)

Facial nerve palsy
(1/12)

Delayed puberty (?)

Delayed puberty
(1/1)

Radiological abnormalities 12/12 10/10 ND 3/3 3/3
Cortical thickening diaphyses 12/12 10/10 ND 3/3 3/3
Sclerosis of skull 3/12 9/11 ND ND 1/2
Other ND ND ND ND ND

Increased BMD ND 8/10 2/2 3/3 3/3

Scintigraphic abnormalities 1/1 ND ND ND ND

Treatment ? GC (1/12) ? ? ?

Family 21` Family 22` Family 23` Family 241

(Australia) (France) (France) (USA) Summary

Mutation (DNA) 673TRC 652CRT 652CRT 653GRA
Mutation (protein) C225R R218C R218C R218H
Number of patients 2 1 2 6 100

Clinical symptoms 2/2 1/1 2/2 4/6 74/100 (74%)
Pain in extremities 2/2 1/1 2/2 3/6 63/92 (68%)
Easy fatigability 2/2 1/1 1/2 3/6 32/72 (44%)
Muscle weakness 1/2 1/1 1/2 4/6 36/92 (39%)
Waddling gait 1/2 1/1 1/2 4/6 44/92 (48%)
Hearing loss ND ND ND 2/6 10/67 (15%)
Reduced subcutaneous fat ND ND ND 2/6 10/47 (21%)–3/47

(6%) obese
Other Headache (2/2)

Poor appetite (2/2)
Poor appetite Headache (1/2)

Poor appetite (1/2)
Vertigo, tinnitus,
balance problems
(2/6)
Delayed puberty (1/6)

Table 1 Continued
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muscle weakness (39%). Reduced subcutaneous fat (21%)
and hearing loss (15%) are less common.

The extreme variability in phenotypical expression, both
between families sharing the same mutation and among
members of the same family, makes it difficult to detect
possible genotype–phenotype correlations. Irrespective of the
nature of the mutation, the age of onset and disease
progression appear highly unpredictable. As previously
observed by others,5 19 there seems to be a tendency for an
earlier age of onset or a more severe phenotype, or both, in
successive generations, a phenomenon known as anticipa-
tion. A trend towards increased severity in successive
generations was observed in at least seven families.
However, in five of these families, diagnosis in the asympto-
matic parent was made after giving birth to a severely
affected child, creating the appearance of anticipation.
Additionally, there was amelioration of disease outcome in
successive generations in two families. Furthermore, the
nature of the mutations is not in favour of anticipation. The
Leu repeat expansion in family 4 forms an exception, but 60
Italian control individuals did not show evidence of
instability in this repeat. It seems more plausible that
additional genetic factors (for example, single nucleotide
polymorphisms (SNPs) in TGFB1 or other genes) modulate
the outcome of the principal mutation. A study by Campos-
Xavier et al10 detected no association between the promoter
SNPs C-509T and C-800T or the coding SNPs T29C and G75C
and disease severity in families 17 to 23. Likewise, no
association was found between the same four and four
additional TGFB1 polymorphisms and disease outcome in
family 24.11 These results suggest that genes different from
TGFB1 might influence the disease outcome.

MOLECULAR ANALYSIS AND PATHOGENESIS
Mutation analysis in 46 CED families10 11 13–18 20 identified 10
different mutations in the TGFB1 gene in all but one family
(table 2; fig 5). The absence of a mutation in a family
described by Hecht et al15 raises the possibility of genetic

heterogeneity in this disorder. This is further suggested by
the absence of mutations in the coding region of TGFB1 in
several isolated patients and small families investigated in
our laboratory (unpublished data). However, the disease in
the latter families might be caused by a mutation in a non-
coding position of TGFB1, affecting, for example, mRNA
stability, protein expression level, or transcription factor
binding. The possibility that CED is not the underlying
disorder in these families should also not be overlooked: in a
substantial subset of our patients lacking a TGFB1 mutation,
we found indications that the diagnosis was incorrect (either
because they had atypical radiological, clinical, or biochem-
ical findings, or because of a different inheritance pattern).
Thus far, we have not been able to find convincing evidence
for genetic heterogeneity in our set of cases and families.

Transforming growth factor b1 (TGFb1) is formed as a pro-
precursor molecule, consisting of the signal peptide, the
latency associated peptide, and the mature peptide. Post-
translational processing yields the small latent complex, a
non-covalent association between two latency associated
peptides and two mature peptides. The majority (7/10) of the
mutations detected in CED are missense mutations located in
exon 4, coding for the region in the latency associated peptide
surrounding the residues responsible for homodimerisation
(Cys223 and Cys225)—making up 82.2% of all mutations
reported so far. The arginine residue at position 218 is a
mutation hotspot, representing 60% of the mutations.
Mutations outside exon 4 include a nine base pair duplication
in the part of exon 1 encoding the signal peptide, and two
missense mutations in exon 1 and exon 2 at the N-terminus
of the latency associated peptide.

Functionally, the CED mutations have been classified into
two groups.17 Exon 4 mutations destabilise disulphide
bridging of the latency associated peptides, causing prema-
ture activation of the mature peptide. Exon 1 mutations
rather affect secretion, leading to intracellular retention of
the mutant protein. All mutations investigated so far increase
TGFb1 activity.17 21 In CED patients, the narrowing of the

Family 21` Family 22` Family 23` Family 241

(Australia) (France) (France) (USA) Summary

Poor appetite (1/6)
Facial paralysis (1/6)

Radiological abnormalities 2/2 1/1 2/2 3/4 82/87 (94%)
Cortical thickening diaphyses 2/2 1/1 2/2 3/4 82/87 (94%)
Sclerosis of skull 2/2 1/1 2/2 3/4 32/59 (54%)
Other ND ND ND Enlarged mandible

(1/6)
Pelvis 5/8 (63%)

Genu valgum (3/6)
Pes planus (3/6)

Increased BMD 2/2 1/1 2/2 ND 26/29 (90%)

Scintigraphic abnormalities ND ND ND ND 17/23 (74%)

Treatment ? ? ? GC (2/6)
Hip surface
replacement (1/6)
Tibial, fibular, and
femoral osteotomy
(1/6)

*This family has been described by Janssens et al.12

�This family has been described by Makita et al.9

`These families have been described by Campos-Xavier et al.10

1This family has been described by Wallace et al.11

?, Data not available; –, data absent; q, increased; Q, decreased.
BMD, bone mineral density; BP, bisphophonates; CRP, C reactive protein; ESR, erythrocyte sedimentation rate; GC, glucocorticoids; ND, not determined; NSAIDs,
non-steroidal anti-inflammatory drugs.

Table 1 Continued
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medullary cavity at the endosteal side and the modelling
defect at the periosteal side of the diaphyses of the long bones
suggest that the osteoclastic resorption capacity and the
osteoblastic bone formation are both disturbed. This observa-
tion is in line with the presumed action of the mutant
protein, as TGFb1 has been shown to stimulate bone
formation and suppress bone resorption under physiological
conditions.22

Most clinical features of CED—such as bone pain in the
limbs, waddling gait, and auditory impairment—are second-
ary to the hyperostosis and sclerosis of the skeleton. However,
the reduction in fat and muscle mass, observed in a
significant percentage of the patients (21% and 39%,
respectively, in this population), seems to be unrelated to
the affection of the skeleton. We sought to clarify these
additional symptoms on the basis of the mutations detected.
TGFb1 is a known inhibitor of myogenesis, impairing fusion
of myoblasts into multinucleated myotubes.23 Indeed, recent
evidence points to a role for the TGFb pathway in repressing
the expression of two important myogenic transcription
factors.24 TGFb1 also inhibits adipogenesis,25 at least partly
through the transcriptional repression of genes important in
adipocyte differentiation.26 Increased TGFb1 activity, as seen
in CED patients, is therefore expected to inhibit muscle and
fat development. It is of note that dexamethasone, a
synthetic glucocorticoid and a known stimulator of adipo-
genesis, was recently shown to reverse TGFb mediated
inhibition of preadipocyte differentiation.27

How can it be explained that activating mutations in a
protein like TGFb1, whose receptors are ubiquitously
expressed,28 cause the relatively mild CED phenotype? One

Figure 1 Typical radiographs of CED patients from different families. (A) AP radiographs of both lower legs of a patient from family 14. There is
cortical thickening and severe modelling defect at the diaphysis of both tibiae and fibulae. (B) Full leg radiograph (AP view) of a patient from family 2.
Note the cortical sclerosis and the modelling defect with symmetrical distribution at the diaphyses of the femora, tibiae, and fibulae, with sparing of the
metaphyses and epiphyses. (C) Radiograph of the left distal femur (AP view) of a patient from family 11. Cortical thickening at the diaphysis of the
femur—especially at the medial aspect—results in a modelling defect. Note sparing of the metaphysis and epiphysis. (D) Plain radiograph of the right
forearm (AP view) from a patient from family 5. Cortical sclerosis and modelling defect can be seen at both radius and ulna, but are most striking at the
proximal diaphysis of the ulna. (E) Standard radiograph of the forearm of a patient from family 10. Marked cortical thickening at the diaphysis of the
ulna and radius can be observed, causing obliteration of the medullary cavity and hypertrophy of the long bones. Note extension of the cortical
sclerosis towards the distal metaphysis of the radius. (F) Radiograph of the right arm (AP view) of a patient from family 14. Thickening of the cortex of
the diaphyseal portion of the humerus, ulna, and radius is present, resulting in narrowing of the medullary canal. Note also the modelling defect of the
long bones, which is most extensive at the diaphysis of the ulna. (G) Radiograph of the left hand (AP view) of a patient from family 10, showing cortical
sclerosis, cortical thickening, and medullary cavity obliteration at the diaphysis of metacarpals 2 and 3. (H) Radiograph of the skull (lateral view) of a
patient from family 1. Sclerosis of the calvaria, the tympanic portion of the skull base, and the ascending ramus of the mandible is visible. Note
relatively small frontal and sphenoidal sinuses resulting from adjacent sclerosis of the frontal bone and upper part of the face. The maxillary sinuses are
spared.

Figure 2 Whole body bone scintigraphy of a patient from family 13
showing the symmetrical distribution of the disease. Increased tracer
uptake is visible in the diaphyseal portion of the long bones of the
femora, lower legs, humeri and forearms, clavicles, and frontal bones.
There is minor increased uptake at the parietal and occipital bones. Also
note the slight valgus deformity of the knees.

Figure 3 Axial computed tomography (bone window) of the head of a
patient from family 10, showing extensive sclerosis and thickening at the
calvaria and petrous bones with loss of the diploe. Note also obliteration
of the left frontal sinus.
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possible explanation is the presence of modifier genes that
modulate the outcome of the principal mutation (see above).
However, in our opinion this is insufficient to account for the
absence of symptoms during embryonic development, in
which TGFb1 is shown to play a crucial role,29–31 or in tissues
like heart, pancreas, kidney, lung, and skin, where TGFb1 is
highly expressed during adult life.32 33 We propose the
following hypothesis. TGFb1 is post-translationally processed
to a non-covalent small latent complex of the mature peptide
and latency associated peptide. In most tissues, this complex
covalently associates with a latency associated TGFb binding
protein to form a high molecular weight latent complex
(large latent complex) that is directed for storage in the
extracellular matrix.34 However, bone forms an exception, as
bone cells produce predominantly the small latent complex,35–

37 a form suggested to represent a pool of readily available
TGFb1—necessary in an environment where TGFb1 plays

Figure 4 Clinical picture of the patient from family 14 at the age of 15.
Note the absence of subcutaneous fat (weight 27 kg), muscle
hypotrophy, and valgus deformity of the knees and feet. Muscle
weakness restricts her maximum walking distance to 20 to 50 m.
Secondary sex characteristics (breast development, menstruation) were
delayed. Written permission of the patient for reproduction of this
photograph was obtained.
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such an important role throughout life.37 We raise the
possibility that the capacity of a mutation to alter the
structure of the latent complex depends on the presence of
the latency associated TGFb binding protein. Following this
hypothesis, the conformational changes needed for prema-
ture activation of the mature peptide are quenched in the
large latent complex. However, when secreted as the small
latent complex, the latency associated peptide alters its
conformation under the influence of the mutation, releasing
some of the mature peptide or at least facilitating its
activation. Experiments are under way to confirm or reject
this hypothesis.

TREATMENT
Drug treatment
Glucocorticosteroids are anti-inflammatory and immunosup-
pressive agents. In bone, they exert the unfavourable side
effect of decreasing bone density, first by increasing the
apoptosis rate of osteoblasts and osteocytes while suppres-
sing osteoblast proliferation, differentiation, and bone matrix
synthesis38 39; second, by enhancing proliferation and differ-
entiation of osteoclast precursors40 41; and third, by decreasing
intestinal calcium absorption.42 In CED patients, this ‘‘side
effect’’ is turned into an advantage: glucocorticoids are
applied to counteract the increased bone formation.
Moreover, they exert a direct effect on TGFb expression,
activation, and signalling, although the exact mechanism
needs further clarification. On the one hand, glucocorticoids
are seen to stimulate TGFb expression43 and increase latent
TGFb activation,44 which would imply that they could have
adverse effects in CED patients, who show TGFb1 over-
activity. On the other hand, they have been found to induce a
shift of TGFb binding from the signalling-capable receptor to
the non-signalling receptor,45–47 thereby downregulating
signalling. Moreover, the glucocorticoid dexamethasone has
been shown to interfere more downstream in the signalling
pathway, thereby inhibiting TGFb induced transcription of
target genes.48

Several reports have described successful treatment of CED
patients with the glucocorticoid prednisolone.49–53 In all cases,
there was an improvement in clinical symptoms such as pain
and fatigue. Correction of radiographic abnormalities has
been documented as well. Of our patient set, 12 patients from
nine different families are being treated with prednisolone or
related drugs (table 1). For seven of them, information on the
effect of treatment was made available. Suffering from lower
limb pain, one of the patients from family 1 received high
prednisone doses over a two year period. One month
treatment courses kept her pain-free for several months,

but pain relapsed in the course of time. One of the affected
children from family 2 was treated with prednisone for one
year, starting on a dose of 30 mg/day, which was lowered to
10 mg every second day. Weight, appetite, and walking ability
increased notably and he complained of skeletal pain much
less. Treatment was discontinued because he developed
aggressive behaviour which was thought to be related to
prednisolone. Treatment of the two clinically affected
patients from family 3 resulted in improved mobility and
decreased bone pain. However, treatment had to be
suspended as the patients became Cushingoid. The sympto-
matic patient from family 5 benefited from prednisolone
treatment as pain and muscle weakness disappeared, while
appetite and vigour increased. For the patients from family
11, low glucocorticoid doses helped to suppress pain.
Although it is tempting to speculate that glucocorticoids
improve bone pain by suppressing bone formation, the
improvement in clinical symptoms to treatment can be very
rapid and is therefore unlikely to be caused by the
suppressive effect on osteoblast function.

Despite these positive reports, long term glucocorticoid
treatment is not advisable, as unfavourable side effects can
occur. For example long term prednisolone use in children
will impair linear growth.54 Furthermore, spinal osteoporo-
sis—as present in two patients from family 3—might be
related to long term corticosteroid treatment, as spine bone
mineral density (BMD) in two patients from family 4 who
were not treated with glucocorticoids was increased. Thus it
is important to define the minimum effective dose. A good
starting dose is 1 mg/kg/day, but this can and should be
lowered during long term treatment. Deflazacort, a derivative
of prednisolone, was reported to have a comparable effect in
improving clinical and radiological symptoms, but to have
fewer adverse effects, and might therefore form a safer
alternative.55

The value of bisphosphonates in the treatment of CED is
disputed. Besides the five patients described here (table 1),
there are very few reports of treatment with these drugs. One
report mentions a worsening of bone pain on treatment with
pamidronate,51 while in another, a patient profited by
treatment with the same drug.56 A patient from family 6
underwent a five week course of treatment with weekly
pamidronate infusions without amelioration of her symp-
toms. Likewise, two patients from family 3 did not benefit
from a three month course of intravenous pamidronate
treatment. Etidronate treatment in another patient (family 4)
even had an adverse effect, as it augmented serum alkaline
phosphatase levels above normal. Taking into account that
bisphosphonates are widely used as antiresorptive drugs in
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the treatment of osteoporosis—increasing BMD and lowering
fracture risk57—they do not seem likely to have promise for
the treatment of CED.

The treatment of one of the patients with calcitonin
(family 4) is the first report on the use of this drug in CED
therapy. Besides functioning as an analgesic, capable of
relieving bone pain,58 calcitonin is also known as a potent
inhibitor of bone resorption, hence its application in
osteoporosis and Paget’s disease.59 Consequently, it is
unlikely that this drug will be useful for treating CED,
although recent in vivo findings point to an additional role of
calcitonin as an inhibitor of bone formation.60 Application in
the patient described here was discontinued as no improve-
ment was apparent.

Other drugs used include non-steroid anti-inflammatory
drugs (NSAIDs) such as aspirin. Although these drugs can
alleviate pain, they are not effective at improving bone
changes.

Surgery
An alternative to drug treatment is surgery. Bone overgrowth
in the diaphyses, with concomitant narrowing of the
medullary canal and modelling defects, can be alleviated by
reaming of the medullary canal61 62 or osteotomy (this report;
families 3 and 24). Orbital decompression to remove bone
encroachment on the optic nerves has been used in one case
(family 10). However, as the disorder is progressive the
symptoms will recur in time.

Gene therapy
In the future, gene therapy might be considered as an
additional way to cure CED patients. Based on their capacity
for sequestering the mature peptide, decorin, biglycan, a2

macroglobulin, soluble b-glycan, a2-HS glycoprotein/fetuin,
anti-TGFb monoclonal antibodies, or a soluble inactive type II
receptor could be considered as possible drugs.63–66

Alternatively, inhibitors of downstream signalling molecules
could be used. In all cases, it should be taken into account
that TGFb1 is implicated in a myriad of functions in the body,
increasing the risk of unwanted side effects upon systemic
administration of such a ‘‘quencher’’. Consequently, local
application, confined to bone and muscle tissue, would be is
preferable.

DIAGNOSIS AND GENETIC COUNSELLING
As clinical and radiological variability is extensive, molecular
analysis can provide an additional resource for making a
correct diagnosis. Family 5 presents a good example of the
complementary nature of the clinical, radiological, and
molecular findings. In a previous publication on this family,
dating from 1994, the mother and maternal grandfather of a
severely affected girl had been diagnosed with CED.67 The
mother did not show any radiological abnormalities, but
scintigraphy demonstrated a focus of increased tracer uptake
at the base of the skull. The grandfather was found to have
marked fusiform enlargement and cortical thickening along
the medial borders of the long bones, despite being symptom-
free. Linkage analysis in the 19q13 region—previously
defined as containing the CED gene12—excluded this locus.
Although this could point to genetic heterogeneity, mutation
analysis of TGFB1 showed a Y81H missense mutation in the
girl. The presence of the same mutation in family 6 confirmed
this to be the disease causing mutation. The absence of the
mutation in the mother of the girl and in other family
members at the maternal side suggested that this was a de
novo mutation. Alternatively, the mutation could be segre-
gating in the paternal branch of the pedigree. Mutation
analysis showed that the latter was the case, as the mutation
was detected in the girl’s father and paternal grandmother.
Radiographic analyses of both individuals showed no signs of

the disorder (though scintigraphy was not done). Although
radiographs of the maternal grandfather were thought
diagnostic of CED, bone scintigrams were considered normal.
Unfortunately, no additional data on this individual were
made available for further diagnosis. Furthermore, increased
tracer uptake at the skull base, as seen in the mother, is a
common phenomenon in the normal population and cannot
be used as a diagnostic marker of CED. This example shows
that a combination of clinical, radiological, scintigraphic, and
molecular data may be mandatory for a definitive diagnosis
of this disorder.

Interestingly, four of the five patients with radiological
non-penetrance belong to the two families (families 5 and 6)
carrying the Y81H mutation. On comparison, it appears that
the disease has a significantly lower penetrance in patients
with the Y81H variant. Of nine patients with the Y81H
mutation, only five (56%) show signs of the disorder. On the
other hand, the genotype is penetrant in 77 of 78 patients
with a mutation different from the Y81H variant (99%)
(p,0.02). Although this could imply that the Y81H variant is
not the disease causing mutation, earlier functional experi-
ments provided evidence to the contrary. Overexpression of
the mutant protein in a cell culture system showed that the
protein is less efficiently secreted than the wild-type protein,
but far more capable of initiating the TGFb signalling
pathway.17

The extreme phenotypic variability of the disorder and
occasional lack of penetrance render genetic counselling
problematic, in particular dealing with the issue of prenatal
diagnosis. A healthy carrier can give birth to a severely affected
child. On the other hand, a severe affection status of the parent
does not necessarily imply a negative disease course in the child.
In the most severely affected patients, a normal way of life
becomes difficult, as they are in constant pain and likely to be
bedridden. As there is no possibility of predicting the disease
outcome, even on the basis of the nature of the mutation,
abortion upon prenatal testing can be contemplated. To our
knowledge, only one affected parent from our series of patients
considered prenatal diagnosis and obtained it following an in
depth discussion with a genetic counsellor.

In conclusion, this survey of a large collection of families
suffering from this rare bone disorder will aid the definition
of the full spectrum and frequency of the various CED
phenotypes, and may be of assistance to clinicians for both
diagnosis and treatment.
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