598

ORIGINAL ARTICLE

High throughput SNP and expression analyses of
candidate genes for non-syndromic oral clefts

J W Park*, J Cai*, | McIntosh, E W Jabs, M D Fallin, R Ingersoll, J B Hetmanski, 4sT
M Vekemans, T Attie-Bitach, M Lovett, A F Scott, T H Beaty @

See end of article for
authors’ offiliations

Correspondence fo:
Dr Terri H Beaty,
Bloomberg School of
Public Health, Johns

Hopkins University, 615 N.

Wolfe St., Baltimore, MD
21205, USA;
tbeaty@ijhsph.edu

Revised version received
15 December 2005
Accepted for publication
2 January 2006
Published Online First
13 January 2006

J Med Genet 2006;43:598-608. doi: 10.1136/jmg.2005.040162

Background: Recent work suggests that multiple genes and several environmental risk factors influence risk
for non-syndromic oral clefts, one of the most common birth defects in humans. Advances in high-
throughput genotyping technology now make it possible to test multiple markers in many candidate genes
simultaneously.

Methods: We present findings from family based association tests of single nucleotide polymorphism
(SNP) markers in 64 candidate genes genotyped using the BeadArray approach in 58 case-parent trios
from Maryland (USA) to illustrate how multiple markers in multiple genes can be analysed. To assess
whether these genes were expressed in human craniofacial structures relevant to palate and lip
development, we also analysed data from the Craniofacial and Oral Gene Expression Network
(COGENE) consortium, and searched public databases for expression profiles of these genes.

Results: Thirteen candidate genes showed significant evidence of linkage in the presence of disequilibrium,
and ten of these were found to be expressed in relevant embryonic tissues: SP100, MLPH, HDACA4, LEF1,
Céorf105, CD44, ALX4, ZNF202, CRHR1, and MAPT. Three other genes showing statistical evidence
(ADH1C, SCN3B, and IMP5) were not expressed in the embryonic tissues examined here.

Conclusions: This approach demonstrates how statistical evidence on large numbers of SNP markers typed
in case-parent frios can be combined with expression data to identify candidate genes for complex
disorders. Many of the genes reported here have not been previously studied as candidates for oral clefts
and warrant further investigation.

defects and represent a major public health problem.

Although >300 malformation syndromes can include
an oral cleft, non-syndromic forms account for ~70% of cases
with cleft lip with or without cleft palate (CL/P) and ~50% of
cases with cleft palate only (CP)." Current research suggests
multiple levels of aetiological heterogeneity underlie non-
syndromic oral clefts: different genes (locus heterogeneity)
and different mutations in one gene (allelic heterogeneity)
may influence risk for oral clefts, plus causal genes may
interact with one another and/or with environmental risk
factors (for example, maternal smoking).’

A number of candidate genes and chromosomal regions for
oral clefts have been identified using linkage approaches.’
However, linkage studies may miss evidence of genes with
modest effects on risk, while tests for linkage disequilibrium
(LD) should provide greater statistical power.! Among
candidate genes for oral clefts recognised in multiple studies,
only the homeobox, msh-like 1 (MSXI) gene has been shown
to be causal: 2% of 917 non-syndromic CL/P cases can be
attributed to different mutations in this one gene.* Recently,
Zucchero et al’ reported 11.6% of 387 Filipino cases with non-
syndromic CL/P can be attributed to different variants in the
interferon regulatory factor 6 (IRF6) gene, the causal gene in
van der Woude syndrome. An Italian study confirmed the
importance of IRF6.°

Family based association tests, including the transmission
disequilibrium test (TDT), evaluate the independence of
transmission of markers and phenotypes across families.”
Haplotypes of several single nucleotide polymorphism (SNPs)
together also can provide more information than single
marker analysis.* With high-throughput genotyping technol-
ogies, the scope of candidate gene studies can be considerably
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broadened.” Here, we describe analysis of 64 candidate genes
genotyped with an average of 4.3 SNPs per gene on a sample
of 58 case-parent trios from Maryland (USA). Additionally,
expression data for these genes from the Craniofacial and
Oral Gene Expression Network (COGENE) consortium were
examined.

METHODS

Subjects

Infants born with isolated, non-syndromic CL/P or CP and
their parents have been ascertained through treatment
centres in Maryland and Washington, DC under a protocol
approved by the Johns Hopkins University IRB. After written
consent was obtained from parents, ethnicity and other data
were obtained through structured interviews.” Both subjects
and their parents provided blood samples. Fifty eight non-
syndromic CL/P or CP case-parent trios (35 complete and 23
with one parent missing) were genotyped for the current
study.

Candidate genes and SNP selection

A set of 274 SNP markers in or near 64 different candidate
genes from six chromosomal regions was genotyped (see
appendix). Four chromosomal regions (2q37, 4q21-25, 6p23—
25, and 11p11-13) were chosen based on positive evidence of
linkage to a CL/P locus.” "> "' Association between a specific
mutation (W185X) in the poliovirus receptor-related 1
Abbreviations: CL, cleft lip; CL/P, cleft lip with or without cleft palate;
COGENE, Craniofacial and Oral Gene Expression Network; CP, cleft
palate only; HET, observed heterozygosity; HWE, Hardy-Weinberg
equilibrium; LD, linkage disequilibrium; SAGE, Serial Analysis of Gene
Expression; SNP, singﬁe nucleotide polymorphism; TDT, transmission
disequilibrium test
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(PVRLI) gene and ectodermal dysplasia syndrome with CL/P
(CLPED1) prompted inclusion of the 11q23-25 region."
Chromosome 17q21-25 corresponds to the mouse c/fI locus"
which has some previous evidence for linkage in humans.’
Candidate genes in these six chromosomal regions were
selected based on available genome sequence data and/or
current knowledge from animal or human studies. SNP
markers of interest were obtained from literature review and
the SNP database (http://www.ncbi.nlm.nih.gov/projects/
SNP/) using a NorthStar searchlet program (available from
http://geneticsoftwareinnovations.com/). SNPs with high
“design scores” as provided by Illumina (San Diego, CA),
heterozygosity above 0.1, and HapMap validation (see
www.hapmap.org/index.html.en) were chosen for inclusion
in the final marker panel.

DNA preparation and SNP genotyping

Genomic DNA samples were prepared from peripheral blood
by protein precipitation as described previously."
Concentration of DNA was determined using the PicoGreen
dsDNA Quantitation Kit (Molecular Probes, Eugene, OR). A
3 ng aliquot of DNA was genotyped for SNP markers using
Golden Gate chemistry on Sentrix Array Matrices (Illumina)
at the Johns Hopkins SNP Center. Two duplicates and four
CEPH control DNA samples were included on each plate.

Statistical analysis

At each SNP, minor allele frequency, heterozygosity (HET),
and a test for Hardy-Weinberg equilibrium (HWE) were
computed among parents.” Pair-wise LD was computed as
both D' and r? for all SNPs within a gene, extending up to
20 kb beyond both ends.' Preliminary analyses of LD
patterns and haplotype blocks were performed using
Haploview (http://www.broad.mit.edu/mpg/haploview/index.
php/).”

Each SNP was tested individually using the family
based association test (FBAT) program (http://www.biostat.
harvard.edu/~fbat/default.html). Sliding windows of haplo-
types consisting of two, three, four, and five SNPs were tested
for each individual gene using the haplotype command
(HBAT)."® Empirical p values for observed versus expected
transmission were obtained using permutation tests, and
these were further corrected for multiple comparisons using
two methods, the Bonferroni correction and the principal
components (spectral decomposition) method."” Subgroups
of these case-parent trios were re-analysed separately as a
check for aetiological heterogeneity.

Candidate gene expression analysis

To assess whether these 64 genes were expressed in eight
human craniofacial structures relevant to normal palate and
lip development, we analysed data from the COGENE
consortium (http://hg.wustl.edu/COGENE/), and searched
other public databases for expression profiles.*® Four
embryonic structures (4th week pharyngeal arch 1, 5th week
pharyngeal arch 1, 6th week maxilla, and 8.5th week palatine
shelves) are of the palate lineage and active genes may
contribute to the pathogenesis of CL/P or CP alone. Four
other embryonic structures (4th week frontonasal promi-
nence, 5th week frontonasal prominence, 6th week median
nasal prominence, and 8.5th week upper lip) are relevant to
development of the upper lip, and genes expressed here may
contribute to formation of cleft lip (CL). Data from both
Affymetrix GeneChip analysis (Affymetrix, Santa Clara, CA)
and Serial Analysis of Gene Expression (SAGE; http:/
www.sagenet.org/) were used to assess gene expression
patterns.”’ For Affymetrix microarray analysis, information
from both perfect-match and mis-match probes was included
to perform background correction and normalisation. A
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proprietary algorithm was used to classify whether expres-
sion was present (detection of transcripts representing at
least 1:100 000-1:300 000 of the total transcripts in a
sample) or absent.”> For SAGE analysis, a gene was
considered expressed if its corresponding tags were observed
at least twice, since a single count could merely represent
sequencing errors.

RESULTS

Probands in this study consisted of 8, 32, and 18 unrelated
infants with non-syndromic CL, CLP, and CP, respectively.
Among these, 51 families (88%) were European American
(four African American, one Filipino American, and two
inter-racial families were included). Examining duplicated
samples revealed a very high reproducibility for SNP
genotypes (99.98%).

Among 274 SNPs genotyped in 58 trios, 42 (15%) had
minor allele frequencies and 24 (9%) had heterozygosity
levels too low (<10%) to be informative. Six SNPs (2%) were
dropped because they showed significant deviation from
HWE (p<<0.01)."” Many intragenic or flanking markers near a
candidate gene showed high LD, and some genes showed
virtually complete LD (r*>0.95) for all or most SNPs (for
example, ADHIC). Markers become redundant when there is
such complete LD." Table 1 presents measures of pairwise LD
between all markers in each gene showing statistically
significant evidence of linkage and LD.

Tests of association for candidate genes

The number of SNPs genotyped per gene and results from
both single marker and haplotype TDT performed for all 58
trios are summarised in the appendix. Test statistics were not
computed when <10 informative families were available for
an individual marker. Among the 64 candidate genes
examined here, 13 yielded nominally significant p values
for a single marker and/or haplotype, and these results are
presented in table 2. Seven genes (MLPH, HDAC4, ADHIC,
C6orf105, ALX4, SCN3, and IMP5) yielded significance at the
5% level, even after correcting for multiple comparisons. Even
when two separate methods to adjust empiric p values for
multiple SNP markers in determining statistical significance
were used, five (HDAC4, ADHIC, ALX4, SCN3B, and IMP5) of
the seven genes showed statistically significant evidence of
linkage in the presence of disequilibrium. Findings on
selected genes are discussed below.

In chromosome 2q37, the most significant evidence of
linkage and LD was observed for histone deacetylase 4
(HDAC4) (lowest p=0.001). Since 151962113 deviated
slightly from HWE (p = 0.02), the evidence for linkage and
LD from haplotypes in fig 1A (horizontal lines) may be
largely due to preferential transmission of allele G at SNP
152121980 (see table 2).

Among seven genes in 4q21-25, alcohol dehydrogenase 1C
gamma polypeptide (ADHIC) showed the strongest evidence
of linkage and LD for both single markers (lowest p =0.001)
and haplotypes (lowest p = 0.0007) (see fig 1B). Six of eight
SNPs in ADHIC formed a block of complete LD, including a
non-synonymous variant (rs1693482) which leads to sub-
stitution of arginine (R) to glutamine (Q) in exon 3.

As shown in fig 1C, two adjacent SNPs (rs1274205 and
1s1783901) in the sodium channel, voltage-gated, type III,
beta (SCN3B) gene appeared to be responsible for much of the
statistical evidence from multiple haplotypes (lowest
p =0.0007) in this gene. Nominally significant evidence of
linkage and LD was observed from multiple haplotypes
composed of markers in and across three adjacent genes in
17q21-22: corticotropin releasing hormone receptor 1
(CRHRI), intramembrane protease 5 (IMP5), and microtu-
bule-associated protein t (MAPT) (lowest p = 0.019) (fig 1D).
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Figure 2 summarises analyses of five genes yielding
nominally significant evidence for linkage and LD from
individual SNPs and haplotypes, which also showed positive
expression results (see table 2). These genes are nuclear
antigen Spl00 (SP100), melanophilin (MLPH), lymphoid
enhancer-binding factor 1 (LEFI), chromosome 6 open
reading frame 105 (C6orf105), and CD44 antigen (CD44).
Two additional genes yielded statistical evidence: aristaless-
like homeobox 4 (ALX4) and zinc finger protein 202
(ZNF202). None of the four SNPs genotyped in ZNF202 were
in LD with SNPs in the nearby SCN3B gene.

The case-parent trio design minimises problems of
confounding due to population stratification but cannot
eliminate other sources of aetiological heterogeneity.
Therefore, 40 CL/P trios were re-analysed separately as a
check for heterogeneity (see appendix). Of the 13 genes
showing statistical evidence for linkage and LD, six genes
(SP100, MLPH, HDAC4, Céorfl105, CD44, and SCN3B) showed
no change in the strength of evidence, while seven yielded
slightly weaker evidence (ADHIC, LEFI1, ALX4, ZNF202,
CRHRI, IMP5, and MAPT). Only ALX4, ZNF202, and the
CRHR-IMP5-MAPT cluster would have been overlooked if the
analysis was limited to this smaller subgroup. Three genes
showed nominal statistical significance in the CL/P subgroup
but not in the total group (SP110, FLJ12584, and WNTI11).

M11 M12  MI3

M10

M8 M9
1 1
1 1
1 1
1 1
1 1
0 0

M7
1
1
1
1
1
0

Mé

0.93
0.86
0.94
1.00
0.87

0.77
0.78
0.80
0.78
0.06
1.00
1.00
1.00
1.00

M5

Candidate gene expression analysis

Gene expression information could be obtained for 37 of
these 64 genes (58%) due to the presence of probe sets on the
Affymetrix U95Av2 chips used for microarray analysis. For
SAGE analysis, gene expression information could be
obtained for 53 genes (83%) since identifiable tag sequences
were assigned to these genes. Gene expression information
from 36 genes (56%) was available from both microarray and
SAGE analyses.

In our microarray analysis, gene expression data were
available for four structures in the palate lineage and four
structures in the lip lineage (described above). In SAGE
analysis, gene expression data were only available for two
structures (4th week pharyngeal arch 1 and 5th week
pharyngeal arch 1) in the palate lineage, and two structures
(4th week frontonasal prominence and 5th week frontonasal
prominence) in the lip lineage. When both palate and lip
lineages were considered, 29 genes were expressed in at least
one stage by microarray, and 24 genes were expressed in at least
one stage by SAGE analysis. A total of 39 genes were expressed
in either lineage by either expression analysis (see appendix).

Nine of the 13 candidate genes showing significant
evidence of linkage and LD (SP100, MLPH, Cé6orfl05,
ZNF202, CRHRI, HDAC4, LEF1, CD44, and MAPT) were
expressed in either the developing palate or lip as documen-
ted by one of these two expression analyses and three were
found to be expressed by both microarray and SAGE (table 2).
LEFI expression was relatively low compared to HDAC4 and
CD44, which showed moderate to high expression (with more
than 50 out of 50 000 tags in each of the four SAGE libraries,
and present in four to six of eight structures by microarray
analyses). SP100, C6orf105, and MAPT showed lower expres-
sion than ZNF202 by microarray analysis, possibly explaining
why these genes were not detected by SAGE. We did not
detect expression by either method for four genes showing
statistical evidence of linkage and LD (ADHIC, SCN3B, ALX4,
and IMP5), but the last three of these could not have been
detected by microarray because their probe sets were not on
the chip. Searching public databases revealed that the mouse
homolog of ALX4 is expressed in the frontonasal prominence
at E9.5,” the stage corresponding to human 4th to 5th week
of embryonic development. Thus, ALX4 could be expressed
during human 4th and/or 5th week frontonasal prominence

M4
(0]
(0]
(0]

0.89

1.00

1.00

0.03

0.52

0.89

1.00

1.00

M3
1.00
(0]
0.21
0.95
1.00
0.95
0.03
0.48
1.00
1.00

M2

0.01
0.06
1.00
0.17
0.16
0.17
0.21
1.00

2\D'§
0.03
0.29
0.73
0.15
0.81
0.75
0.02
0.42

M1

HWEE (p)
0.26
1.00
0.39
0.40
0.39
0.24
0.93
0.83
0.91
0.60
0.49
0.91
0.91
0.63
0.97
0.32
0.91
0.91
0.91

HET}
0.44
0.04
0.43
0.34
0.15
0.56
0.20
0.20
0.37
0.32
0.42
0.37
0.37
0.46
0.37
0.34
0.37
0.37
0.37

Distance (bp)

8631
1815
1749

Physical location*
123090819
123099450
123101265
123103014
254149
254990
266434
268363
280192
291420
310477
333623
342006
354402
358078
411483
429726
457408

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

rs558021
rs481168
rs10904
rs679597
rs171441
rs242937
rs242936
rs242950
rs878887
rs242943
rs962885
rs916793
rs1864325
rs1467967
rs1467970
rs242556
rs754512
rs1052553
rs9468

SNP

Continued
*Physical location determined based on Build 35; tobserved heterozygosity; p value for test of Hardy-Weinberg equilibrium; §two measures of pair-wise LD: D’ is above the diagonal, r? is below the diagonal, M1-M13 (from the first SNP

marker).

Table 1
Gene (region)
ZNF202
(1123.3)
CRHR1
(17q12-22)
IMP5
(17921.31)
MAPT
(17g21.1)
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Figure 2 Plots of —log (p value) for five genes yie|o|in?
in 58 case-parent trios and showing expression in the

development. Six genes (DGKD, COL6A3, LRRFIP1, WNTII,
NSF, and USP36) among nine showing marginal statistical
significance (0.05<p<<0.1) were also expressed in these key
embryonic structures. Expression data for all 64 candidate

genes at the different developmental stages are listed in the
appendix.

DISCUSSION

Many new candidate genes were tested in this analysis,
although several recognised candidate genes (for example,
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significant evidence of linkage in the presence of LD from both individual SNP and haplotypes
ip and palate lineages.

IRF6, TGFA, MSX1, etc) were not included. Subgroup analyses
of 40 CL/P trios showed little evidence of aetiological
heterogeneity, although some genes yielded weaker statistical
evidence (as would be expected due to smaller sample sizes).
Clearly, the combination of statistical and expression
evidence for any candidate gene in this study raises the
possibility that it could play some aetiological role for oral
clefts, but lack of statistical evidence from this modest

sample of case-parent trios does not preclude aetiological
importance.
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We have only partial knowledge of the biological function
of these genes showing both statistical and expression
evidence. HDAC4 represses transcription, and Hdac4-null
mice displayed premature ossification of developing bones.”*
The ADHIC gene product is involved in both ethanol and
retinol oxidation. Maternal alcohol consumption has been
shown to increase risk of non-syndromic oral clefts, while
retinol may be a teratogen for CP.” Recently, it was suggested
the Ile350Val variant at ADHIC may protect against oral
clefts, but there was no significant evidence for an effect of
fetal genotype or interaction with maternal alcohol con-
sumption.” The gamma 2 protein (corresponding to the
272GIn-350Val haplotype) results in slower ethanol oxidisa-
tion than the gamma 1 protein (272Arg-3501Ile haplotype).”’
Our study showed significant over-transmission of the A
allele at rs1693482 (which results in a GIn at amino acid 272)
to affected children compared to the frequencies of A allele
among mothers and fathers (0.44 v 0.41 and 0.38, respec-
tively; p = 0.008).

The SCN3B gene codes for an auxiliary component
regulating ion-conducting alpha subunits.”® PVRLI is located
3.9 Mb away from the 3’ end of SCN3B, and has been
reported to be associated with oral clefts."” However, the
statistical evidence of association in our study (lowest
p=0.0007) is the first suggestion that SCN3B may be
involved in oral clefts. The CRHRI gene product binds to
corticotropin-releasing hormone,” while MAPT transcripts are
differentially expressed in the nervous system.’® Although
these genes are homologs of genes in the mouse c/fI region,"’
and both are expressed during craniofacial development,
neither has been suggested to control risk for oral clefts.

SP100, a nuclear autoimmune antigen, acts as an antago-
nist for ETSI mediated cell proliferation and differentiation in
humans.’ The gene for MLPH, a critical component of the
melanosome transport machinery, is located 1.16 Mb away
from D2S338, a marker which showed evidence for linkage in
26 CL/P multiplex families.'” ** Two other genes (ASBI18 and
IQCA) near D2S338 showed no evidence for linkage and LD,
and were not expressed in either palate or lip lineages. The
transcription factor LEFI is regulated by TGFf3 which
appears to play a major role in transformation of the medial
edge epithelial seam into mesenchyme.” Furthermore, LEFI
binds in response to stimulation through the WNT signalling
pathway. Juriloff ef al recently presented evidence that
insertion of a transposable element near the 3’ end of
Wnt9b may cause the high incidence of CLP in A/WySn mice."’
In our study, both WNT3 and WNTII genes yielded only
marginal statistical evidence and only WNT 11 was expressed
in 6th week median nasal prominence. The WNT9B gene
showed no evidence of association in these 58 trios and
expression of this gene could not be tested.

Chromosomal region 6p23-25 has been identified from
previous genome scans, and genes such as the bone
morphogenetic protein 6 (BMP6) and endothelinl (EDNI),
which are involved in neural crest development, have been
suggested as candidate genes.” While markers in these two
genes failed to show any evidence of linkage and LD here, the
combination of statistical evidence and expression of Céorf105
suggested this putative gene may play some aetiological role.
CD44 is an integral cell membrane glycoprotein with a
postulated role in matrix adhesion and proliferation of
mesenchymal cells.’* The Alx4 gene product is a potent
transcriptional activator expressed at sites of epithelial-
mesenchymal interaction. Alx3/Alx4 double mutants show
nasal clefts in mice, even though homozygotes for a null
allele at Alx3 are indistinguishable from wild type mice.”

The presence of a gene transcript in the appropriate
embryonic tissue validates selecting a gene as a candidate
for oral clefts, but its absence does not necessarily mean the

www.jmedgenet.com
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gene cannot influence risk. Since approximately 50 000 tags
were sequenced for each SAGE library, only moderately to
highly expressed genes could be detected, and the AffyMetrix
Genechip can only analyse genes with included probe sets.
For example, ALX4 may not have been detected because it is
expressed below the detection limit of our SAGE libraries,
and no probes were included on the chip, even though
published mouse data suggest ALX4 could be expressed in the
developing lip.

Another possibility is that a candidate gene might act in
organs other than the developing face. For example, the
ADHIC and SCN3B genes are expressed in response to
exposure to ethanol (primarily in the liver) and cellular
stress, respectively. No published expression data on
embryonic craniofacial development were available for
SCN3B and IMP5 (or their mouse homologs). Theses genes
may be indirectly involved in the pathogenesis, or they may
be a surrogate for some nearby causal gene in the statistical
analysis described here.

Fixing an arbitrary significance level to account for
multiple testing may be too conservative, since multiple
genes may have small effects on risk for complex and
heterogeneous disorders such as oral clefts. Furthermore,
SNPs over small physical distances are often correlated.”
Given our small sample size, measuring significance becomes
a concern and false negative results are more plausible than
false positives. Therefore, marginal results from TDT analyses
presented here require replication in additional studies. It is
worth noting that five genes (HDAC4, ADHIC, ALX4, SCN3B,
and IMP5) yielded significance even after Bonferroni correc-
tion, which is generally considered overly conservative."

Most of the genes showing evidence of linkage and LD in
this study have not been extensively studied. Ultimately, our
results must be replicated in other studies, but this study
does illustrate how large amounts of SNP data obtained from
high-throughput genotyping methods can be tested for
linkage and LD. In addition, our results from family based
association tests were generally validated through expression
data. The novel candidate genes identified here provide a
starting point for future studies.
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APPENDIX
Table A1 Summary of TDT for SNPs and haplotypes in 64 candidate genes for non-syndromic oral cleft in 58 trios, and gene
expression in eight structures relevant to craniofacial development
TDT (p value) Expression
58 Trios* 40 Trios with CL/Pt Palate lineage Lip lineage

Gene SNP (n) SNP Haplotype ~ SNP Haplotype Affyt SAGES Affyt SAGES
Chromosome 2937 (26 genes/115 SNPs)

SP110 3 <0.05 <0.05 A A A A
SP100 5 <0.05 <0.05 <0.05 4 A A A
SPATA3 3 NA 2 NA A
FLI12584 4 <0.05 NA 1,2 NA 56
PDESD 3 A A 6 56
EIF4EL3 3 NA 1,2 NA é
TNRC15 3 2 1,2 6,7 6
NGEF 4 NA A NA A
DGKD 6 <0.1 1-3 1,2 6,7 6
USP40 4 <0.1 <0.1 NA A NA A
TRPM8 6 NA A NA A
CENTG2 9 1,2 2 é A
ASB18 4 NA NA NA NA
IQCA 4 NA A NA A
COL6A3 3 <0.1 <0.1 1-3 1,2 6-8 5,6
MLPH 3 <0.05 <0.05 <0.05 NA 2 NA A
LRRFIP1 4 <0.1 <0.1 2 A 6 A
FLI40411 4 NA NA NA NA
NCE2 3 NA 2 NA 5,6
ASBI1 4 A 1 A 5
LOCI151171 3 NA NA NA NA
HDAC4 13 <0.05 <0.01 <0.05 <0.05 1-3 1,2 6 56
GPC1 3 1-3 A 5=/ 6
KIFTA 3 A A A A
PASK 3 <0.1 1-4 A é A
FARP2 8 A A A A
Chromosome 4q21-q25 (7 genes/29 SNPs)

MGC46496 3 NA NA NA NA
ADHITA 3 1,2 A A A
ADHI1B 3 A A 6 A
ADHIC 8 <0.01 <0.001 <0.05 <0.05 A A A A
SLC39A8 3 1-3 A [ A
UBE2D3 3 =3 A 5=/ 4
LEF1 6 <0.05 <0.05 <0.1 <0.1 A 2 56 4
Chromosome 6p23-p25 (6 genes/20 SNPs)

SEC5L1 NA A NA A
GMDS 3 A 1 8 A
BMPS 3 A A A A
Céorf105 3 <0.05 <0.05 <0.05 <0.1 2 A A A
EDNI1 4 NA NA NA NA
JARID2 4 1-3 1,2 57 3,4
Chromosome 11p11-p13 (6 genes/22 SNPs)

Cllorf8 3 2,3 A 6,7 3,4
ABTB2 3 3 2 6 3
CD44 4 <0.1 <0.05 <0.05 <0.05 1-4 1,2 6,8 3,4
AlX4 4 <0.05 <0.05 NA A NA A
LOC220074 5 NA 1 NA A
WNTT1 3 <0.1 <0.05 <0.1 A A 7 A
Chromosome 11¢23-q25 (5 genes/29 SNPs)

KIAAT959 5 <0.1 <0.1 NA NA NA NA
KIAA1201 9 A A A A
SCN3B 8 <0.01 <0.001 <0.01 NA A A A
ZNF202 4 <0.05 1-4 A 56 A
LOC338661 3 NA NA NA NA
Chromosome 17¢21-q25 (14 genes/59 SNPs)

CRHR1 5 <0.05 <0.05 1-4 NA 5-8 NA
IMP5 2 <0.1 <0.05 NA A NA A
MAPT 9 <0.05 2,4 A 8 A
LOC284058 5) NA 1,2 NA 4
NSF 3 <0.1 <0.1 =3 A 56 A
WNT3 5 <0.1 NA A NA A
WNT9B 8] NA NA NA NA
ITGB3 5 1 A A A
DLX4 3 2 A A A
KCNJ16 5 NA NA NA NA
KCNJ2 4 2 A A A
LOC400618 3 NA NA NA NA
USP36 4 <0.1 NA 1,2 NA 3,4
TIMP2 3 A 1,2 A 3,4
*58 trios including four African American, one Filipino American, and two inter-racial families; 40 trios with CL/P; tfor Affymetrix GeneChip analysis (Affy), the
structures analyzed are: 1) 4th week pharyngeal arch 1, 2) 5th week pharyngeal arch 1, 3) éth week maxilla, 4) 8.5th week palatine shelves, 5) 4th week
frontonasal prominence, 6) 5th week frontonasal prominence, 7) 6th week median nasal prominence, and 8) 8.5th week upper lip; A, absent call; NA, not
available because no probe sets were on the chip; &for Serial Analysis of Gene Expression (SAGE), the structures analyzed are: 1) 4th week pharyngeal arch 1, 2)
5th week pharyngeal arch 1, 3) 4th week frontonasal prominence, 4) 5th week frontonasal prominence; A, absent; NA, not available because appropriate tag
sequence information was omitted.
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