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Background: Approximately half the cases of prelingual hearing loss are caused by genetic factors.
Identification of genes causing deafness is a crucial first step in understanding the normal function of these
genes in the auditory system. Recently, a mutant allele of Tmhs was reported to be associated with
deafness and circling behaviour in the hurry-scurry mouse. Tmhs encodes a predicted tetraspan protein of
unknown function, which is expressed in inner ear hair cells. The human homologue of Tmhs is located on
chromosome 6p.
Objective: To determine the cause of deafness in four consanguineous families segregating recessive
deafness linked to markers on chromosome 6p21.1-p22.3 defining a novel DFNB locus.
Results: A novel locus for non-syndromic deafness DFNB67 was mapped in an interval of approximately
28.51 cM on human chromosome 6p21.1-p22.3. DNA sequence analysis of TMHS revealed a
homozygous frameshift mutation (246delC) and a missense mutation (Y127C) in affected individuals of
two families segregating non-syndromic deafness, one of which showed significant evidence of linkage to
markers in the DFNB67 interval. The localisation of mTMHS in developing mouse inner ear hair cells was
refined and found to be expressed briefly from E16.5 to P3.
Conclusions: These findings establish the importance of TMHS for normal sound transduction in humans.

T
here are approximately 100 genes that are associated
with hearing loss in the mouse.1 In humans, more than
47 deafness loci have been mapped and 21 of the

corresponding genes have been identified.2 3 Because of the
similarities in the morphology of their auditory systems, deaf
mice have provided a valuable resource for understanding the
pathophysiology of human hereditary hearing disorders and
the normal functions of these genes. Molecular genetic
studies of deaf mice have been instrumental in identifying six
orthologous deafness genes in humans, including MYO7A
(USH1B), MYO15 (DFNB3), TMIE (DFNB6), PCDH15
(DFNB23/USH1F), WHRN (DFNB31), and SANS (USH1G).4–15

When a novel human deafness locus is mapped, the
question arises as to whether or not there is a strain of deaf
mouse that carries a mutated gene at a chromosomal map
position suggesting conserved synteny with a human locus
for deafness. Positional cloning in the mouse or phenotypic
rescue using a BAC transgene13 16 can lead to gene identifica-
tion more quickly than sequencing human genes in a large
chromosomal interval of a deafness locus.17 Alternatively,
identification of a gene responsible for deafness in a mouse
may suggest a candidate human chromosomal location to
screen for linkage of deafness segregating in large families
that have a structure suitable for providing significant
evidence of linkage.18 A combination of two of these
strategies was used to identify mutations of TMHS
(MIM_609427) as the gene on human chromosome 6p21.1-
p22.3 responsible for non-syndromic deafness DFNB67,
segregating in two consanguineous families.

METHODS
Family enrolment
Approval for the study was obtained from the institutional
review board at the National Centre of Excellence in
Molecular Biology, Lahore, Pakistan (FWA00001758), the

NIDCD/NINDS IRB at the National Institutes of Health,
Bethesba, Maryland, USA (OH-93-N-016) and the institu-
tional review board at the All India Institute of Medical
Sciences, Delhi, India (FWA00001997). Written informed
consent was obtained from all the participants. Families
PKDF374, PKDF619, and PKDF638 were ascertained from
Sindh, Pakistan and family HTN-09 lives in Chennai, India.
The inheritance patterns of deafness segregating in families
PKDF374, PKDF619, PKDF638, and HTN-09 are consistent
with an autosomal recessive trait (fig 1).

Clinical evaluation
All participating members of these families were evaluated by
a physician to rule out obvious extra-auditory phenotypes
associated with common syndromic forms of deafness. Air
conduction pure tone audiometry tests were carried out
under quiet ambient conditions at octave frequencies ranging
from 250 to 8000 Hz. Vestibular function was evaluated by
tandem gait and Romberg testing.

Linkage analysis
Genomic DNA was extracted from peripheral venous blood
samples by a standard protocol.19 Samples were genotyped for
markers flanking known DFNB loci, using marker informa-
tion provided by the Hereditary Hearing Loss Homepage (as
of August 2004 http://webhost.ua.ac.be/hhh/). For genome-
wide screens, we used the ABI Prism v2.5 Linkage Mapping
Set (panels 1 to 27; Applied Biosystems, Foster City,
California, USA) containing 388 fluorescently labelled micro-
satellite markers spaced at an average interval of 10 cM.
Short tandem repeat polymorphisms (STRPs) were amplified
by polymerase chain reaction (PCR), alleles were assigned
using Genescan 3.7 and Genotyper 3.7 (Applied Biosystems),
and LOD scores were calculated using LINKMAP as
described.9 20 21
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Candidate gene screening
Candidate genes were identified using the UCSC Genome
Bioinformatics web browser (http://genome.ucsc.edu/) and
selected for mutation screening on the basis of their potential
role in the inner ear. Primers used for PCR amplification and
subsequent sequencing of COL11A2 and TMHS exons were
designed using the Primer3 Web site (http://frodo.wi.mit.edu/
cgi-bin/primer3/primer3_www.cgi). PCR primers are from
sequence flanking each exon (supplementary tables 1 and 2;
the supplementary tables can be seen on the journal website:
http://www.jmedgenet.co/supplemental). Amplification,
sequencing reactions, and mutation analysis were carried
out as described.8

Immunocytochemistry
In order to characterise in greater detail the cellular localisa-
tion and developmental profile of TMHS with immunofluor-
escence confocal microscopy, we used a previously reported

affinity purified rabbit polyclonal antiserum generously
provided by Ken Johnson.22 Immunostaining was carried out
as described.11 23 After fixation in 4% paraformaldehyde for
two hours at room temperature, organs of Corti and vestibular
end organs of mice were dissected in phosphate buffered
saline (PBS). Samples were permeabilised in 0.5% Triton X-
100 for 30 minutes and then washed in PBS. Non-specific
binding sites were blocked using 5% normal goat serum (Life
Technologies, Gaithersburg, Maryland, USA) and 2% bovine
serum albumin (ICN, Aurora, Ohio, USA) in PBS. Samples
were incubated for two hours in the anti-mTMHS antisera
at a concentration of approximately 5 mg/ml in blocking
solution. After three rinses in PBS, samples were incubated
in a 1:200 dilution of the FITC conjugated anti-rabbit IgG for
30 minutes, washed again three times with PBS, mounted
using the ProLong Antifade kit (Molecular Probes, Eugene,
Oregon, USA), and viewed with a LSM510 Zeiss confocal
microscope.23
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Figure 1 Chromosome 6 markers that co-segregate with deafness in families PKDF374, PKDF619, PKDF638, and HTN-09. STR marker positions
are in cM according to the Marshfield human genetic map (http://research.marshfieldclinic.org/genetics/). The linked haplotypes are boxed.
Filled symbols denote profound sensorineural hearing loss. The DFNB67 interval is defined by meiotic breakpoints in family PKDF374. Multipoint
linkage analyses provided Zmax (maximum LOD scores) of 3.2 for family PKDF374 (markers D6S439 and D6S1645), 1.80 for family HTN-09
(markers D6S439 and D6S1645), 2.35 for family PKDF638 (markers D6S276 and D6S1611), and 2.80 for family PKDF619 (markers D6S1660
and D6S276).
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RESULTS
Phenotype
Affected individuals in families PKDF374, PKDF619,
PKDF638, and HTN-09 had congenital bilateral profound
hearing loss. Although, we cannot rule out a mixed hearing
loss, the expression pattern of TMHS in the inner ear suggests
a sensorineural deficit. No vestibular dysfunction was
detected using tandem gait or Romberg testing. Clinical
evaluation revealed no ophthalmological, skin, or renal
anomalies. Fundoscopic examination of IV:2 (22 years) and
IV:4 (35 years) from family PKDF374 (fig 1) showed no signs
of retinitis pigmentosa.

Mapping of DFNB67
Over 600 families segregating profound congenital deafness
were ascertained in Pakistan and were suitable for genetic
linkage analyses. After excluding linkage to known DFNB
loci,3 a genome-wide linkage analysis was initially under-
taken using DNA samples from four affected and four
unaffected members of family PKDF374. Initial evidence of

linkage was on chromosome 6p21.1-p22.3. Additional short
tandem repeat (STR) markers were genotyped for all the
participating family members, and haplotype analysis
revealed a region of homozygosity of approximately 29
centi-Morgans (cM) delimited by markers D6S1660
(40.14 cM) and D6S1650 (68.65 cM) (fig 1). Multipoint
linkage analysis provided a Zmax (maximum LOD score) of
3.2 for the markers D6S439 (48.26 cM) and D6S1645
(48.26 cM). We then discovered three additional families
(PKDF619, PKDF638, and HTN-09) segregating deafness
consistent with linkage to markers in the 6p21.1-p22.3
interval (fig 1). The Human Genome Organization (HUGO)
(http://www.gene.ucl.ac.uk/hugo) nomenclature committee24

assigned DFNB67 as the designation for this locus for non-
syndromic deafness.

Genetic and physical map
A genetic and physical map of the DFNB67 interval is shown
in fig 2. This interval has more than 70 annotated genes and
approximately 100 predicted genes (UCSC Genome
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Figure 2 Chromosome 6p21.1-p22.3 showing the linkage interval of DFNB67. Short tandem repeat (STR) markers are represented by filled circles.
The sex-averaged recombination distances in cM and in Mb are indicated along with STR markers. The DFNB67 interval is based on the meiotic
breakpoints in family PKDF374. Linkage regions of five overlapping autosomal deafness loci (DFNB53, DFNB66, DFNA13, DFNA21, and DFNA31)
are also illustrated. Cytogenetic locations of several candidate genes are indicated. The Mb positions of the markers and the genes are according to the
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Bioinformatics: http://genome.ucsc.edu). COL11A2 was a
candidate in these families, as allelic variants of this gene
are associated with recessive deafness DFNB5325 and non-
ocular Stickler syndrome.3 However, DNA sequence analysis
of the 66 exons of COL11A2 from two affected individuals
from each of the four DFNB67 families did not reveal any
disease associated variants.

Identification of DFNB67 gene
TMHS was also a candidate gene for DFNB67 (fig 2) as a
missense mutation of the mouse orthologue, Tmhs, was
reported to cause deafness and vestibular dysfunction in the
hurry-scurry (hscy) mouse, and TMHS is expressed in the
inner ear hair cell stereocilia of mice.22 Like Tmhs, human
TMHS has four exons (NM_182548), which encode a 2162
base pair mRNA. The deduced translation of this cDNA yields
a protein of 219 amino acids that has four predicted
transmembrane helices. We screened the protein coding
sequence, adjacent intronic sequence, and the 59 and 39 UTRs
of TMHS in two affected individuals from each of the DFNB67
linked families. Affected individuals of family PKDF374 had
a homozygous deletion of a single nucleotide at position 246
(246delC) in the first exon of TMHS (fig 3A), which co-
segregated with the hearing loss. This mutant allele is
predicted to cause a frameshift and a subsequent truncation
of the deduced protein at amino acid position 84 (P83fsX84;
fig 3B). A homozygous missense mutation (380ARG) was
found in all the affected individuals of family HTN-09
(fig 3A). This allele results in an amino acid substitution of
a conserved tyrosine residue at position 127 (Y127C; fig 3,
panels B and C). These two mutations (246delC and
380ARG) were not found in 200 chromosomes from
ethnically and geographically matched normally hearing
individuals from Sindh province of Pakistan and Chennai,
India.

TMHS is expressed transiently in inner ear hair cell
stereocil iary bundles
For the developmental profile of the expression pattern of
TMHS, we immunostained the inner ears from P0, P3, and
P10 mice. TMHS immunoreactivity was detected in the organ
of Corti and vestibular hair cells of C57BL/6 mouse as well as
in the other cell types such as supporting cells of cochlear and
vestibular sensory epithelia, and internal and external sulcus
cells of the organ of Corti (fig 4 and data not shown). At high
resolution, TMHS immunoreactivity was detected in the
kinocilium and along the length of P0 cochlear hair cell
stereocilia and appeared to be more concentrated toward the
tips (fig 4, panels A to C). A similar pattern was observed in
hair cells of the saccular (fig 4, panels D to F) and utricular
maculae (fig 4, panels G to I). The amount of TMHS
immunoreactivity in the stereocilia appears to vary among
different hair bundles. Hair cells with immature stereociliary
bundles have a strong TMHS signal but as the hair cells
mature there is a gradual reduction in immunoreactivity
(fig 4, panels D and G), consistent with the report by Longo-
Guess and co-workers.22 TMHS immunoreactivity in hair cell
stereocilia and kinocilia appears at approximately E16.5 and
rapidly disappears by P3, after which we could not detect a
signal in stereocilia or in kinocilia except in the vestibular
sensory epithelium associated with immature hair cells and
in the non-sensory cells (fig 4, panels J to L).

DISCUSSION
In the hscy mouse, a mutation of Tmhs causes deafness and
vestibular dysfunction manifested by circling behaviour.22

The identification of recessive mutations of TMHS indicates
an essential role for TMHS in the human auditory system.
There are at least two possibilities to explain the discrepancy
between the loss of vestibular function in Tmhs mutant mice22

but not in humans. TMHS may be required for normal

Figure 3 TMHS mutations. (A) Wild type and mutant alleles from unaffected and affected members of families PKDF374 and HTN-09, respectively. (B)
Schematic representation of the predicted TMHS structure (modified from Longo-Guess et al22) showing the stop codon P83fsX84 (which is caused by
the 246delC frameshift mutation) in the sequence encoding the first extracellular loop. The missense mutation Y127C is located in the predicted third
transmembrane domain. The location of C161F reported for the hscy mouse22 is indicated by an arrowhead. (C) Alignment of TMHS amino acids from
various species shows that Y127 (arrow) is conserved (shaded background, similar amino acids; light background, non-conserved amino acids).
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development of mouse vestibular hair cells but is not required
for development of human vestibular hair cells. Alternatively,
unlike mice, humans may be better able to compensate
partially for loss of vestibular dysfunction by somatosensory
and visual input. Subjects in our study were examined in the
field only by tandem gait and Romberg testing, which
probably excludes severe bilateral vestibular failure but may
have missed a more subtle compensated vestibular disorder.
More sensitive and informative vestibular testing using
posturography was not available to us in India and Pakistan.

The protein encoded by TMHS is a member of a superfamily
of tetraspan proteins, which includes the claudin tight
junction proteins, gap junction proteins, peripheral myelin,
and epithelial membrane proteins as well as calcium
channel-like proteins. Several genes of this superfamily have
been reported to be necessary for hearing in either humans or
mice, or both.1 3 The predicted structure of TMHS consists of
four transmembrane helices with two extracellular loops.22

The missense mutation (C161F) previously reported in hscy
mice may disrupt a disulphide bond present in the second
extracellular loop and destabilise the secondary structure.22

The frameshift mutation that we found in family PKDF374
(246delC; P83fsX84) is predicted to introduce a stop codon in

the first extracellular loop (fig 3B). In vivo, the mutant
mRNA would either be translated into a truncated TMHS
protein with only one transmembrane domain or be degraded
by nonsense mediated decay (NMD).26 The Y127C missense
mutation (380ARG) found in family HTN-09 causes a
substitution of the second residue of the third transmem-
brane domain of TMHS (fig 3B). Tyrosine is a relatively non-
polar hydrophobic amino acid with an aromatic side chain,
whereas cysteine is a weakly polar hydrophilic amino acid
with a thiol side chain. The large difference between the two
amino acids may cause disruption of the third transmem-
brane domain and may lead to mislocalisation of the encoded
protein.

The disappearance of TMHS from hair cell stereociliary
bundles at P3 occurs just before the gradual loss of cadherin
23 from stereocilia, which appears to be complete at P16.27 28

A role for TMHS in organising a transient cytoskeleton–
membrane interaction in sensory hair cells would be
consistent with the stereociliary pathology found in hscy
mice22 and the developmental expression profile of TMHS
(fig 4).22

We found no disease associated mutations in TMHS or
COL11A2 in affected members of families PKDF619 and

Figure 4 Immunolocalisation of TMHS
in the organ of Corti and vestibular
sensory epithelia of a P0 C57BL/6
mouse. (A to C) Localisation of TMHS in
cochlear hair cell stereocilia. (A) Anti-
TMHS antibody staining (green
channel). Arrowhead indicates the
staining of kinocilia. (B) Rhodamine-
phalloidin staining of filamentous actin
in stereocilia of one row of inner hair
cells and three rows of outer hair cells
(red channel). (C) Merged image for
TMHS and F-actin (green and red,
respectively). (D to F) TMHS was
detected predominantly in immature
stereociliary bundles of saccular hair
cells and its expression level decreases
as bundles mature, as previously
reported.22 The arrowheads in panel F
indicate kinocilia labelling of mature
stereociliary bundles and residual
staining of the upper portion of
stereociliary bundles. (G to I) In P0
utricular hair cells the pattern of
stereociliary staining with anti-TMHS
antibody was similar to that of saccular
hair cell stereocilia. The arrowheads
point to intensely stained immature hair
cell stereociliary bundles and an arrow
points to a mature hair cell with staining
in the upper portion of the stereociliary
bundle. (J to L) In P10 saccule only
immature hair cell stereociliary bundles
(arrowheads) and non-sensory cells,
such as supporting cells (arrow), are
stained with anti-TMHS antibodies,
while no staining was observed in
stereociliary bundles of mature hair
cells. Scale bar in (C), (F), (I), and (L) is
5 mm.
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PKDF638. The linkage interval defined by these two families
(PKDF619, PKDF638) is approximately 19cM delimited by
markers D6S289 (29.30cM) and D6S439 (48.26). It is possible
that these individuals harbour mutations of cis acting
regulatory elements of either COL11A2 or TMHS. The deafness
linked haplotype of affected individuals in family PKDF638
excludes the protein coding region of TMHS (fig 2).

There are three additional loci for hearing loss defined by
dominant mutant alleles (DFNA13, DFNA21, and DFNA31) at
chromosome 6p21.2-p22.3 and two recessive deafness loci
(DFNB53 and DFNB66) in this interval (fig 2). In the single
family used to map DFNB66, TMHS was screened for
mutations and none was found.29 It seems plausible that a
mutation of a second gene in this interval is associated with
hearing loss in families PKDF619 and PKDF638. Other
candidates in the 6p21.2-p22.3 interval include five solute
carrier family members (SLC17A1, SLC17A2, SLC17A3,
SLC17A4, and SLC39A7), POU5F1, a POU domain containing
transcription factor and c-aminobutyric acid B receptor 1
(GABBR1). Genes encoding SLCs and POU domain transcrip-
tion factors are important for normal hearing.3 30 Another
possibility for not finding mutations in TMHS in two of the
four families (fig 1) is that the LOD scores for deafness
segregating in PKDF619 and PKDF638 (Zmax 2.80 and 2.35,
respectively) do not rise to the level of statistical significance
for linkage, and thus there may be spurious association of
deafness segregating in these two families with STRs on
chromosome 6p. The actual deafness-causing mutations in
families PKDF619 and PKDF638 may be somewhere else in
the genome.

In summary, we have mapped a new non-syndromic
recessive deafness locus DFNB67 on chromosome 6p21.1-
p22.3. In two consanguineous families, we have identified
two likely pathogenic mutations of TMHS that co-segregate
with deafness.
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