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Abstract
Evidence that brain glutamatergic activity is pathologically elevated in bipolar disorder suggests that
mood stabilizers are therapeutic in the disease in part by downregulating glutamatergic activity. Such
activity can involve the second messenger, arachidonic acid (AA, 20:4n-6). We tested this hypothesis
with regard to valproic acid (VPA), when stimulating glutamatergic N-methyl-D-aspartate (NMDA)
receptors in rat brain and measuring AA and related responses. An acute subconvulsant dose of
NMDA (25 mg/kg i.p.) or saline was administered to unanesthetized rats that had been treated i.p.
daily with VPA (200 mg/kg) or vehicle for 30 days. Quantitative autoradiography following
intravenous [1-14C]AA infusion was used to image regional brain AA incorporation coefficients k*,
markers of AA signaling. In chronic vehicle-pretreated rats, NMDA compared with saline
significantly increased k* in 41 of 82 examined brain regions, many of which have high NMDA
receptor densities, and also increased brain concentrations of the AA metabolites, prostaglandin E2
(PGE2) and thromboxane B2 (TXB2). VPA pretreatment reduced baseline concentrations of PGE2
and TXB2, and blocked the NMDA induced increases in k* and in eicosanoid concentrations. These
results, taken with evidence that carbamazepine and lithium also block k* responses to NMDA in
rat brain, suggest that mood stabilizers act in bipolar disorder in part by downregulating glutamatergic
signaling involving AA.
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Introduction
Valproic acid (VPA, 2-propylpentaenoic acid) is approved as a mood stabilizer for treating
bipolar disorder, particularly its manic phase [17,39,62]. Although inhibition of GABAergic
neurotransmission is considered its major pharmacological action, VPA has many other central
effects [43]. It can inhibit histone deacetylase [45] and brain microsomal long-chain fatty acyl-
CoA synthethase [12], increase brain levels of the neuroprotective proteins bcl-2 and brain
derived neurotrophic factor [23,36], and alter transcription in brain of many genes [13].

VPA also has been reported to block excitatory responses induced by N-methyl-D-aspartate
(NMDA) in vivo and in vitro, NMDA-induced convulsions in vivo [37,38,47,57,91,96], and
other aspects of brain glutamatergic activity [50,78,89,92]. In view of evidence of upregulated
or otherwise disturbed brain glutamatergic neurotransmission in patients with bipolar disorder
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[41,50,59,90], we thought it of interest to see whether VPA could interfere with NMDA
receptor initiated signaling involving the second messenger, arachidonic acid (AA, 20:4n-6).
AA and its metabolites have multiple effects, including regulation of neuronal activity, gene
transcription, apoptosis, sleep and cerebral blood flow [49,58,81].

Binding of glutamate or of NMDA to NMDA receptors will increase intracellular Ca2+, thereby
activating Ca2+-dependent enzymes including AA-selective cytosolic phospholipase A2
(cPLA2). cPLA2 activation releases unesterified AA from the stereospecifically numbered-2
position of membrane phospholipid, which leads to increased formation via cyclooxygenase
(COX) enzymes of eicosanoids such as prostaglandin E2 (PGE2) and thromboxane B2
(TXB2) [33,46,52,79,87,93]. We have developed an in vivo method to image this activation
process, and decided to use the method to image the effect of chronic VPA in rats on the NMDA
receptor-mediated AA signal [5]. Prior reports indicate that other mood-stabilizers, lithium and
carbamazepine, when given chronically to rats block this NMDA-mediated AA signal [5,9].

The method to measure the AA signal involves infusing radiolabeled [1-14C]AA intravenously
following administration of drug or vehicle, imaging regional brain radioactivity after 15 min
with quantitative autoradiography, and converting these images into regional AA incorporation
coefficients k*. k* represents the AA that has been released during the signal and metabolized
to eicosanoids and other products and is independent of changes in cerebral blood flow [28,
74–76].

In this study, we measured k* for AA in 82 brain regions of unanesthetized rats that had been
injected with VPA (200 mg/kg i.p.) or vehicle (saline) daily for 30 days as described [22].
These rats were injected i.p. acutely with a subconvulsant dose (25 mg/kg) of NMDA [5,65]
or with saline. Whole brain concentrations of PGE2 and TXB2 also were measured.

Experimental Procedures
Animals and Diets

Experiments were conducted following the “Guide for the Care and Use of Laboratory
Animals” (National Institutes of Health Publication No. 86-23) and were approved by the
Animal Care and Use Committee of the National Institute of Child Health and Development.
Two-month-old male Fischer CDF (F-344)/CrlBR rats (Charles River Laboratories,
Wilmington, MA, USA) were acclimatized for 1 week in an animal facility with regulated
temperature, humidity and light cycle, and had ad libitum access to food (NIH-31 diet, Zeigler,
Gardners, PA, USA) and water. The diet contained (as percent of total fatty acids) 20.1%
saturated, 22.5% monounsaturated, 47.9% linoleic, 5.1% α-linolenic, 0.02% AA, 2.0%
eicosapentaenoic, and 2.3% docosahexaenoic acid.

Drugs and tracers
[1-14C]AA in ethanol (53 mCi/mmol, >98% pure, Moravek Biochemicals, Brea, CA, USA)
was evaporated and resuspended in HEPES buffer, pH 7.4, containing 50 mg/ml fatty acid-
free bovine serum albumin (Sigma-Aldrich, St Louis, MO, USA). NMDA (25 mg/kg, Sigma-
Aldrich) or saline was administered i.p.. The NMDA dose has been reported to produce
paroxysmal spikes and spike trains but not status epilepticus in rats [65] and to significantly
increase k* for AA [5,9]. VPA-treated rats received 200 mg/kg i.p. VPA (sodium salt; Sigma-
Aldrich) in saline once daily for 30 days, as previously described [12,14,22,73]. Three hours
after the last VPA injection, the plasma VPA concentration equals 31 ± 6 (mean ± SD) μg/ml
[22], slightly below the therapeutic concentration range (45–150 μg/ml) recommended for
bipolar disorder [35]. A control group received the same volume of saline (vehicle) under
parallel conditions.
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Surgical Procedures and Tracer Infusion
On the morning following the 30th VPA or vehicle injection, a rat was anesthetized with 2–
3% halothane in O2, and PE 50 polyethylene catheters were inserted into the right femoral
artery and vein as described previously [5]. The wound was closed with surgical clips and the
rat was wrapped loosely, with its upper body remaining free, in a fast-setting plaster cast
(DePuy Inc., Raynam, MA, USA) that was taped to a wooden block. Surgery lasted 20–25
min. The rat was allowed to recover from anesthesia for 3 h in a quiet environment maintained
at 25°C. Body temperature was maintained at 36.4–37.1°C using a feedback heating device
and rectal thermometer. Arterial blood pressure and heart rate were measured with a blood
pressure recorder (CyQ 103/302; Cybersense, Inc., Nicholasville, KY, USA). Arterial blood
pH, pO2 and pCO2 were measured with a blood gas analyzer (Rapidlab 248, Bayer Health Care
Diagnostics Division, Norwood MA, USA).

Ten minutes after injecting NMDA or saline, 2 ml [1-14C]AA (170 pCi/kg) was infused into
the femoral vein for 5 min at a rate of 400 pl/min using an infusion pump (Harvard Apparatus
Model 22, Natick, MA, USA). Twenty minutes after starting the infusion, the rat was
euthanized with an overdose of Nembutal® (90 mg/kg, i.v.) and decapitated. The brain was
removed in less than 30 s, frozen in 2-methylbutane maintained at −40°C with dry ice, and
stored at −80°C until sectioned. Thus, brains in the present study were sampled within 4 hours
after the last daily VPA injection.

Chemical Analysis
Thirteen arterial blood samples collected before, during and after [1-14C]AA infusion were
centrifuged immediately (30 s at 18,000 g). Total lipids were extracted from 30 pl of plasma
with 3 ml chloroform:methanol (2:1, by vol) and 1.5 ml 0.1 M KCl using Folch procedure
[34]. Radioactivity was determined in 100 pl of the lower organic phase by liquid scintillation
counting. As reported [26], greater than 97% of plasma radioactivity at 5 min following
[1-14C]AA infusion was radiolabeled AA, and brain phospholipids accounted for greater than
81% of brain lipid radioactivity over 2 hours, whereas aqueous metabolites of AA account for
10% at 5 min and decrease with time.

Quantitative Autoradiography
Frozen brains were cut in serial 20-pm thick coronal sections in a cryostat at −20°C. The
sections were placed for 5 weeks together with calibrated [14C]methylmethacrylate standards
on Kodak Ektascan C/RA film (Eastman Kodak Company, Rochester, NY, USA). Brain
regions from autoradiographs were identified from a stereotaxic rat brain atlas [67], and were
sampled in both hemispheres. The average of bilateral measurements for each region from
three consecutive brain sections was used to calculate regional radioactivity (nCi/g of brain)
by digital quantitative densitometry, using a Macintosh computer and the public domain NIH
Image program 1.62 (developed at the U.S. National Institutes of Health and available on the
Internet at http://rsb.info.nih.gov/nih-image/). Regional incorporation coefficients k* (ml
plasma/s/g brain) of AA were calculated as [76],

(Eq. 1)

 equals plasma radioactivity determined by scintillation counting (nCi/ml),  equals
brain radioactivity (nCi/g brain), and t equals time after starting [1-14C]AA infusion.
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Brain prostaglandin E2 and thromboxane B2 concentrations
In separate experiments, 3 h and 45 min after the last of 30 daily injections of VPA or vehicle,
a rat was injected i.p. with NMDA (25 mg/kg) or saline. Ten minutes later, it was anesthetized
with Nembutal® (45 mg/kg, i.p.) and immediately subjected to head-focused microwave
irradiation (5.5 kW, 3.8 s; Cober Electronics, Stamford, CT, USA) to stop brain lipid
metabolism [15,30]. Half-brains were weighed, homogenized with 18 volumes of
hexane:isopropanol (3:2, by vol) using a glass Tenbroeck homogenizer and the homogenate
was centrifuged for 5 min at 800 g. Tissue residues were rinsed with 3 × 2 volumes of the same
solvent. The resultant lipid extract was concentrated to dryness under nitrogen and resuspended
in the enzyme immunoassay buffer provided with the polyclonal PGE2 and TXB2 kits (Oxford
Biochemical Research, Oxford, MI, USA).

Statistical analyses
An unpaired two-tailed t-test was used to compare mean physiological parameters in chronic
VPA- and vehicle-treated rats, using GraphPad Prism version 4.0b (GraphPad Software, San
Diego, CA, USA, www.graphpad.com). A standard two-way analysis of variance (ANOVA)
was performed with SPSS 11.0 (SPSS Inc., Chicago, IL, USA, http://www.spss.com), to
compare chronic VPA-versus-vehicle with acute NMDA-versus-saline with regard to arterial
plasma radioactivity input functions, brain PGE2 and TXB2 concentrations and regional values
of k*. Where interactions between VPA and NMDA were statistically insignificant,
probabilities of effects of VPA and NMDA were reported. Where the interactions were
significant, probabilities of main effects of VPA and NMDA were not reported [85]. Instead,
unpaired two-tailed t-tests were used to compare NMDA and saline responses between chronic
VPA- and vehicle-treated rats as well as saline responses in VPA- compared with vehicle-
treated rats. Other comparisons were not considered relevant. A post-hoc test was not used to
avoid a correction for multiple comparisons. Data are reported as the mean ± SD, with statistical
significance taken as p ≤ 0.05.

Results
Physiology, behavior and arterial plasma radioactivity

Rats injected daily with VPA for 30 days weighed significantly less than vehicle-treated rats
(Table 1). In chronic vehicle-treated rats, acute NMDA (25 mg/kg) produced repeated cycles
of activity (head weaving and body movements) lasting on average 4 s, following by a “calm”
period averaging 9 s, with the net cycling period lasting a mean of 95 s (Table 1). The mean
durations of the behavioral parameters were not significantly different in chronic VPA-treated
rats. Furthermore, compared with acute saline, NMDA did not significantly affect arterial pH,
pCO2, pO2 or blood pressure, but significantly decreased heart rate by 21–23% in both chronic
vehicle and VPA-treated groups (Table 1), as previously reported [5].

Neither chronic VPA nor acute NMDA modified the time-course of arterial plasma
radioactivity (Eq. 1) following intravenous [1-14C]AA infusion. The mean integral of
radioactivity in the plasma organic fraction, (nCi × s)/ml (n = 6), did not differ significantly
between groups: chronic vehicle plus saline, 180,783 ± 24,145; chronic vehicle plus NMDA,
170,249 ± 16,855; VPA plus saline, 162,752 ± 18,879; VPA plus NMDA, 149,555 ± 21,089.

Regional brain AA incorporation coefficients, k*
Figure 1 presents coronal autoradiographs of brains from rats given saline or NMDA after
chronic vehicle or VPA. Values of k* for AA, calculated by Eq. 1, are color-coded. The figure
shows no apparent difference in regional values of k* in response to saline between the animals
treated chronically with VPA compared with vehicle (both given acute saline). Acute NMDA
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increased k* in many gray matter regions of the chronic vehicle-treated rat, but had no evident
effect on k* in the VPA-treated rat. Data obtained from such autoradiographs are summarized
in Table 2 and Fig. 2.

Effects of NMDA in chronic vehicle-treated rats—Mean values of k* in each of 82
brain regions were subjected to a two-way ANOVA, as illustrated in Table 2. Statistically
significant interactions between VPA and NMDA were found in 41, in which unpaired t-tests
then showed that NMDA compared with saline significantly increased k* by 19–61% in
chronic vehicle-treated rats. Affected regions included prefrontal (38–41%), frontal (34–45%),
primary olfactory (28%), anterior cingulate (61%), motor (35–46%), somatosensory (31–
35%), auditory layer I (40%) and visual cortical areas (40–55%), hippocampus [CA1, CA2,
CA3, dentate gyrus, stratum lacunosum-molecular] (19–38%), nucleus accumbens (22%),
caudate-putamen (26–34%), lateral geniculate nucleus dorsal (27%), thalamus [paratenial,
anteroventral and parafascicular nuclei] (25–37%), interpeduncular nucleus (28%), substantia
nigra (40%), inferior colliculus (23%), and cerebellar gray matter (23–30%). The overall
pattern of differences due to NMDA compared with saline in chronic vehicle-treated rats is
illustrated in Fig. 2a.

Effects of chronic valproic acid at baseline—In the 41 regions in which VPA × NMDA
interactions were statistically significant, chronic VPA compared with chronic vehicle
significantly changed mean baseline (post-saline) k* in 3 of them (Table 2) -- frontal cortex
(10) layer IV (16%), motor cortex layer V (19%) and interpeduncular nucleus (-15%). In the
other 41 regions in which VPA × NMDA interactions were statistically insignificant, chronic
VPA had a main effect in 5 of them, but reduced k* only in the olfactory tubercle. Thus, chronic
VPA altered baseline k* in 4 of the 82 brain regions studied. The overall pattern of differences
due to chronic VPA is illustrated in Fig. 2b.

Effects of acute NMDA in valproic acid-treated rats—NMDA compared with saline
changed k* significantly (-12%) in only one of the 41 regions in which VPA × NMDA
interactions were statistically significant, frontal cortex (10) layer IV (Table 2). Acute NMDA
did not significantly affect k* in any of the 41 regions in which VPA × NMDA interactions
were statistically insignificant. In none of these latter regions did NMDA have a main effect
on k*. The complete lack of a significant NMDA effect in animals pretreated with VPA is
illustrated in Fig. 2c.

Brain PGE2 and TXB2 concentrations
A two-way ANOVA demonstrated statistically significant interactions between VPA and
NMDA with regard to brain PGE2 and TXB2 concentrations (Table 3). Consequent t-tests
showed that chronic VPA alone significantly decreased basal concentrations of PGE2 by 66%
and of TXB2 by 45%. Acute NMDA increased PGE2 and TXB2 concentrations in chronic
vehicle-treated rats, but did not significantly affect either concentration in chronic VPA-treated
rats.

Discussion
Consistent with reports that VPA interferes with glutamatergic function and NMDA receptor
signaling (see “Introduction”), daily administration of VPA to rats for 30 days, at a dose that
produces a plasma VPA concentration relevant to bipolar disorder, prevented the statistically
significant increases in AA incorporation coefficients k*, and in whole brain PGE2 and
TXB2 concentrations, that were caused by a subconvulsant acute dose of NMDA in chronic
vehicle-treated rats. To the extent that glutamatergic signaling via NMDA receptors is
pathologically upregulated in bipolar disorder patients, for which evidence exists (see
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“Introduction”) [41,50,59,90], these results suggest that VPA’s efficacy in the disease is due
in part to its ability to dampen upregulated NMDA signaling involving AA and its downstream
metabolites. Chronic administration to rats of lithium or carbamazepine, resulting in
therapeutic relevant plasma concentrations, also dampen NMDA-induced elevations in k* for
AA and in brain eicosanoid [5,9]. Thus, reduced NMDA signaling involving AA and its
metabolites may be common to the therapeutic action of mood-stabilizers in bipolar disorder.

Evidence that cholinomimetics [19] as well as drugs that interfere with dopaminergic [24,60,
68,71] or glutamatergic [2,61,88] signaling ameliorate bipolar disorder symptoms, and of
defective serotonergic signaling [56], has suggested that bipolar symptoms reflect reduced
cholinergic, altered serotonergic, and increased dopaminergic and glutamatergic
neurotransmission. Our studies in rats now suggest that chronic VPA, lithium and
carbamazepine as a group can correct this imbalance, and that the imbalance involves AA as
a second messenger [4–9,21,77].

Our values of k* in this study agree with published values [5,9]. NMDA increased k*
significantly in 41 of 82 brain structures with high densities of NMDA receptors [66], including
the cerebral cortex, caudate-putamen, globus pallidus, hippocampus, thalamus, hypothalamus,
colliculus, substantia nigra. Our measured PGE2 and TXB2 concentrations agree with other
studies showing elevated brain concentrations of these eicosanoids following acute NMDA
[9,64,69] and reduced concentrations following chronic VPA [14,84]. Concentrations of
PGD2 and PGF2α also are increased after NMDA [51,54] but are decreased by chronic VPA
[84].

VPA’s ability to suppress NMDA-induced increases in k* for AA and to reduce PGE2 and
TXB2 concentrations in rat brain could have been due to its ability to reduce COX-1 and COX-2
expression or interfere directly with the NMDA receptor [14,73]. When COX enzymes are
pharmacologically inhibited or knocked out in rodent brain, k* responses to drugs acting at
cPLA2-coupled neuroreceptors are reduced or lost, as are the increases in brain PGE2 and/or
TXB2 concentrations [10,11]. VPA can inhibit cyclic AMP-dependent protein kinases A and
C by VPA, both of which can phosphorylate the receptor [32,53,94]. VPA also can reduce
expression of two NMDA receptor-interacting proteins in rat brain, postsynaptic density
protein PSD-95, which is altered in bipolar disorder [90], and type II Ca2+/calmodulin-
dependent protein kinase beta subunit [13]. It inhibits histone deacetylase, which acetylates
the NMDA receptor transcription factor, specificity protein-1 (Sp1) [3,70], and can reduce
methylation of the reelin gene, which encodes a protein that regulates NMDA receptor surface
trafficking and synaptic subunit composition [29,31,40]. VPA blocks induction of Fos and of
activator protein-1 DNA binding activity, both of which modulate transcription of the NMDA
receptor subunit, NR2B [72,80]. It regulates expression and traffic of NMDA receptors in
hippocampal neurons [20,36], and decreases basal glutamate release and increases glutamate
uptake in brain [42,89,92]. VPA also may modulate neurotransmission involving cPLA2 and
AA coupled to glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and kainate receptors [25,32,38,48,93].

The behavioral effects of NMDA (Table 1) were not altered qualitatively by chronic VPA,
lithium [5] or carbamazepine [9]. Thus, AA signaling via NMDA receptors likely does not
contribute to these effects. In agreement, neither VPA, lithium or carbamazepine modified the
seizure threshold to NMDA in rodents [65,82], and VPA did not reduce NMDA-induced
running/jumping fits, clonic-tonic seizure or mortality in rats [44]. NMDA can promote also
synaptic release of acetylcholine, adenosine, serotonin and γ-aminobutyric acid [27,86,93,
95].
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Since mood-stabilization of bipolar patients appear only after 10 days of oral VPA [16], we as
have others [5,9,12,13,18,22,42,55] studied effects only of chronic VPA in rats. An acute
injection of VPA (300 mg/kg) in rats did not alter basal or stimulated extracellular glutamate
in the hippocampus, whereas chronic VPA decreased whole brain glutamate concentration
[1,63]. Chronic but not acute VPA administration changed corticotropin releasing factor [83]
and AMPA glutamate receptors [32] in rat brain.

In conclusion, chronic VPA pretreatment prevented the statistically significant increases in k*
for AA and in PGE2 and TXB2 concentrations that were observed in response to NMDA in
chronic vehicle-treated rats. These and observations in rats administered chronic lithium or
carbamazepine support the hypothesis that mood stabilizers commonly downregulate brain AA
signaling via NMDA receptors.
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Abbreviations
AA  

arachidonic acid (20,4n-6)

PLA2  
phospholipase A2

cPLA2  
cytosolic PLA2

NMDA  
N-methyl-D-aspartic acid

PGE2  
prostaglandin E2

TXB2  
thromboxane B2

VPA  
valproic acid

COX  
cyclooxygenase

AMPA  
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
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Fig 1. Coronal autoradiographs showing effects of NMDA and valproic acid on brain regional AA
incorporation coefficients k* in rats
Values of k* (ml/s/g brain × 10−4) are given on a color scale. Abbreviations: Acg, anterior
cingulate cortex; CPu, caudate-putamen; DLG, dorsal lateral geniculate nucleus; Hb, habenular
nucleus; Hipp, hippocampus; IPC, interpeduncular nucleus; Mot, motor cortex; PreFr,
prefrontal cortex; SN, substantia nigra; Vis, visual cortex.
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Fig 2. Difference patterns of k* responses to NMDA and valproic acid in sagittal representation of
rat brain
Regions in which k* was increased significantly (p < 0.05) are solid black, regions in which
k* was decreased significantly are hatched. List of regions: A, amygdala; Acc, nucleus
accumbens; Aud, auditory cortex; av, anteroventral thalamic nucleus; CbG, cerebellar gray
matter; CBW, cerebellar white matter; CPu, caudate putamen; DLG, dorsal lateral geniculate
nucleus; Fr, frontal cortex; GP, globus pallidus; HB, habenular complex; HIP, hippocampus;
HYP, hypothalamus; IC, inferior colliculus; IPC, interpeduncular nucleus; MM, mammillary
nucleus; mG, medial geniculate nucleus; MolCBG, molecular layer of cerebellar gray matter;
Mot, motor cortex; OT, olfactory tubercle; PF, prefrontal cortex; pt, paratenial thalamic
nucleus; SN, substantia nigra; S, septum; SS, somatosensory cortex; SCp, deep layer of superior
colliculus; SCs, superficial layer of superior colliculus; STH, subthalamic nucleus; THa,
thalamus; Vis, visual cortex.
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