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INTRODUCTION

Traditional investigations of the neural basis of
recovery of function after brain damage frequently
involve an analysis of behavioral recovery and of
potentially related neural changes that might
mediate the recovery. We recently have taken a
quite different approach. Instead of assuming that
the neural changes mediate (or permit) the
behavioral, we showed that the opposite can be
true: that behavioral events are absolutely necessary
for the neural changes to take place /7-9/. These
studies, reviewed below, have led us further to
hypothesize that brain damage can sensitize, or
prepare, remaining neural tissue through growth
promoting and pruning-like mechanisms so that in
the presence of appropriate behavioral pressure, the
tissue can be drastically altered to compensate for
lost function. In this scheme, (a) the neural events
not only require behavioral experience (use-
dependency), but (b) even with extensive behavioral
experience, the neural changes may not be initiated
unless there is also brain damage, and (c) there may
be a sensitive period after the brain damage occurs
during which the behavioral experience can
maximally modify the neural events.

Reprint address:
T. Sehallert
Department of Psychology
Mezes Hall 330 Z
University of Texas at Austin
Austin, Texas 78712, USA

STRUCTURAL EVENTS

Following unilateral injury to the forelimb
representation area (FL) of the sensorimotor cortex
in rats, there is a substantial transient expansion of
the size of the identical cortical area of the opposite
hemisphere /6,8/. The expansion appeared to be
greatest in regions containing large pyramidal
neurons in layer V and no significant expansion was
observed in a sample of other cortical regions
outside the homotopic forelimb area. Layer V
pyramidal neurons are the major output neurons of
the cerebral cortex. These neurons communicate
with subcortical structures and motor neurons of
the spinal cord and they receive intracortical,
subcortical, and transcortical input. Because cortical
thickening or volume increases have been shown to
reflect enhanced dendritic arborization of neurons
/11/, we examined the dendritic arbors of layer V
pyramidal neurons in FL using Golgi Cox
procedures/7,8/.
We found a time-dependent dramatic increase in

the complexity and extent of dendritic arborization
that was greatest at 18 days postoperative, followed
by a partial reduction in arborization that did not
return to control levels even up to 120 days (Fig.
1). Increases in dendritic branching have been
associated with increased numbers of synapses
/18,24/, which could possibly provide enhanced
information processing and motor control
capacities. The pruning of arbors is reminiscent of
eliminative events associated with the plasticity of
the developing brain /2,14,17,19,21,22/ and is in
line with suggestions that neural events occurring
after brain damage may parallel certain mechanisms
found in ontogeny/23/.
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Arborization of layer V pyramidal neuron basilar dendrites as measured using the concentric circle method. Concentric
circles spaced at 20 tm intervals are superimposed over camera-lucida drawings (450x) of the neurons, and the number
of intersections between dendritic processes and the circles are counted to give an index of the spatial extent and size of
the dendritic trees. Arborization increases were maximum at 18 days after the lesion, most notably within an 80 t radius
from the soma center. At 120 days, the arbors were only modestly increased relative to shams. In addition to the increase
in the spatial size of the arbors, the number of dendritic branches were increased following the lesion, following the
same pattern of overgrowth and partial elimination (see Jones and Schallert /9/ for details, including other time points).
Pyramidal neurons on the right are schematic drawings and are roughly representative of dendritic branch number and
arbor size.

BEHAVIOR-ANATOMY RELATIONSHIP

The overgrowth of dendrites appeared to
correspond closely in time to postoperative changes
in the use of the forelimbs for support in standing,
pushing off during rearing movements, and for
movement along the walls of the cage/7,8/. That is,
following the unilateral lesion, there was disuse of
the forelimb contralateral to the damage and over-

dependence on the ipsilateral forelimb. The
ipsilateral limb was not overactive relative to
control groups- rather, because the contralateral
forelimb was impaired, the animals relied upon the
ipsilateral forelimb to maintain balance and to
prevent the contralateral forelimb from falling
through grid openings or slipping down walls
during vertical exploration. With time, the
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asymmetry of limb use abated significantly, which
corresponded to the pruning phase. Because the
forelimb postural-motor behaviors were so
frequently part of their everyday movements, and
beeause the overbranehing and pruning of Layer V
neurons ourred in FL sensorimotor cortex
representing the non-impaired limb, it seemed
reasonable that the arborization enhancement, and
possibly the pruning as well, might be driven by
behavioral experienee. This idea derived in part
from the work of CJreenough and olleagues, who
have shown that experienee and skilled use of
forelimbs can inrease dendritic arborization in
subpopulations of Layer II, III and V neurons
/3,27/, albeit less dramatically than that observed in
our brain damaged animals/8/.

OVERGROWTH/USE-DEPENDENCY LINK
ESTABLISHED

To determine whether arbor expansion in the
intact cortex was driven by over-reliance on the
non-impaired forelimb we designed lightweight
vests, made of plaster of paris casting material, that
restricted use of either the non-impaired or impaired
forelimb throughout the period of neural
overgrowth/5,9/. An additional group of rats was
left uncasted and another was fitted with two-holed
control casts which allowed free use of either
forelimb. All animals adapted readily to the casts.
The animals were well handled and were cleaned
and brushed at least twice daily. A cotton probe was
used to clean and stimulate the regions under the
cast. Enough space was left under the one-sleeved
casts to allow minor movements since the purpose
of these casts was only to limit use of one forelimb
for postural supporting and ambulatory behaviors.
When the casts were removed, the animals were
immediately able to use the restricted forelimb for
locomotor or other behaviors.

The major result was that restricting use of the
non-impaired limb completely prevented the
dendritic overgrowth that otherwise would have
occurred in the intact FL sensorimotor cortex (Fig.
2)/5,9/. In contrast, it was no surprise that control
casts or casts which simply restricted use of the

impaired forelimb (leaving the non-impaired limb
free to engage in compensatory postural supporting
behaviors, as though no cast had been applied), had
no diminishing effect on dendritic overgrowth.
These results were consistent with the view that
forelimb experience played an essential role in the
dendritic overgrowth.

LESION-DEPENDENCY ESTABLISHED

On the other hand, forced use of one forelimb in
sham-operated animals having no brain damage
failed to promote reliable dendritic overgrowth.
These animals were fitted with a cast that prevented
use of one forelimb for 15 days; nevertheless, no
significant increase in arborization occurred in
Layer V neurons of FL sensorimotor cortex
contralateral to the overused forelimb/9/. Thus, the
dramatic arborization effect may require brain
damage.
We also found that non-cortical unilateral brain

injury, even when it produces severe and chronic
disuse of the contralateral forelimb, is not sufficient
to permit the enhanced dendritic arborization, at
least not in FL cortex. For example, a group of
animals sustained severe unilateral depletion of
dopamine in the nigrostriatal system and was
sacrificed 15-18 days later /9,12/. There was no
increase in arbor size or complexity in the cortex
contralateral to the compensating forelimb (despite
limb use asymmetries that were even greater than
that observed after unilateral sensorimotor cortex
lesions).

Likewise, no detectable interhemispheric
asymmetries in dendritic arborization or spine
density ofLayer V neurons in FL cortex were found
in rats after unilateral pyramidal tract lesions/25/.
These animals showed extreme disuse of one
forelimb during the first few postoperative weeks,
and even at the time of sacrifice (6 months), normal
limb use had not been restored. It appears,
therefore, that degenerative or related signals within
the cortex/10,12,14,15/may be necessary for the
structural events to occur there/9/.
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Fig. 2: Lesioned animals that were permitted to use the intact (ipsilateral) forelimb showed increased arborization at 18 days
(left). Lesioned animals with movements of the ipsilateral forelimb restricted failed to show significant increases in the
levels of dendritic extent and complexity. Thus, the enhanced dendritic arborization is use-dependent (see Jones and
Schallert/9/).

PRUNING RELATED TO EXPERIENCE

As noted above, aer the overgrowth of
dendritic arbors there was a partial reduction in
dendritic complexity and size (pruning). Two
possibilities are that the pruning may be related to a
return to more symmetrical use of the forelimbs
(i.e., less reliance on the non-impaired forelimb for
postural-motor behaviors), or, in contrast, to
continued dependence on and improvement in the
use of the non-impaired limb for postural-motor

behaviors. Therefore, an experiment was carried out
in which one-sleeved casts were used starting at,
and throughout, the pruning phase in order to
extend the period of over-reliance on the non-
impaired limb/9/. We found that forcing animals
to continue to use only the ipsilateral (non-
impaired) forelimb throughout the period of pruning
did not prevent the dendritic arbor reduction. Thus,
the dendritic pruning was not related to a return to
more symmetrical use of the forelimbs, and might
well be a fine-tuning mechanism associated with
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increased specificity of synaptic connections and
continued over-reliance on the non-impaired
forelimb.

FUNCTIONAL OUTCOME

A battery of behavioral tests assessed the effects
of prior casting on limb use effectiveness during
postural-motor behaviors in animals with
sensorimotor cortex damage. These tests indicated
that casting the non-impaired limb during the period
of dendritic overgrowth not only blocked the
arborization, but also caused severe impairment in
the coordinated use of both forelimbs, which was
substantially worse than that observed in uncasted
animals and in animals having the contralateral
(impaired) limb casted/9/. These data show that a
manipulation which disenables the dendritic
overgrowth can have drastic behavioral
consequences, even though the manipulation forced
more extensive use of the impaired forelimb. In
addition, a pharmacological manipulation (NMDA
antagonist administration beginning after peak
dendritic arborization) that prevented the process of
pruning had an adverse effect on forelimb function
/5,12/. The potential implications of these results for
restorative neurology are that there may be special
early periods after brain damage during which non-
affected systems require rehabilitative training
(perhaps just as much as impaired systems) in order
to maximize compensatory neural mechanisms and
clinical outcome.

CONCLUSION

Brain injury can create, for a short period of
time, a particularly fertile milieu for compensatory
structural changes that rival in scope the plasticity
seen in development. We have described
experiments depicting post-lesion neural
morphological growth that was not unlike
development-associated overproduction (exuber-
ance) and selective elimination of neurons or their
processes (pruning), a growth pattern suggested to
be related to activity-dependent selective
elimination of some synaptic connections and the
strengthening of remaining, functionally
appropriate, connections/1,4,13-15,20,22,24/. The

window of time soon after brain damage may
represent a "golden" opportunity for substantial
remodeling and, potentially, restoration of function.
However, this opportunity may be wasted unless
there is also appropriate rehabilitative experience.
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