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ABSTRACT

Gacyclidine, a novel, noncompetitive NMDA
receptor antagonist, was injected (i.v.) into
rats at three different doses to determine if
the drug could promote behavioral recovery
and reduce the behavioral and anatomical
impairments that occur after bilateral con-
tusions of the medial frontal cortex (MFC). In
the Morris water maze, contused rats treated
with gacyclidine at a dosage of 0.1 mg/kg
performed better than their vehicle-treated

conspecifics. Rats given gacyclidine at either
0.3 or 0.03 mg/kg performed better than
brain-injured controls, but not as well as those
treated with 0.1 mg/kg. Counts of surviving
neurons in the nucleus basalis magnoceilularis
(NBM) and the medial dorsal nucleus (MDN)
of the thalamus were used to determine
whether gacyclidine treatment attenuated
secondary cell death. In both the NBM and
the MDN, the counts revealed fewer surviving
neurons in untreated contused rats than in

gacyclidine-treated rats. Increases in the size

and number of microglia and astrocytes were
observed in the striatum of gacyclidine-
treated contused brains. Although most
consequences of MFC contusions were
attenuated, we still observed increases in

ventricle dilation and thinning of the cortex.

tCorresponding author:
The Brain Research Laboratory, Emory University
575 Rollins Way, Atlanta, GA 30322
phone: +1-(404) 727-6034; fax: +1-(404) 727-2388
Email" dgstein@gsas.emory.edu

In fact, the ventricles of rats treated with 0.1
mg/kg of gacyclidine were larger than those of
their vehicle treated counterparts, although
we observed no behavioral impairment.
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INTRODUCTION

Following traumatic brain injury, excitatory
amino acids, such as glutamate, increase to toxic
levels and may cause further damage to

compromised neurons in the injury zone and to
more distal nerve cells (Murphy & Pearce, 1987;
Mclntosh, 1994; Myseros & Bullock, 1995).
Glutamate, binding to the glutamate recognition
site of the NMDA receptor-ionophore complex,
permits sodium and calcium ions to enter into the
neuron, and if in excess, can initiate hyper-
excitation, cytotoxic edema, and eventually cell
death (Faden et al., 1989). Agents that block any
of the specific recognition sites of the NMDA
receptor-ionophore complex (NMDA antagonists)
or the binding sites within the channel (non-
competitive NMDA antagonists) will attenuate
calcium influx (Bullock & Fujisawa, 1992;
Bullock, 1995) and increase the likelihood of
neuronal survival.

Several different types of NMDA receptor
antagonists, such as phencyclidine (PCP), thienyl

(C)Freund & Pettman, U.K., 2000 73



74 J.S. SMITH ET AL.

phencyclidine (TCP), and dizocilpine maleate
(MK-801), have been shown to enhance
functional recovery and promote neuronal
sparing after different forms of central nervous
system (CNS) injury (Panter & Faden, 1992;
Golding & Vink, 1995; Okiyama et. al., 1997).
Some of these agents, however, have been shown
to produce negative side effects, such as halluci-
nations and neuronal vacuolization (Olney et al.,
1991; Muir & Lees, 1995).
A novel, noncompetitive NMDA antagonist,

gaeyclidine [GK-11; (cis (Pip/Me 1-[(1-2-thienyl)-
2-methylcyclohexyl] piperidine)], recemly developed
by Beaufour Ipsen Pharmaceuticals (France), is a
molecule that is structurally derived from TCP.
Gacyclidine is very selective for the PCP binding
site within the NMDA receptor ion channels,
having a binding rate 2.2 and 8.6 times higher
than that of TCP and PCP, respectively (Drian et
al., 1991). In vitro, gacyclidine has been shown
to be protective against acute glutamate toxicity
to neurons of the cortex, hippocampus, and
spinal cord (ibid.). In this study, we evaluated
the effectiveness of gacyclidine in reducing the
behavioral and histopathological consequences of
experimentally induced traumatic brain injury in
adult male rats. We created contusions of the
medial frontal cortex because this injury model
simulates the type of head trauma often seen in
humans (Mattson & Levin, 1990). In this model,
the loss of neurons expressing NMDA receptors
is associated with impaired learning and memory
(Hoffman et. al., 1994) following traumatic brain
injury. Bilateral damage to the medial frontal
cortex in rats induces persistent deficits in
cognitive and sensorimotor performance. We
have chosen to use the Morris water maze
(MWM) because in repeated experiments, this
task has been shown to be particularly sensitive
to lesions of the frontal cortex (Kolb et al., 1982;
Hoffman et al., 1994; Lindner et al., 1998). We
believe that the MWM can be used to measure
both working and/or reference memory, but in
our task we were primarily concerned with
enhancing performance in brain damaged

animals rather than in the specific nature of the
task itself. The deficits observed in the MWM
following MFC contusions are persistent and
amenable to manipulation by drugs and by other
procedures we have used in previous work (Stein
et al., 1991; Attella et al., 1992; Roof et al.,
1994; Janis et al., 1998). Because treatment with
gacyclidine protects against glutamate toxicity in
vitro, we reasoned that systemic administration
of the drug might effect gliosis, prevent
secondary neuronal death, and help reduce the
behavioral deficits in the MWM that are seen
after medial frontal cortex contusions.

MATERIALS AND METHODS

Subjects

Sixty-four male Sprague-Dawley rats (-90
days old), weighing from 320 to 380 grams each
at the time of injury, were used. The animals
were housed individually in hanging stainless-
steel cages, with a 12:12 hour reversed light
cycle (8:00 to 20:00, dark period, 20:00 to 8:00,
light period), and allowed ad libitum access to rat
chow and water. Each rat was weighed and
handled for 5 min/d during the week before and
the week after the surgery.

Surgery

All rats were food deprived for 24 h before
surgery. The rats were injected (i.p.) with 0.05 ml
atropine sulfate (to reduce respiratory congestion),
anesthetized with sodium pentobarbital (Nembutal,
50 mg/kg) and mounted in a stereo-taxic device.
A midline incision was made in the scalp, the
fascia was retracted, and the cranium was
exposed, using aseptic technique. At this point,
all sham-operated controls were sutured and
prepared for the injection of gacyclidine or
vehicle (sterile water). Details of the contusion
procedure have been reported previously
(Hoffman et. al., 1994), but will be briefly
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outlined here. The rats that were destined to
receive cortical contusions of the medial frontal
cortex first underwent a 6-mm-diameter cranio-
tomy (centered at 3.0 mm anterior to bregma).
After removal ofthe bone, the tip of the impactor
was moved to AP: 3.0; ML: 0.0 (Paxinos &
Watson, 1982), checked for adequate clearance,
retracted to its elevated position, and then
lowered 3.5mm DV so that it would penetrate the
cortex 2 mm. The impact velocity was 2.25m/see

with a 0.5-see duration before retraction.
Hemorrhaging was stopped (by applying cold
saline-soaked gelfoam sponges) before closure of
the incision. Immediately after surgery, the rats’
tails were placed in warm (40C) water to induce
vasodilation to allow intravenous injection.

Drug administration

Ten minutes after the contusion, the rats
received either gacyclidine or the vehicle (sterile
water) in a single intravenous injection into the
dorsal tail vein, at doses of either 0.3, 0.1, or 0.03
mg/kg. After the injections, the rats were placed
in a warm, dry, well-ventilated cage and allowed
to recover fully from the surgical procedure
before being returned to the colony.

Behavioral assessment

Activity monitoring. The animals were placed
in OmnitechTM activity monitoring boxes for 10
min each day. To determine the acute effect of
the drug on activity of the rats, we measured this
behavior on the first, third, and fifth days post
injury. To test for any long lasting effect, we
measured activity levels again on the twenty-first
and twenty-fourth days post injury. The total amount
of time spent moving was the dependent variable.

Morris water maze. After 7 days of post-
operative recovery, the animals began training in
the MWM (Morris, 1981, Hoffman et al., 1994).
Each animal received 2 trials per day for 10 days,
a total of 20 trials. The water maze consisted of a

large, circular pool, 115 cm in diameter, filled
with water made opaque by the addition of white,
non-toxic paint. A submerged escape platform
(11 x 11 cm) was placed in the southeast comer of
the tank, 1.5 cm under the water so that it could
not be seen by the rats. A trial began by placing a
rat into the water at one of four possible starting
positions (N, E, S, W) and ended when the
animals located and climbed onto the escape
platform or after 90 see had elapsed. If a rat
could not locate the submerged platform within
90 see, the experimenter would guide it to the
escape location.

Histological methods

Preparation for light microscopy. When all
behavioral tests were completed, the rats were
given a lethal dose (80 mg/kg, i.p.) of Nembutal,
followed by an intracardiac perfusion of 100 mL
phosphate buffered saline (pH 7.4) and 500 mL
4% paraformaldehyde (PAF) solution (pH 7.4).
After perfusion, the brains were removed from
the skull, post-fixed in 4% PAF, and then
sequentially cryoprotected in 10%, 20%, and
30% sucrose solutions (pH 7.4), 12 h in each.
Three separate series of 40-tm-thick sections
were cut on a freezing microtome and then
immediately mounted on gelatin-coated slides in
preparation for staining or placed into cyro-
protectant (Watson et al., 1986) for later
immunocytochemistry. The first series of
sections, stained with thionin, were used for
general morphological analyses (ventricular
dilation, cortical thickness), and for neuronal
counts; the second and third series were stained,
using glial fibrillary acidic protein (GFAP)
immunocytochemistry for astrocytes and silver
impregnation for microglia.

GFAP immunocytochemistry: To visualize
the presence of reactive astrocytes, 40-1am-thick
free-floating sections were immunolabeled using
the peroxidase-antiperoxidase method described
in detail elsewhere (Fulop et al., 1997).
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Gallyas silver staining for microglia. An
additional series of 40-tm-thick sections were
stained for activated microglial cells, using a
silver impregnation method described by Gallyas
(1970). This method effectively ,stains all types
of activated microglial cells and any macro-
phages that are present within the CNS atier trauma.

Image analysis

Anatomical analysis was aided by a video
microscopy system. The images were captured
using a single-chip, analog color video camera.
Once captured and saved in tiff format on the
PC, the image was cropped using Adobe Photo
ShopTM and imported into UTHSCSA ImageTool
(v. 1.27) for further quantitative morphometric
assessment. All investigators were blind as to
group assignment until the completion ofthe study.

Lesion reconstruction. Sections at three
levels (3.5, 2.5, 1.5 mm) anterior to bregma were
captured at a magnification of 1.67x. The lesion
cavity was traced and measured using the
ImageTool software package. The area of the
three levels of lesion cavities was quantified and
summed to determine a mean area percentage.
The scores were then used to compute a mean
area ratio score (area of the lesion/area of lesion
+ total area of the slice). The ratios were then
used to determine the differences, if any, in
lesion cavity size between treatment levels.

Ventricle dilation was measured on thionin-
stained sections at the level of 1.0 mm anterior to
bregrna. The area of each ventricle was traced
and quantified using the ImageTool software
package. The area scores were used to compute a
mean area ratio score (area of the ventricles/area

of ventricles + total area of the slice). The ratios
were used to calculate differences in ventricle
size between lesion and treatment levels.

Cortical thickness. The thickness of the
cortex (the radial distance between the outer
surface of the cortex and the dorsal aspect of the
corpus callosum) was measured at three points

(1.0, 2.5, 4.5 mm) from the midline. Both the
right and the left hemisphere, at the level of 1.0
mm anterior to bregma from each brain, were
examined. The six points were then summed to
determine a mean cortical thickness for each
animal. The mean areas were used to measure
any differences in cortical thickness between the
lesion and treatment levels.

Neuronal counts. Cholinergic neurons in the
rat nucleus basalis magnocellularis (NBM), which
account for 70% to 80% of neocortical choliner-
gic innervation, have been implicated in learning
and memory (Dekker, et. al., 1991). Damage to
the medial frontal cortex disrupts cholinergic
innervation to the neocortex of the basal
forebrain and can cause retrograde degeneration
of neurons in the NBM (Gray & McNaughton,
1983; Dekker et al., 1991). The medial dorsal
nucleus of the thalamus (MDN) has also been
shown to be a subcortical structure that projects
to the prefrontal cortex (Leonard, 1969). As a
measure of retrograde degeneration, images
(x40) were selected from within the NBM, at
three different levels (+0.01, +0.00, -0.01 mm)
to bregma and from the MDN (-2.3, -2.8, -3.3
mm) were analyzed for neuronal-cell survival. In
the NBM, the area (507 gm) where the counts
were conducted was bordered dorsally by the anterior
commisure, medially by the lateral preoptic area,
ventrally by the nucleus of the diagonal band,
and laterally by the fundus ofthe striatum.

In the MDN, the area (507 gm2) where the
counts were made was bordered dorsally by the
lateral habenula, medially by the paraventricular
thalamic area, ventrally by the central medial
nucleus and by the paracentral nucleus of the
thalamus, and laterally by the centrolateral
nucleus of the thalamus (Paxinos & Watson,
1986). With the assistance of ImageTool
software, we counted all cells that we determined
to be viable neurons, using the following criteria:
(a) even staining of the nucleus, (b) no visible
signs of swelling, and (c) containing definitive
cell bodies and an observable nucleus.
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GFAP immunoreactive astrocytes and
activated microglial cell counts. Sample areas,
507 tm

2 (x40), within the striatum, at three
different levels (+2.00, +0.10, -0.50mm), were
selected to quantify astrocytes and microglial
cells. The cells were counted, and then five
randomly selected cells from each sample were
traced (using ImageTool) to determine the
surface area as a measure of cell size.

Statistics

Data were analyzed with the appropriate
multi-way analysis of variance (ANOVA) or
ANOVA for repeated measures with Tukey’s
post hoc ANOVA analysis of the results, using
statistical software packages including SPSS (v.
8.0), SigrnaSTAT (v. 1.0), and SigmaPLOT (v.4.0).

RESULTS

Activity measurements

Analyses of the activity levels of the rats
were made on the first, third, and fifth post-
operative days and again on the twenty-second
and twenty-fourth postoperative days (Fig. 1). A
two-way, repeated-measures ANOVA showed a
significant effect of time, [F4,26)=12.84, 1<0.001 ],
and an interaction between time and lesion, [F<4.26)
16.68, p<0.001 ]. Tukey’spost hoc analysis revealed
that on the first postoperative day, rats given
medial frontal cortex lesions were less active than
intact controls. On the third postoperative day, the
activity increased (toward normal levels) and
then declined on the fifth postoperative day. After
MWM training, the activity levels of the rats
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Fig. 1" Analysis of the activity levels of the rats were conducted on the first, third, and fifth postoperative day and
again on the twenty-second and twenty-fourth postoperative day. A significant effect of time and an
interaction between time and lesion (p<0.05) can be seen.



78 J.S. SMITH ET AL.

were re-examined to determine any residual
effects of gacyclidine treatment. No difference
among the drug treatment groups was noted.

Morris water maze

Measures of swim time in the water tank
before finding the escape platform revealed a
significant lesion effect [F(,56)---96.52, 1<0.001], a
significant drug effect, [F(3,56)=6.37, 1<0.05], a

lesion day interaction, [F(9,504)=4.07, 1<0.001], and
a lesion x drug x day interaction [F(27,504)=1.94,
p<0.05].

The animals treated with 0.1 mg/kg of
gacyclidine performed significantly better than
the lesion-vehicle group, both early and late in
training. This analysis showed that regardless of
dose, the drug improved the performance of the
injured rats (Fig. 2a). Additionally, injured rats
given 0.1 mg/kg of gacyclidine performed
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Fig. 2: (a) Measures of swim time in the water tank before finding the escape platform show that rats given 0.1
mg/kg of gacyclidine performed better than the other treatment groups, both early and late in training
(*=p<0.05). Regardless of dose, intact rats performed significantly better than any of the three gacyclidine
groups (**=p<0.05), except on day 8, when the 0.1 mg/kg group was not significantly different from the intact
controls. (b) Collapsing the data across days revealed that injured rots receiving 0.1 mg/kg performed better than
those receiving either of the other two doses (**=p<0.05). All injured rats receiving gacyclidine, regardless
of dose, performed better than their untreated counterparts (*=p<0.05). (Error bars represent SD).
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significantly better (1<0.05) than those receiving
either of the other two doses. The gacyclidine
treated animals did not reach performance levels
equivalent to those of intact controls. The latency
measure (Fig. 2a) revealed a significant drug
effect throughout the duration of testing, with all
doses of the drug producing shorter swim
latencies than those found in the vehicle treated
counterparts. When the data were summed across
days, a 2-way ANOVA produced a significant
main effect of lesion [Fo.56 95.40, 1<0.001 ] and a
significant interaction of drug x lesion [F(3,56)
3.79,1<0.05] (Fig. 2b).

Comparison of the distance traversed by the
rats while searching for the escape platform also
revealed a significant lesion effect, [F0,56=78.02,
1<0.001 ], a significant lesion x drug interaction,
[F(3.56)=3.72, E<0.05], a lesion x day interaction,
[F(9.504)=4.32, t2<0.001], and a drug x day inter-
action, [F(27,504)=1.71, t2<0.05] (Fig. 3). When
comparing the distance traveled by the rats, we
found that the performance of gacyclidine-
treated rats was significantly better than that of
rats in the lesion-vehicle group by the final three
days of testing (12<0.05), although no treatment
group reached the level of performance of intact
rats. On the second, eighth, and tenth days of
training, rats treated with 0.1 mg/kg of
gacyclidine performed better than those in the
other treatment groups (Fig. 3a). When the data
were summed across days, a 2-way ANOVA
produced a significant main effect of lesion

[Fo.56=77.40, 1<0.001] and a significant inter-
action of drug x lesion [F(3.56)=3.69, 1<0.05] (Fig.
3b).

given a dose of 0.3 mg/kg of gacyclidine.

Cortical thickness measurements

In addition to ventricular dilation, rats
receiving the 0.1 mg/kg dose of gacyclidine also
showed a significant decrease in cortical
thickness, measured at three locations, in
comparison with contused rats given only vehicle
injections [F(3.256)=5.574, 1=0.001]. Further
analysis using Tukey’s post hoc comparisons
showed that rats treated with the 0.1 mg/kg dose
of gacyclidine had the thinnest cortex of the three
doses (Fig. 4b). It is also interesting to note that
animals given the 0. l mg/kg dose showed the best
behavioral recovery when compared with rats
given lower doses of gacyclidine. Sham-operated
controls, regardless of dose, showed no changes
in cortical thickness.

Lesion reconstruction

To determine lesion size and location, we

performed lesion reconstruction (Fig. 5) and
compared animals treated with 0.03, 0.1, and 0.3
mg/kg doses of gacyclidine with vehicle-treated
animals and surgical controls. Among the three
treatment groups, no difference was found in the
size of the lesions (p>0.05 for all). Additionally,
lesion reconstruction showed that the contusion
injuries were about the same size and
symmetrical.

Neuronal counts in the nucleus basalis

magnoceilularis (NBM)

Ventricular dilation

Figure 4a shows that the ventricles of rats
treated with 0.1 mg/kg of gacyclidine were

significantly larger [F(3,39)-- 21.05, 12<0.001] than
those of vehicle-treated animals with similar
lesions. A small but nonsignificant ventricular
enlargement was noted in sham-operated rats

Regardless of treatment conditions, the
number of surviving neurons in the nucleus
basalis showed a decline in all animals with
cortical contusions [Fo.0=34.67, 1<0.001] when
compared with their non-contused counterparts.
Our analysis indicated, however, that rats treated
with 0.1 mg/kg of gacyclidine had more

surviving neurons than their vehicle treated
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Fig. 3" (a) Measures of swim distance in the water tank before f’mding the escape platform shows that on the second,
eighth, and ninth day of training, rats given 0.1 mg/kg of gacyclidin prformd bttr than the other
treatment groups (*=p<0.05). Regardless of dose, intact rats performed significantly better than any
gacyclidine-trcated group (**=p<0.05). (b) When collapsed across days, the data revealed that injured rats
treated with the two higher doses of gacyclidine performed better than those treated with 0.03 mg/kg of
gacyclidine or with the vehicle (**=p<0.05). All injured rats receiving gacyclidine, regardless of dose,
performed better than their untreated counterparts (*=p<0.05). (Error bars represent standard deviation).
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Fig. 4: (a) Ventricle size in gacyclidine-treated and untreated rats. The ventricles of rats treated with 0.1 mg/kg of
gacyclidine were significantly larger than those in untreated animals with similar lesions (*=p<0.05) and
larger than those in rats given either 0.3 or 0.03 mg/kg of gacyclidine (**=p<0.05). Nonsignificant
ventricular enlargement was noted in sham-operated rats given the 0.3 mg/kg dose of gacyclidine.
(b) Cortical thickness in gacyclidine-treated and untreated rats. Rats treated with the 0.1mg/kg dose of
gacyclidine of showed a decrease in cortical thickness measured at several locations (**=p<0.05) when
compared with contused rats given only vehicle. All animals receiving lesions of the MFC had thinner
cortices (*=p<0.05). Sham-operated controls, regardless of dose, showed no change in cortical thickness.
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counterparts [F(,0) 15.22, 1<0.001 (Fig. 6a).

Neuronal counts in medial dorsal nucleus of
the thalamus (MDN)

The number of surviving neurons in the MDN
declined in all animals with cortical contusions

[F(.:0=41.60, 1<0.001 in comparison with their
non-contused counterparts. More surviving
neurons were found in rats treated with 0.1 mg/kg
of gacyclidine than in their vehicle treated
counterparts [F(,_0) 14.61, 1<0.001 ] (Fig. 6b).

GAFP immunoreactivity

We have previously shown (Fulop, et. al.,
1992) that after medial frontal cortex contusions,
a significant increase occurs in the number of
GFAP positive astrocytes, both at the site of

injury and in areas distal to the lesion. In the
present study, we observed a moderate activation
of astrocytes in the cortex and septum and heavily
stained astrocytes within the striatum at 26 days
post-injury. Accordingly, we isolated the analysis
to these areas of hyperactivation and found that
the number of activated astrocytes was
significantly higher ([F(1,38)=179.42, 1<0.001 in
the striatum of contused animals than in the
striatum of sham controls Fig. 7a). Although we
did not see a significant effect of the drug on
astrocyte activation [F(1,38)=3.04, p=0.089] nor a
lesion x drug interaction, [Fo,s 3.15, 1=0.084], the
treatment did affect the size of glial cells (Fig.
7b). The cell bodies of astrocytes (Fig. 8a, 8c,
8e) in the striatum of animals treated with 0.1
mg/kg of gacyclidine were 3 times larger (0.984+
0.05 lam

2 vs. 0.273+0.025 larn2) than those of their
vehicle-treated counterparts [t<s)=7.248,1<0.001].

Fig. 5: Lesion reconstruction. A representation of damage induced by the pneumatic contusion device following
bilateral contusion to the medial frontal cortex.
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Fig. 6: (a) Number of surviving neurons in the NBM (*=p<0.05). Animals treated with 0.1 mg/kg of gacyclidine
had more surviving neurons than their vehicle-treated counterparts (**=p<0.05). (b) After cortical contusions,
a reduction was seen in the number of surviving neurons in the MDN (*=p<0.05). Animals given 0.1 mg/kg
gacyclidine, however, had more surviving neurons than their vehicle treated counterparts (**=p<0.05).
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Microglial activation

The pattern of microglia activation was
similar to that of the astrocytes, but in addition
to hypertrophy, we also observed a large
increase in activated microglia. The number of
activated microglia was significantly increased
in lesion animals in comparison with those in
uninjured controls (Fig. 7c), [F(1,32)=217.62,

p<0.001]. Furthermore, rats treated with
gacyclidine had significantly more activated
microglia [F(1,32) 19.48, p<0.001 than did their
vehicle treated conspecifics. The microglia (Fig. 8b,
8d, 8f) in the striatum of rats given 0.1 mg/kg of
gacyclidine were twice as large (0.604+0.28 tm
vs. 0.363+0.14 tm2) as those in their vehicle-
treated counterparts [t(45)= 5.05, p<0.001] (Fig.
7d).
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Fig. 7: (a) The number of GFAP positive cells increased (p<0.05), both around the lesion cavity and in sites distal to
the locus of injury. In the striatum, rats given 0.1 mg/kg of gacyclidine showed no increase in the number of
activated cells (p=0.08), but (b) did show increases in size (*=p<0.05). At 26 d post injury in rats receiving 0.1
mg/kg gacyclidine, (c) the numbers of activated microglial cells at sites distal to the cavity formation were
increased (*,**=p<0.05), and (d) the size of microglial cells in the striatum was increased (*=p<0.05).
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Fig. 8: Microphotographs of astrocytes: (A) Sham-Vehicle (x40), (C) Lesion-Vehicle (x40), (E) Lesion-0.1 mg/kg
of gacyclidine (40) and microphotographs of microglia: (B) Sham-Vehicle (x40), (D) Lesion-Vehicle

(x40), (F) Lesion-0.1 mg/kg of gacyclidine (x40). (Calibration bar 2 mm)
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DISCUSSION

Bilateral contusion of the medial frontal
cortex is a highly effective and replicable model
to study the behavioral, anatomical, and physio-
logical changes that occur after traumatic brain
injury. The behavioral deficits caused by this
type of brain injury are severe and long lasting
(Hoffman, et. al., 1994). Using this injury model
to study recovery of function, we have shown
that gacyclidine, a novel, noncompetitive NMDA
antagonist, improves behavioral and alters
anatomic outcomes following medial frontal
cortex contusions in adult rats.

All three doses of the drug; 0.01, 0.1, and 0.3
mg/kg (i.v.), administered 10 min after the
contusion injury, enhanced the performance of
the animals in the water maze. The significantly
better performance of rats given the 0.1 mg/kg
dose of gacyclidine than of those given the 0.01
and 0.3 mg/kg doses reveals a U-shaped or

sigmoidal function of the drug’s effect; a finding
that is not uncommon in such studies. Despite the
observation of faster behavioral recovery, we
noted that none of the gacyclidine-treated rats
reached a level of performance equivalent to that
of the intact controls. Gacyclidine also had no
influence on the animals’ general activity levels
during the course of the experiment. The hypo-
activity of the contused rats, seen on the first day
after surgery, disappeared in all lesion groups by
the third postoperative day, when performance
was equivalent to that of intact controls.

Lesion reconstruction

Anatomical reconstruction of the lesions
revealed no difference in the extent of damage
among the treatment groups. We thus confirmed
that all contusions across the groups were

approximately the same size and symmetrical.
These findings can be interpreted as showing that
the beneficial effects of gacyclidine are not

associated with sparing of the damaged tissue at

the site of injury. We suggest that the compound

may work by influencing the maintenance of
brain homeostasis, perhaps by sparing neurons in
remote areas that are reciprocally connected to
the injured tissue. The results of our detailed
histological analysis of brain tissue point to this
possibility.

Ventricular dilation

Measures of ventricular dilation and cortical
thickness are related to each other because
enlargement of the lateral ventricles results in
compression of the cortical tissue lying above the
ventricles. In the present experiment, we found
that both intact and brain-injured rats, given 0.1
mg/kg gacyclidine, showed evidence of increased
ventricular size that was associated with reduced
cortical thickness. We cannot fully explain this
observation, and although this phenomenon can
be associated with injury-induced tissue loss, we
speculate that gacyclidine may affect ventricular
size by enhancing the drainage of excess fluid
from the brain tissue to the ventricles (O’Brien et

al., 1982; Leggate et al., 1988).

Cortical thickness

The paradoxical effects of improved
behavioral outcome, coupled with decreased
cortical thickness and neuronal sparing in
subcortical areas projecting to the damaged
cortex, is difficult to explain, but not completely
unheard of. In reviewing the primate literature,
Irle (1990) found numerous cases in which larger
rather than smaller lesions lead to better functional
outcomes. This effect occurs because damaged
and dysfunctional neurons create additional
disturbances, such as epilepsy for example. The
presence of dysfunctional cells can also prevent
compensational reorganization from occurring
more rapidly (Kass et al., 1983). Here we can

only speculate that gacyclidine may have
hastened the elimination or suppression of the

dysfunctional cells in the damaged cortex, thus

leading to enhanced behavioral recovery. Further
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research at the cellular and molecular levels is
needed to clarify this issue. Until such work can
be completed, caution is warranted in applying
this substance as a general treatment for CNS
injuries.

Neuronal counts

Counts of magnocellular neurons in the
nucleus basalis revealed that the number of these
cells in lesion animals was lower than that in
their sham-operated counterparts. In contrast, rats
given 0.1 mg/kg of gacyclidine had more
surviving magnocellular neurons in the nucleus
basalis than did vehicle-treated lesion controls.
We also observed more surviving neuronal cells
in the MDN in rats that received 0.1 mg/kg of
gacyclidine.

Our findings can be taken to indicate that.
gacyclidine increases the survival of neurons in
remote subcortical areas of the brain that
normally degenerate following medial frontal
cortex injury. The effect may be due to the
capacity of gacyclidine to prevent glutamate
toxicity; a finding that is consistent with the
literature for compounds acting on similar
receptors and/or having similar mechanisms of
action (Jenkins, et al., 1988, Mclntosh, et al., 1990,
Smith, et al., 1993).

Glial cell activation

Along with cortical thinning, behavioral
improvement and neuronal sparing in the nucleus
basalis in gacyclidine-treated brain-damaged rats
was paralleled by an increased activation of both
astrocytes and microglia. The number of GFAP-
positive astrocytes was higher in sham-operated
than in all injured groups, both at the site of the
injury and in areas distal to the lesions. We also
observed that gacyclidine had a profound effect
upon the size of the astrocytes and the number of
microglia. Astrocytes in the striatum of animals
treated with 0.1 mg/kg of gacyclidine were more
than three times larger than astrocytes measured

in vehicle-treated rats. In addition to their
hypertrophy, activated microglial cells also
showed increased proliferation when treated with
the 0.1 mg/kg dose of gacyclidine.

Whereas the cellular hypertrophy observed in
both astrocytes and microglia (Fig. 6) could be a
sign of pathology (swelling caused by cytotoxic
edema), it might also be an indication of the
increased synthetic and absorption capacity of
the cells (Hanker, G., 1980; Rudge, et al., 1985;
Assouline, et al., 1987). Both types of glial cells
are reported to be equipped with NMDA
receptors (Cull-Candy, 1995; Conti et al., 1996;
1997), although microglial cells are believed to
be the primary glial cells capable of activation
(or inhibition) by altering their NMDA receptors
(Giulian et al., 1994). Activated micro-glial cells,
apart from their increased phagocytic capacity,
release different types of cytokines, which in turn
will activate astrocytes (Waltz, 1989; Wilkin et al.,
1991; Balasingam et al., 1994). Activated
astrocytes are known to synthesize and release a
large variety of neurotrophic factors, which in turn,
can increase neuronal survival (Martin, 1992;
McGeer & McGeer, 1995; Vaca & Wendt, 1992).

CONCLUSIONS

Our data show that systemically administered
gacyclidine has diverse effects in brain-injured
rats. First, gacyclidine improved behavioral
performance, impaired by the brain trauma.
Second, the compound enhanced the survival of
neurons in the MDN of the thalamus and of
magnocellular neurons in the NBM. The drug
also reduced cortical thinning and activated
neuroglial cells, leading to both microglial
hyperplasia and astrocytic hypertrophy in the
striatum. Such a wide range of effects points to
the possibility that gacyclidine, apart from its

specificity at the PCP site of the NMDA
receptor, may have multiple sites of action in the
CNS, not all of which may be beneficial.

Several speculative explanations on the
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mechanisms of action of noncompetitive NMDA
receptor antagonists were recently published
(Haglid et al., 1991; Fox et al., 1996; Nordqvist et al.,
1997) including the activation of subcortical
structures that are typically depressed by trauma,
via the stimulation of dopaminergic neurons.
Some of these studies suggest the possibility of a
direct, neuroprotective capacity of NMDA
antagonists (Sauer et al., 1988), or that they may
also work indirectly by activating glial cells
(Pearce, 1991; Giulian et. al., 1994). Recently,
Obrenovitch & Urenjak (1997) questioned the
validity of the glutamate excitotoxicity hypothesis
in the case of traumatic brain injury. The authors
argue that the beneficial effect of glutamate
antagonists (and blockers of voltage-gated
sodium ion channels) in experimental TBI is not
due to the role of glutamate in excito-toxicity.
Rather, glutamate may act by directly effecting
the energy demand, reducing the cells’ ability to
counterbalance sodium ion influx across the receptor.
The authors further argue that glutamate antagonists
"may help nervous tissue to cope with increased
permeability of the cellular membrane to ions

and reduced efficacy of sodium ion extrusion,
and thus prevent the decay of transmembrane
ionic concentrations gradients" (ibid., p. 684).

The effect of gacyclidine after systemic
administration in a complex pathophysiological
case, like traumatic brain injury, may be even

more general and affect physiological functions
outside the CNS. NMDA-receptor antagonists
have been shown to have effects on the
cardiovascular system (Meyer et al., 1990;
Stevens & Yaks, 1990; Muir & Lees, 1995;
Miller et al., 1996; Maione et al., 1998).
Furthermore, these type of drugs influence the
body’s water balance (Espanol et al., 1994;
Kuroda et al., 1994; Sluka et al., 1994); hormone
secretion and release (Arslan et al., 1992;
Estienne et al., 1996; Pinilla et al., 1996), as well
as the respiratory drive and oxygen consumption
(Bissonnette et al., 1997; Lu et al., 1997). The
observed functional recovery after gacyclidine
treatment in our experiments may be due, at least

partially, to the above-mentioned effects of
NMDA antagonists.

We must emphasize that subsequent research
will be needed to characterize fully the systemic
and CNS effects of this new NMDA antagonist.
The current lack of availability of NMDA-
receptor antagonists that are suitable for human
use amplifies the interest in gacyclidine as a
broad-spectrum, neuroprotective therapeutic
agent, but the range of its effects in the CNS still
needs careful study and evaluation.
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