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SUMMARY

Following central motor lesions, two forms
of adaptation can be observed which lead to
improved mobility: (1) the development of spastic
muscle tone, and (2) the activation of spinal
locomotor centers induced by specific treadmill

training. Tension development during spastic
gait is different from that during normal gait
and appears to be independent of exaggerated
monosynaptic stretch reflexes. Exaggerated
stretch reflexes are associated with an absence
or reduction of functionally essential polysynaptic
reflexes. When supraspinal control of spinal
reflexes is impaired, the inhibition of mono-

synaptic reflexes is missing in addition to a
reduced facilitation of polysynaptic reflexes.
Therefore, overall leg muscle activity becomes
reduced and less well modulated in patients with

spasticity. Electrophysiologicai and histological
studies have shown that a transformation of
motor units takes place following central motor
lesions with the consequence that regulation of
muscle tone is achieved at a lower level of
neuronal organization which in turn enables the

patient to walk. Based on observations of the
locomotor capacity of the spinal cat, recent
studies have indicated that spinal locomotor
centers can be activated and trained in patients
with complete or incomplete paraplegia when
the body is partially unloaded. However, the

level of electromyographic activity in the
gastrocnemius (the main antigravity muscle
during gait) is considerably lower in the patients
compared to healthy subjects. During the course
of a daily locomotor training program, the
amplitude of gastrocnemius, electromyographic
activity increases significantly during the stance
phase, while inappropriate tibialis anterior
activation decreases. Patients with incomplete
paraplegia benefit from such training programs
such that their walking ability on a stationary
surface improves. The pathophysiology and
functional significance of spastic muscle tone and
the effects of treadmill training on the locomotor
pattern underlying new attempts to improve the
mobility of patients with paraplegia are reviewed.

KEYWORDS

spinal cord injury, spasticity, reflexes, locomotion,
load receptor

SPASTICITY

Clinical aspects

This paper will focus on the pathophysiology
of patients with lesions of the spinal cord.
Although there are some differences between

*tel: 0041 386 39 01; fax: 0041 386 39 09
e-mail: dietz@balgrist.unizh.ch

(C) Freund & Pettman, UK, 2001 83



84 V. DIETZ

cerebrally and spinally mediated spasticity, the
main features such as paresis, leg muscle
activation during gait, reflex behaviour and the
pathophysiology of spastic muscle tone, are quite
similar (Dietz, 1992).

Spasticity is associated with numerous physical
signs, such as muscle hypertonia and exaggerated
tendon reflexes, including clonus. Lance (1980)
defined spasticity as a velocity-dependent resistance
of muscle to stretch due to the activation of tonic
stretch reflexes, while rigidity is defined as an
even resistance throughout the range of passive
movement. In addition, in spasticity antigravity the
muscles (arm flexors/leg extensors) are predomi-
nantly affected. Spastic signs are accompanied by
a variable degree of paresis which, together,
constitute a syndrome known as spastic paresis.

On the basis of the clinical signs, a widely
accepted conclusion was drawn concerning the
pathophysiology of spasticity (that is, exaggerated
reflexes are responsible for muscle hypertonia)
which has influenced treatment. Drug therapy,
therefore, is usually directed to produce a reduction
in the activity of stretch reflexes. The function of
these reflexes during natural movements and the
connection between exaggerated reflexes and the
disorder of movement known as spastic paresis,
however, is frequently not considered. In reality, the
physical signs of spastic hyperreflexia have little
relationship to a patient’s disability, which is due to
impairment of functional movement.

Clinical observations have already given rise
to doubts about such a direct relationship between
reflex excitability, spasticity, and disability:
1. Following an acute stroke, tendon reflexes can be

exaggerated early, while spastic muscle tone

develops over weeks.
2. .n healthy subjects, a connectioo, between the

excitability of reflexes and motor performance
has not been demonstrated.
Neuronal regulation of functional movements,

such as locomotion, is achieved by a complex

interaction of spinal and supraspinal mechanisms.
Rhythmic activation of leg muscles by spinal inter-
neuronal circuits is modulated and adapted to the
body’s actual needs by a multisensory afferent
input. Electrical activity of leg muscles, which
results from a close interaction between these
different mechanisms, is translated into functionally
modulated muscle tension by the mechanical
properties of muscle fibers (Gollhofer et al., 1984).
Spinal programming, as well as reflex activity, are
under supraspinal control. Disturbances of this
supraspinal control lead to characteristic gait
impairments seen in cerebellar and extrapyramidal
disorders, as well as in spastic paresis (for review
see Dietz, 1992).

The evolution of spastic signs and symptoms

Following an acute lesion of pyramidal and
extrapyramidal tract fibres (cf Nathan 1994;
Benecke, 1993), changes in physical signs occur
over months. They are only partially understood
pathophysiologically (Hiersemenzel et al., 2000)
Initially, flaccid paresis is present and tendon
reflexes are absent (a rather rigid muscle tone can
suddenly develop in acute brainstem lesions).
Flaccid paresis may last for weeks after a
traumatic spinal cord lesion but following an acute
stroke, tendon reflexes may be exaggerated after a
few days, while spastic muscle tone develops over
weeks and increases over several months. These
changes in muscle tone are not reversible and are

usually more pronounced in spinal than in cerebral
lesions.

Pathophysiologically, it was suggested that
neuronal reorganization occurs after a central lesion

(see Mendell, 1984 in cat and see Carr et al., 1993
in children); this may involve
1. novel connections (e.g. sprouting, functional

strengthening of available connections),
2. changes in strength of inhibition, and
3. denervation supersensitivity.
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Recent observations indicate, however, that
following a spinal cord lesion, sprouting of primary
afferents is not seen in cat (Nacimiento et al.,
1993) and is unlikely in man (Ashby 1989) as a
cause of spasticity. Reduction of pre-synaptic
inhibition of group Ia fibers occurs (Burke &
Ashby, 1972; Delwaide, 1973; Faist et al., 1994)
and seems to correlate with the excitability of
tendon reflexes. In addition, after a few weeks,
changes in mechanical properties occur in the leg
extensor (Dietz et al., 1981) and arm flexor
(Ibrahim et al., 1993) muscles, which may contribute
to spastic muscle tone. Structural changes of the
spastic muscle and of connective tissue become
most prominent one year and more after an acute
lesion (Hufschmidt & Mauritz, 1985; Sinkjaer et
al., 1993). Little is known about the time course of
spastic symptoms after one year.

Pathophysiological basis of therapy

At present, no direct therapy is available for
improvement of central paresis. That is to say,
disconnection of lower from higher motor centers
can not yet be remedied. Functional electrical
stimulation (FES) of paralyzed muscles may
compensate for certain aspects of the paresis but
is, however, still in an experimental stage
(Yarkony et al., 1992; Quintem et al., 1989).

Treatment of spasticity is usually directed to
reduction of stretch reflex activity as it is assumed
that exaggerated reflexes are responsible for
increased muscle tone and this somehow accounts
for the spastic movement disorder. Studies of
muscle tone and reflex activity are usually done
under passive motor conditions with the patient
resting (cf. Thilmann et al., 1990; 1991). On the
other hand, extensive investigations of functional
movements of leg (Dietz and Berger, 1983; Berger
et al. 1984) and arm (Powers et al., 1989; Dietz et

al., 1991; Ibrahim et al., 1993) muscles, however,
did not reveal any causal relationship between

exaggerated reflexes and a disorder of movement.
The reciprocal mode of leg muscle activation during
gait is preserved in spasticity, but exaggerated
stretch reflexes and spasticity are associated with
an absence or reduction of the functionally essential
polysynaptic (or long latency) reflexes. Tension
development during functional movements (Berger
et al., 1984) does not depend on exaggerated
monosynaptic stretch reflexes. The overall leg
muscle activity is reduced during functional
movements in patients with spasticity of spinal and
cerebral origin. According to electrophysiological
(Dietz et al., 1981; Sinkjaer et al., 1993) and histo-
logical (Edstrtim, 1970; Dietz et al., 1986) findings,
a transformation of motor units takes place
following a supraspinal lesion so that regulation of
muscle tone is achieved by a lower level of neuronal
organization.

The default to a simpler regulation of muscle
tension following paresis due to a spinal or a

supraspinal lesion is basically advantageous for a

patient; it enables him to support the body during
gait and, consequently, to achieve mobility in
almost every case with a unilateral lesion. Rapid
movements are, however, no longer possible
because modulation of muscle activity is absent.
Following a severe spinal or supraspinal lesion,
these transformed processes can become excessive
with unwelcome sequelae such as painful spasms
and involuntarily induced movements.

Therapeutic outcomes in spasticity of both
spinal and cerebral origin should be considered in
terms of physiotherapeutic approaches (Dietz,
1996). These should be directed to train and
activate residual motor functions and to prevent
secondary complications, such as muscle con-

tractures and spasms. Antispastic drug therapy is
the second tool. It reduces muscle tone and spasms
by the induction of paresis (Hoogstraten et al.,
1988) which may interfere with the performance of
functional movements. Antispastic drug therapy is,
therefore, predominantly of benefit for immobilized
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patients in whom it reduces muscle tone and
relieves muscle spasms, both of which may also
improve nursing care for these patients.

Physiotherapeutic approaches

Depending upon the neurophysiological
situation, physiotherapy may represent the most
definitive mode of treatment for mobile as well as
immobilized spastic patients. Again this statement
is not based on hard data. Active and passive
manipulative forms of physiotherapeutic treatment
are of great importance for both groups of patients.
On the one hand, residual motor functions should
be trained. On the other hand, contractures of
muscle and joints which are difficult to treat when
established must be prevented at an early stage by
frequent muscle stretch. Physiotherapy within a
water-filled pool, i.e. under-water therapy, seems
to be promising as recent experiments revealed
profound effects on postural reflexes (Dietz et al.,
1989).

On the basis of divergent empirical evidence,
different physiotherapeutic procedures are applied.
Proprioceptive neuromuscular facilitation (PNF)
and myofeedback techniques are meant to activate
spinal motoneurons reflexly. The techniques of
Bobath and Vojta are primarily concerned with the
treatment of children with cerebral palsy. Stereo-
typed movements become activated by such
stimulation techniques when they are applied to

specific dermatomes and joints. The Vojta method
tries to activate complex movements which are

believed to be programmed in the central nervous

system. In contrast to this, the Bobath method tries
to inhibit spastic symptoms in flexor muscles of
the upper extremity and in the extensors of the
lower extremity.

All these techniques hope to achieve the
following benefits and goals:

avoidance of secondary complications, i.e.

pneumonia, skin ulcerations and thrombosis;

prevention and treatment ofmuscle contractures;
reduction of muscle hypertonia with the
additional application of warm/cold packs;
training of posture and automatically performed
movements with the induction of voluntarily
initiated and controlled complex movements;
learning and training of coordinated movements
by the involvement oftactile, auditory, vestibular
and visual cues;

* appropriate application of supportive aids,
such as rollator, wheelchair, crutches, orthoses
and technical equipment (e.g. special shoes).
All these techniques are based on old theories,

and for none of them exist controlled studies
documenting a positive effect of the treat-ment.
Therefore, it is not yet possible to perform an
appropriate evaluation and recommendation
indicating the superiority of one of these
techniques compared to the other one in the
treatment of a spastic patient. Nevertheless,
physiotherapy must be part of a multidisciplinary
integrated approach to patients. It also includes
ergotherapeutic and nursing assistance. These all
are meant to achieve greater mobility and, as far as

possible, independence of the patient.

TRAINING OF LOCOMOTOR ACTIVITY

Over the past decade it has been shown that,
after a complete spinal cord lesion, a cat can be
trained to perform stepping movements on a

treadmill. The pattern of leg muscle activation

during such locomotion resembles in many aspects
the pattern observed in an intact cat (Barbeau &
Rossignol, 1987; for review see Barbeau & Fung,
1992).

Although there is strong evidence for a spinal
locomotor generator in many mammals (for review
see Grillner, 1981 Barbeau & Rossignol, 1994),
its existence has, until recently, been questioned in

man (Kuhn, 1950; Illis, 1995). Evidence for the
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human spinal pattem generator was suggested by
spontaneously occurring step-like movements
(Calancie et al., 1994) and myoclonus (Bussel et al.,
1988), as well as from late flexion reflexes (Bussel
et al., 1989) and from locomotor movements
induced on a treadmill with body support in
paraplegic patients (Dietz et al., 1994; 1995; for
review see Barbeau & Rossignol, 1994). Recent
studies showed that a locomotor pattern can be
induced in complete paraplegic patients when leg
movements were assisted externally (Dietz et al.,
1994, 1995; Dobkin et al., 1995). Nevertheless, the
amplitude of leg muscle EMG activity in these
patients was small compared to healthy subjects,
(most probably due to the loss of noradrenergic
influences from brainstem centers) such that no leg
movements resulted from this leg muscle activation.

The beneficial effect of locomotor training in
incomplete paraplegic patients is well established
(Fung et al., 1990; Wemig & Miiller, 1992; for
review see Barbeau & Rossignol, 1994) and recent

investigations showed that patients who undergo
locomotor training have greater mobility compared
to a control group without training (Wemig et al.,
1995). Nevertheless, it remained unclear to what
extent these training effects are due to a training of
spinal locomotor centers. Only by systematic
recordings of leg muscles EMG, reflecting the
activity of spinal neuronal circuits, the effect on

this presumed ’spinal locomotor pattern generator’
can be separated from rather non-specific effects
on muscles and tendons. Observations on patients
with paraplegia due to a lesion of the cauda, i.e. of

peripheral nerves, show that a locomotor training
indeed results in an improvement of locomotor
function which is not connected with a cor-

responding change in leg muscle EMG activity
(Dietz et al., 1998a,b). Therefore, the improve-
ments of locomotor function described earlier for
cat (Barbeau & Rossignol, 1987) and man (Wemig
& Miiller, 1992; Barbeau & Rossignol, 1994;)can

be partially attributed to non-specific effects on the
locomotor apparatus, i.e. muscular tendon-systems.

Body unloading is obviously of crucial
importance to induce training effects on the
locomotor centers. The range ofbody unloading that
allows stepping movements and optimal activation
of leg muscles for body support by the legs during
the stance phase is limited in paraplegic patients.
Afferent input from receptors signaling contact
forces during the stance phase is essential for the
activation of spinal locomotor centers (of. Harkema
et al., 1997), and therefore it should also be
important for the training effects described here.
Although the amplitude of leg extensor EMG in
both paraplegic and healthy subjects depends upon
the actual body load during the stepping move-
ments, the absolute level of EMG activity is
considerably lower in patients than in healthy
subjects. This makes the body unloading necessary
for the locomotor training. There is, indeed,
increasing evidence in cat (Pearson & Collins, 1993)
and man (Dietz et al., 1992) for a contribution of
load receptors to the activation of leg extensors

during stance and locomotion.

Recovery ofspinal cord function and locomotion

Recent studies have shown that during
locomotor training gastrocnemius (GM), EMG
activity increases during the stance phase, even in
complete paraplegic patients (Dietz et al., 1995).
Nevertheless, this improvement of locomotor
activity could have been attributed to spontaneous
recovery of spinal cord function, i.e. of spinal
locomotor centers. It is well known that recovery
of spinal cord function can occur over several
months following spinal cord injury (Katho & E1
Masry, 1994; Curt & Dietz, 1996; 1997; 1998).
From the recent observations in both incomplete
and complete paraplegic patients, there can be

little doubt that the increase of leg extensor EMG
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activity, connected with a decrease of body
unloading, occurs independently of the recovery of
spinal cord function assessed by clinical and
electrophysiological means (Dietz et al., 1998a, b).
Of course, clinical and electrophysiological tools
may be too crude to rule out recovery of any spinal
cord function. Nevertheless, locomotor training
obviously plays an important role for the effects on
extensor muscle EMG.

In complete paraplegic patients, a spontaneous
development of a locomotor pattern could be
observed (Dietz et al. 1998a). However, this
occurred after spinal shock had disappeared and
the pattern reached a plateau usually about 4
weeks later. In contrast, under locomotor training
which usually started about 2 to 4 weeks after
spinal shock disappeared, GM EMG activity further
increased during the stance phase after the time
when a plateau had been expected to be reached
spontaneously. This effect was connected with

progressive loading (i.e. reduced unloading) during
locomotion.

In addition, one might argue that the increase
ofGM EMG during the course of training is mainly
due to the decrease of body unloading. However,
after statistical separation of the (un)loading effect,
there remained a significant effect of training.
Therefore, one may conclude that there are specific
training effects on spinal locomotor centers which
can lead to an improvement of locomotor function
in paraplegic patients (Dietz et al., 1998 a,b).

Looking ahead it may be important to discover
new means to further enhance the amplitude of leg
extensor EMG activity in complete or almost
complete paraplegic patients in order to achieve an

even greater mobility in such patients. This may be
achieved by the application of new noradrenergic
drugs which have a more selective action on EMG
activity compared to the ones already applied
(clonidine and epinephrine, see Dietz et al., 1995).
The most promising approach may, however, be to

induce some regeneration of corticospinal axons

within the spinal cord. Recent experiments in rats
(Bregman et al., 1995) indicate that this goal may
be achieved during the next few years.
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