Skip to main content
. 2008 Oct 31;4(10):e1000205. doi: 10.1371/journal.pcbi.1000205

Figure 1. Collection of cell groups uniquely determines the topology of the environment.

Figure 1

(A) Sample rasters for the population activity of five place cells in two different environments. Cell groups are obtained by identifying subsets of cells that co-fire within a coarse time window (colored rectangles). (B) Two examples of five-cell configurations (simplicial complexes) depicting collections of cell groups obtained from the sample rasters in (A). An edge represents a cell group with two cells and a shaded triangle indicates a cell group with three cells; colors correspond to cell groups in (A). (C) Cells that co-fire have overlapping place fields. Each cell group in (A), (B) corresponds to a particular intersection of place fields, denoted with matching color. The place field intersection pattern fully determines the topology of a space covered by convex place fields. The first configuration in (B) forces an arrangement of place fields with a hole in the middle (left); the second forces a space with no holes (right).