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Purpose: To establish a baseline protein fingerprint of cultured human corneal endothelial cells (HCEC), to determine
whether the protein profiles exhibit age-related differences, and to identify proteins differentially expressed in HCEC
cultured from young and older donors.
Methods: Corneas were obtained from five young (<30 years old) and five older donors (>50 years old). HCEC were
cultured, and protein was extracted from confluent passage 3 cells. Extracts from each age group were pooled to form two
samples. Proteins were separated on two-dimensional (2-D) gels and stained with SyproRuby. Resultant images were
compared to identify protein spots that were either similarly expressed or differentially expressed by at least twofold.
Protein spots were then identified by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass
spectrometry.
Results: Protein spots were well resolved, and patterns were reproducible on 2-D gels using either pH 3–10 or pH 4–7
IPG strips. Two-dimensional gels prepared with pH 4–7 IPG strips were used for differential display analysis, which was
reproduced on three separate pairs of gels. MALDI-TOF identified 58 proteins with similar expression; 30 proteins were
expressed twofold higher in HCEC from young donors; five proteins were expressed twofold higher in cells from older
donors; and 10 proteins were identified in gels from young donors that did not match in gels from older donors. Several
proteins expressed at higher levels in younger donors support metabolic activity, protect against oxidative damage, or
mediate protein folding or degradation.
Conclusions: This is the first proteomic comparison of proteins expressed in HCEC cultured from young and older donors.
Although restricted to proteins with isoelectric points between pH 4.0 and pH 7.0, the data obtained represent an initial
step in the investigation of molecular mechanisms that underlie physiologically important age-related differences in
cultured HCEC, including differences that may affect proliferative capacity. Results indicate that HCEC from older donors
exhibit reduced expression of proteins that support important cellular functions such as metabolism, antioxidant protection,
protein folding, and protein degradation. These differences may affect the ability to consistently obtain a sufficient number
of healthy cultured HCEC for use in preparing bioengineered endothelium as an alternative method for the treatment of
endothelial dysfunction.

Corneal endothelium is a physiologically important
monolayer of cells that functions to maintain corneal
transparency. Human corneal endothelial cells (HCEC) in
vivo do not normally divide to replace cells lost as the result
of disease [1,2] or trauma [3,4]. Instead, wound healing occurs
by migration and/or enlargement of neighboring cells [5]. If
cell loss exceeds a threshold limit, the integrity of the
endothelium becomes compromised, resulting in painful
corneal edema and loss of visual acuity. Although penetrating
keratoplasty remains the treatment of choice to restore clear
vision following the critical decline in endothelial cell
number, there are several new treatment strategies currently
being explored. These include modified posterior lamellar
keratoplasty strategies  such  as  deep  lamellar  endothelial
keratoplasty (DLEK) [6], Descemet's  stripping with
endothelial keratoplasty (DSEK) [7], and Descemet
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membrane  endothelial  keratoplasty (DMEK)  [8].  These
newer methods offer some advantages over full-thickness
corneal transplantation but can suffer from inadequate donor
tissue attachment, and endothelial cell loss can be accelerated
within these transplants due to increased tissue manipulation
during surgery [9-11].

Because the aging population requiring corneal
transplants is increasing and the donor age requirements and
tissue quality limit the availability of donor corneas, there is
increased interest in alternative approaches to restore corneal
transparency following loss of endothelial function. Several
new approaches are taking advantage of the fact that, although
HCEC do not divide in vivo, they retain proliferative capacity
[12-14]. One approach is to directly stimulate proliferation
either in vivo as a means of directly increasing endothelial cell
density (ECD) or in ex vivo donor corneas to induce cell
division in the endothelium of donor corneas with
unacceptably low ECD [15]. This treatment would potentially
increase the number of donor corneas available for
transplantation. Tissue bioengineering is another promising

Molecular Vision 2008; 14:1805-1814 <http://www.molvis.org/molvis/v14/a213>
Received 21 July 2008 | Accepted 23 September 2008 | Published 30 September 2008

© 2008 Molecular Vision

1805

http://www.molvis.org/molvis/v14/a213


approach in which HCEC are cultured on a suitable substrate
to increase cell numbers and then transplanted to replace
diseased or damaged endothelium [16,17]. Ideally, it would
be best to use a patient’s own cells as a source for this
bioengineered tissue. An alternative method is to culture
HCEC from donor corneas to expand cell numbers for use in
the bioengineered constructs. Because the majority of patients
requiring treatment for endothelial dysfunction are older and
the majority of available corneas are from older donors, it is
important to obtain more information regarding the basic cell
biology of corneal endothelium from young and older donors
so that optimal methods to increase ECD can be developed for
use in tissue bioengineering.

Previous studies from this laboratory have used an ex
vivo corneal wound healing model to compare the relative
proliferative capacity of HCEC from young (<30 years old)
and older donors (>50 years old) [12]. Results indicate that
HCEC from older donors can proliferate but do so more
slowly than cells from younger donors. Studies of cultured
HCEC have shown a similar age-related growth response in
which the population doubling time for HCEC from young
donors was 46.25 h (range: 27–59 h) and from older donors
was 90.25 h (range: 81–101 h)—the difference being
statistically significant (p=0.0016) [14,18]. In addition, the
density of confluent primary cultures of HCEC from young
donors is nearly three times higher than that of cultures from
older donors [18]. The molecular basis for this age-related
difference in proliferative capacity appears to involve an age-
dependent increase in the expression of the cyclin-dependent
kinase inhibitors, p21Cip1 and p16INK4a, which reduce the
ability of mitogens to stimulate cell cycle progression [19].
Other age-related functional alterations have been reported for
HCEC, including an increase in the permeability of HCEC to
fluorescein [20] and a decrease in pump function [21].

Proteomics technology is being widely used in research
fields such as aging [22], biomarker discovery [23,24], and
new drug development [25]. Proteomics is also being applied
in the field of eye research, including studies of the cornea
[26-33]. In the current study, proteomic analysis was used to
compare relative protein expression in confluent cultured
HCEC from young and older donors. Goals were to establish
a baseline protein fingerprint of cultured HCEC, to determine
whether the protein profiles show age-related differences, and
to identify proteins that are differentially expressed in HCEC
cultured from young and older donors. The results of these
studies should provide information that could lead to the
development of methods to consistently obtain healthy,
cultured HCEC, which can be used for the preparation of
bioengineered tissue with consistently high cell density.

METHODS
Materials: OptiMEM-I, minimum essential medium (MEM),
Dulbecco’s phosphate-buffered saline (PBS), gentamicin, and
trypsin/EDTA were purchased from Gibco BRL/Life

Technologies (Rockville, MD). Bovine pituitary extract (also
known as keratinocyte growth supplement) was from
Biomedical Technologies (Stoughton, MA). Epidermal
growth factor (EGF; from mouse submaxillary glands) was
obtained from Upstate Biotechnologies (Lake Placid, NY).
Fetal bovine serum (FBS) was from Hyclone (Logan, UT).
Ascorbic acid, chondroitin sulfate, calcium chloride, 0.02%
EDTA solution (EDTA disodium salt), and antibiotic/
antimycotic solution were purchased from Sigma (St. Louis,
MO). Sequential Extraction Reagent III (ER3), Protein Assay
Dye Reagent, mineral oil, and ReadyPrepTM rehydration/
sample buffer were obtained from Bio-Rad (Hercules, CA).
SyproRuby was purchased from Invitrogen (Carlsbad, CA).
Culture of human corneal endothelial cells: Five pairs of
human corneas from young donors (<30 years old) and five
pairs from older donors (>50 years old) were obtained from
the National Disease Research Interchange (NDRI,
Philadelphia, PA) and formed two age comparison groups.
Donor confidentiality was maintained by the original eye
bank, NDRI, and by this laboratory according to the tenets of
the Declaration of Helsinki. Donor information is presented
in Table 1. Exclusion criteria were the same as previously
published [18]. Corneas were accepted for study only if the
donor history and condition of the corneas indicated no
damage to the health of the endothelium. Endothelial cell
counts for all accepted corneas were at least 2000 cells/mm2.
Corneas were not accepted for study if the period between
time of death and time of preservation was too long (>12 h)
or if guttae or other endothelial abnormalities were noted.
Corneas were not accepted from donors with glaucoma,
sepsis, ocular infection, or on large doses of chemotherapeutic
agents. Primary culture and subculture of HCEC followed
previously described protocols [13,14]. Passage 3 HCEC from
each donor were maintained in two T75 flasks for at least one
week after reaching confluence to ensure cell-cell contact-
dependent inhibition of proliferation.

Protein sample preparation: Confluent passage 3 cells were
rinsed with PBS to remove residual culture medium. Cell
scrapers were used to remove cells from the culture plates.
Harvested cells were centrifuged at 5,000 rpm for 10 min to
form firm pellets. Bio-Rad Sequential Extraction Reagent III
(ER3) with 1% tributyl phosphine (reducing agent) was
added, and the cells were gently pipetted up and down for 1–
2 min followed by incubation at room temperature for about
10 min to ensure thorough protein solubilization. Soluble
proteins were harvested after centrifugation at 40,000 rpm at
room temperature for 1 h and then stored at −80 °C until
further analysis.
Two-dimensional gel electrophoresis: Before gel
electrophoresis, equal amounts of protein from five donors per
age group were pooled to form two final samples. Protein
concentrations of the two, pooled samples were determined
by a modified Bio-Rad protein assay. The extracted protein
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together with De-Streak reagent (GE Healthcare, London,
UK) and bromophenol blue (Bio-Rad) was loaded onto pH 3–
10 or pH 4–7 linear gradient IPG strips of 17 cm (Bio-Rad).
Active rehydration was performed for at least 16 h following
the Bio-Rad protocol before isoelectric focusing (IEF) in a
Protean IEF Cell (Bio-Rad). IEF was run for a total of 60,000
Vhr after reaching maximum 10,000 voltages. The IPG strip
was further incubated with equilibration buffers I and II (Bio-
Rad) for 15 min each. Proteins were then separated on 8%–
16% polyacrylamide pre-cast gels of 19 cm (Bio-Rad) using
a Protean II apparatus (Bio-Rad). Electrophoresis was run
until bromophenol blue dye just started to disappear from the
bottom of the gel (approximately 1440 Vhrs). Gels were fixed
for 1 h in 10% methanol and 7% acetic acid solution, stained
overnight with SyproRuby protein gel stain, and washed for
1 h in water. Protein spots were then imaged with a
ProXPRESS Proteomic Imaging System (Perkin Elmer,
Boston, MA) using excitation (480/30) and emission (620/30)
filters to visualize the SyproRuby.

Gel image analysis: Images from gels prepared using pH 4–
7 IPG strips were analyzed using ProFinder version 2005
software (Nonlinear Dynamics, Newcastle upon Tyne, UK).
Automatic analysis wizard was used, and spot editing was
performed according to the software instructions. After
warping to align spots between gels, manual inspection and
editing, and automatic background subtraction, the
normalized volumes of individual protein spots were
compared. For these analyses, the two-dimensional (2-D) gel
containing proteins extracted from the HCEC of young donors
was used as the reference gel. Density differences between
spots were confirmed though the use of various tools such as
“montage window” and three-dimensional (3-D) topographic
mapping. The software then generated lists indicating protein
spots in which the normalized volume was similar (within a
twofold range), spots that showed at least a twofold difference

in normalized volume between samples, and spots that only
appeared in one of the two samples.
Protein identification by MALDI-TOF-MS: Gel plugs
containing the protein spots of interest were picked from the
2-D gels using a spot-picking robot equipped with a CCD
camera (ProXCISION; Perkin Elmer) and filter sets for
SyproRuby. Plugs were placed in a ZipPlate (Millipore,
Billerica, MA), dehydrated with 100% acetonitrile for 15 min,
rehydrated in 15 µl of 25 mM ammonium bicarbonate, which
contained 100 ng Trypsin Gold (Promega, Madison, WI), and
then incubated at 30 °C overnight. The C18 resin of the
ZipPlate was then activated with 9 µl acetonitrile for 15 min
at 37 °C. Peptides were then washed out of the gel plug with
180 µl 0.1% trifluoroacetic acid (TFA) for 30 min and bound
to C18 resin using low vacuum followed by two washings with
100 µl TFA under high vacuum. Peptides were then directly
eluted onto a disposable MALDI target plate (Perkin Elmer)
by direct vacuum elution with matrix α-cyano-4-hydroxy
cinnamic acid (α-CHCA at 10mg/ml; LaserBiolabs, Sophia-
Antipolis Cedex, France) in 50% acetonitrile/50% TFA. The
matrix was allowed to air-dry allowing crystals to form.
Peptide mass fingerprints were obtained on a Perkin Elmer
prOTOF MALDI mass spectrometer, and data was searched
on a local copy of the NCBI protein database (National Center
for Biotechnology Information) using the ProFounder search
engine (Rockefeller University, New York, NY). Identified
peptides were grouped into the smallest set of non-redundant
proteins possible. Different forms (charge states and
modifications) of the same peptide were compressed into a
single hit. Protein identifications were reviewed manually to
ascertain their accuracy and to ensure that consistent database
entries were reported.

RESULTS
Characteristics of cultured human corneal endothelial cells:
Age-related differences in morphology and growth

TABLE 1. DONOR INFORMATION.

Age h* Days** Cause of Death
13 3 2 Motor vehicle accident
14 5 6 Intracranial hemorrhage
16 2 3 Motor vehicle accident
20 10 2 Multiple trauma
20 5 7 Angelman's syndrome
55 12 2 Thrombocytopenia
67 2 7 Intracranial bleeding
69 2 2 Triple aneurysm
69 10 1 Myocardial infarction
70 12 1 Cerebrovascular accident

The asterisk indicates that the data in the column are the periods of time (h) passed between the deaths of the donors and
preservation of their cornea. A double asterisk means that the data in the column are the number of days from preservation of
the donor corneas to culture.
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characteristics of HCEC observed in this study were very
similar to those previously described [13,14,18]. Figure 1
presents representative phase-contrast images of confluent
HCEC cultured from a young and an older donor
demonstrating typical age-related differences in morphology.
At confluence, cells cultured from the young donor formed a
tightly-packed monolayer of generally polygonal cells
whereas HCEC cultured from the older donor were much
larger,  reflecting  an  overall  reduction in cell density  and
a   greater   variability   in   cell   shape.   The   growth   rate
of HCEC from older donors was consistently slower with the
overall doubling time similar to that reported previously
[18].

Two-dimensional gel protein separation of extracts from
cultured human corneal endothelial cells: Proteins were
extracted from HCEC cultured from five individual donors
per age group (five corneal pairs/group) and then pooled to
form one sample per age group. We chose to analyze pooled
samples to eliminate donor-to-donor variations in relative
protein expression so as to detect specific age-related
differences more easily. Besides the pooling of five individual
samples, we also strictly followed a standardized 2-D
separation protocol to eliminate gel-to-gel variation. Protein
concentration of the two samples was determined just before
the IEF first-dimensional separation. Equal amounts of
protein were loaded for both gels. First- and second-
dimensional separations of the two pooled samples were
performed at the same time. Two-dimensional gel separations
were repeated at least three times per sample, and the patterns
were compared. Under these strictly controlled conditions,
reproducible 2-D protein patterns were obtained using both
pH 3–10 and pH 4–7 IPG strips. Figure 2A,B show typical 2-
D patterns when samples were separated using pH 3–10 IPG
strips. Overall, patterns from young donors (Figure 2A) were

quite similar to those from older donors (Figure 2B), although
several protein spots showed differences in relative density.
Figure 2C,D show typical 2-D protein patterns when samples
were separated using pH 4–7 IPG strips. The majority of
protein spots observed using pH 3–10 IPG strips were also
visible using pH 4–7 IPG strips. However, the pH 4–7 strip
further separated proteins into more distinguishable spots with
less streaking, thus achieving high-resolution spot separation
to ensure accurate software analysis and spot-picking for
protein identification. Within the maximum loading capacity
of the IPG strip, more protein spots were revealed with
increased protein loading, but the protein load needed to be
balanced due to the tendency to induce streaking. Optimal
resolution of protein spots for software analysis was obtained
using a 400 μg protein load. SyproRuby was chosen for
protein staining based on its excellent sensitivity and broad
linear dynamic range [34].

Differential analysis of two-dimensional gels from young and
older donors: The ProFinder software compared the
normalized volume of individual spots between the two age
groups. This form of analysis helped to eliminate any
variations caused by protein loading or intra-strip (IPG)
protein absorption differences and ensured that the
comparison was conducted under well controlled conditions.
The software automatically compared the spots based on
identical anchoring spots present in both gels. The warping
function corrected any distortion caused by changes in gel
shape to achieve accurate spot matching. Figure 3 shows an
enlarged image of the same 2-D gel from young donors as was
presented in Figure 2C. However, in this figure, spots have
been color-coded by the analysis software to indicate relative
differences in protein spot density between HCEC from young
and older donors. Spots not color-coded represent proteins in
which comparative analysis indicated similar expression

Figure 1. Representative phase-contrast images of confluent passage 3 human corneal endothelial cells cultured from a 14-year-old donor and
a 69-year-old donor. HCEC from these donors were among those used for subsequent proteomic analysis. Cells cultured from older donors
were consistently larger and displayed more variable shapes than cells from young donors. Original magnification: 4X.
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between the two age groups and in which differential analysis
of normalized volumes indicated expression levels within a
twofold range. The software also identified specific spots that
were at least twofold different in normalized volume between
the two age groups. In the figure, green circles indicate spots
in which the normalized spot volume was increased at least

twofold in young donors compared to older donors. Red
circles indicate spots in which normalized volume was at least
twofold decreased in young compared with older donors. Blue
circles show those spots that were visible in 2-D gels from
young donors but were unmatched in gels from older donors.
Several spots in the gel from older donors were found by the

Figure 2. Representative two-dimensional gel images showing separation of proteins extracted from human corneal endothelial cells cultured
from young and older donors. Extracted protein was pooled from five young (<30 years old; A,C) and five older donors (>50 years old;
B,D). Equal amounts of protein were separated on either pH 3–10 IPG strips (A,B) or pH 4–7 IPG strips (C,D) followed by separation on
8%–16% polyacrylamide gels. Protein spots were stained with SyproRuby. Images were obtained using a ProEXPRESS Proteomic Imaging
System.
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software to be unmatched in the gel from young donors. The
majority of those spots were located in the far right side of the
gel, indicating that their isoelectric points were higher than
pH 7. These spots are not indicated in the figure because they
were insufficiently resolved under the isoelectric focusing
conditions used for the current studies to make accurate
quantitative comparisons or to identify by MALDI-TOF
analysis.

Protein identification: All detectable protein spots were
picked and subjected to MALDI-TOF analysis and protein
database identification. Appendix 1 presents an alphabetical
listing of 58 proteins that showed similar expression levels
(normalized volume) within a twofold range in HCEC from
both young and older donors and that were identifiable by
MALDI-TOF analysis. Multiple isoforms of some proteins
are reported because their peptide profiles yielded different
accession numbers upon search of the NCBI protein database.
In a few cases, a single protein was resolved into multiple
spots on the 2-D gels and yielded the same protein
identification and database accession number upon MALDI-
TOF analysis. In each of these cases, the position of the spot

within the 2-D gel, the accuracy of the spot-picking, and
accuracy of the protein identification were re-checked.
Results suggest that these multiple spots represent single
proteins that have undergone differential posttranslational
modifications that alter the protein’s intrinsic charge and/or
relative molecular weight. Appendix 2 presents a list of
identified proteins in which the normalized volumes were at
least twofold higher in HCEC from young donors compared
to older donors, proteins that were expressed at least twofold
higher in HCEC from older donors, and proteins that were
identified in the gel from young donors that did not have a
match in the gel from older donors. The list has been
categorized into subgroups based on reported cellular
function. Interestingly, several proteins known to function in
cellular metabolism, antioxidant protection, protein folding or
degradation, and cellular regulation were found to be
expressed at least twofold higher in HCEC cultured from
young donors.

DISCUSSION
Bioengineered corneal endothelium is being developed as a
new form of treatment to restore visual acuity in patients with

Figure 3. Relative differences in protein
expression between human corneal
endothelial cells cultured from young
and older donors. The same 2-D gel
from the young donor shown in Figure
2C has been enlarged and color-coded
by the analysis software to indicate
individual proteins spots that show
differences in relative protein
expression. Spots with no color
designation indicate similar expression
within a twofold range. Green indicates
spots that were increased by twofold or
greater in cells from young donors
compared to older donors. Red indicates
spots that were twofold decreased in
young donors compared with older
donors. Blue shows those spots that
were present in extracts from young
donors but were not detected in extracts
from older donors.
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critically reduced ECD. Since such bioengineering requires
culture of HCEC, its successful development requires
exploration of the practicality of inducing proliferation in
HCEC to increase cell numbers. In some cases, use of a
patient’s own cells as a source for the bioengineered tissue
would be optimal to avoid the risk of immune rejection.
Because patients with low ECD are usually older, this
treatment approach would necessarily involve the culture of
cells that exhibit reduced proliferative capacity. Similarly, the
majority of corneas available for use as a source of endothelial
cells for bioengineered tissue will be obtained from older
donors. For these reasons, it is important to explore age-
related differences in the protein expression of cultured HCEC
to identify differences in metabolism and other functions that
may affect the ability of cells to divide and maintain a healthy
state within the bioengineered construct. It is clear that donor
age negatively affects the proliferative capacity of HCEC
[12,14,18,19]. In cultured HCEC, this decrease in
proliferative capacity is accompanied by changes in
morphology and cell density at confluence with cells from
older donors exhibiting an increase in cell size and decrease
in overall cell density [14,18,19]. Such age-related changes in
morphology were clearly demonstrated in the phase-contrast
images presented in Figure 1. In the current study, HCEC were
grown to passage 3 to increase total cell numbers so that
sufficient protein would be available for proteomic analysis.
The morphology and growth characteristics of the cells used
in this study were very similar to those observed in previous
studies in which HCEC were cultured from passage 1 to
passage 4 [14,19,35], strongly suggesting that the cells used
in the current study exhibited typical age-related
characteristics and would therefore be representative of any
cultured HCEC that could be used for the preparation of
bioengineered tissue.

Proteomics technology provides a powerful high
throughput screening tool to identify protein expression
differences that may underlie age-related changes at the
functional level. Protocols similar to those used in the current
study have been used to conduct proteomic analyses of other
ocular cells [25,31,36,37]. The experimental approach used
for these studies involved collection of protein extracted from
five individual donors within each age group. Equal amounts
of protein from each of the five donors were then pooled to
produce a single sample from each group. Sample pooling has
been used by several researchers to avoid individual variations
contributed by single samples [38-41]. Using pooled samples
ensures that detected differences in relative protein expression
better reflect common expression patterns within individual
experimental groups. Repeated 2-D analysis of the two pooled
samples of HCEC yielded patterns that were internally
consistent. Comparison of the spot patterns and MALDI-
TOF-based identification indicated a similar expression of at
least 58 proteins within a twofold range. The decision to adopt
the criterion of twofold differences was based on the

recommendation of a specialist from Nonlinear Dynamics, the
company that developed the proteomics analysis software
used in this study. Differences in protein expression of
twofold or greater have been used in the analysis of proteomic
data by others [42-44].

Review of the data obtained in this study provides insight
into changes in relative protein expression that suggest an age-
related reduction in the ability of cultured HCEC to protect
against oxidative stress and to maintain general cellular
health. Of particular interest were changes indicating a
potential age-related reduction in a subset of proteins involved
in protecting against oxidative stress. Redox regulation is
required to protect cells from oxidative stress, which is known
to contribute to the aging process [45,46]. Proteomic studies
[22] have identified several proteins involved in redox
regulation in corneal tissue including glutathione S-
transferase P, thioredoxin, and peroxiredoxins 1, 2, 5, and 6.
In the current study, we found that glutathione synthetase,
glutathione S-transferase, glutathione S-transferase omega,
glutathione transferase P1–1, and peroxiredoxin-2 isoform-a
were all expressed at least twofold higher in HCEC cultured
from young donors, suggesting that HCEC cultured from
older donors have decreased protection against oxidative
stress compared to their younger counterparts. The finding
that HCEC cultured from older donors express lower amounts
of certain proteins involved in redox regulation correlates well
with preliminary findings that HCEC both in ex vivo corneas
and in culture exhibit an age-related increase in oxidative
DNA damage [47] and that increased exposure of cultured
HCEC to oxidative stress decreases relative proliferative
capacity [48].

A comparison with the available gene expression profiles
from human donor corneal endothelium [49-51] indicates a
partial overlap with proteins identified in the current study.
There are several reasons why only a partial overlap was
obtained. One reason is that the gene expression studies were
conducted using HCEC directly extracted from the cornea
rather than from cultured cells. Posttranslational regulation of
protein levels may also be responsible for some differences.
In addition, results from the current study were based on a
400 μg protein load per gel. The protein spots visible with the
SyproRuby staining most likely represented the majority of
abundant proteins but may not have revealed proteins
expressed at low levels. In addition, not all the protein spots
detected by the software could be identified by matrix-assisted
laser desorption/ionization time of flight (MALDI-TOF) mass
spectrometry because there is a minimum protein requirement
for accurate database identification of the digested peptides.
This study was also restricted to those protein spots that
separated within the pH 4–7 range. Thus, proteins with
isoelectric points outside of this range would not be included.
In addition, proteins with relative molecular weights greater
than 100–120 kDa do not easily enter the IPG strip during the
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hydration step, thereby limiting the total number of proteins
that can be separated by 2-D electrophoresis and identified.

The current studies are an initial effort to use proteomics
technology to document age-related differences in the relative
protein expression of cultured HCEC and are a first attempt
toward understanding the molecular basis for age-related
differences that may affect their relative proliferative
capacity. Although the results obtained were internally
consistent and appeared to reflect age-related differences
observed in other cells, it is clear that the study has limitations
in that additional, independent studies are needed to confirm
the findings from this initial analysis before their relevance
can be fully appreciated. Further study is also needed to
determine whether the differences in relative protein
expression identified in cultured HCEC are also present in
HCEC in vivo. Identification of age-related differences in
cultured HCEC should aid in the development of methods to
optimally culture these cells for use in tissue bioengineering.
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Appendix 1. Proteins with similar expression between young and older
donors.

To access the data, click or select the words “Appendix
1”. This will initiate the download of a (pdf) archive that
contains the file. The asterisk denotes that the initial W/P
stands for theoretical molecular weight/isoelectric point. The
double asterisk indicates that the numbers in the column are

National Center for Biotechnology Information accession
numbers. Three asterisks indicates that the data in the column
are the probabilities of correct protein identification based on
Bayesian statistical analysis of protein sequences in the NCBI
database.
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Appendix 2. Proteins with similar expression between young and older
donors.

To access the data, click or select the words “Appendix
2”. This will initiate the download of a (pdf) archive that
contains the file. The asterisk denotes that the initial W/P
stands for theoretical molecular weight/isoelectric point. The
double asterisk indicates that the numbers in the column are

National Center for Biotechnology Information accession
numbers. Three asterisks indicates that the data in the column
are the probabilities of correct protein identification based on
Bayesian statistical analysis of protein sequences in the NCBI
database.
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