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for Invasive Candidiasis Secondary to Candida glabrata Infection�
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We report a case of Candida glabrata invasive candidiasis that developed reduced susceptibility to caspo-
fungin during prolonged therapy. Pre- and posttreatment isolates were confirmed to be isogenic, and sequenc-
ing of hot spots known to confer echinocandin resistance revealed an F659V substitution within the FKS2
region of the glucan synthase complex.

The echinocandins have become first-line therapy in many
centers for the treatment of invasive candidiasis due to their
proven efficacy, the infrequency of side effects, and the favor-
able drug interaction profile (12, 16, 20, 23). However, reduced
susceptibility to these agents has been reported in patients
receiving therapy for invasive candidiasis and is primarily due
to mutations within highly conserved regions of FKS1 and
FKS2, genes encoding subunits of the glucan synthase enzyme
complex (8, 9, 21). We report a case of invasive candidiasis
caused by Candida glabrata that developed reduced suscepti-
bility to caspofungin during a prolonged course of therapy with
this agent.

A 41-year-old previous orthotopic liver recipient, who had
no previous antifungal exposure, developed C. glabrata candi-
demia 8 months after transplantation. Intravenous caspofungin
(70-mg load, followed by 50 mg daily) was initiated, and the
fungemia cleared within 24 h. Yet cultures of multiple sites
remained positive: bronchoalveolar lavage cultures, thought to
represent colonization, were positive on days 23 and 52 of
therapy; peritoneal fluid and an abdominal wall abscess were
positive on day 40; and blood cultures returned positive on day
53. Dialysis dependence, hepatic dysfunction, and drug inter-
action concerns precluded alternative antifungal agents. The
patient died on day 61 of caspofungin therapy after the devel-
opment of multiorgan failure. Broth microdilution testing
performed according to CLSI (formerly NCCLS) standard
M27-A2 methodology (17) demonstrated reduced caspofungin
susceptibility (MICs of 2 and 8 �g/ml at 24 and 48 h, respec-
tively) for C. glabrata isolate 7755 recovered from the perito-
neal fluid on day 40 compared to isolate 7754 (MIC of 0.25
�g/ml) recovered from the blood prior to antifungal therapy.

Random amplification of polymorphic DNA using previ-
ously described methods and primers (AP50-1, OPA-18, and

OPE-18) (1, 2) strongly suggested strain isogenicity for isolates
7754 and 7755 recovered from this patient. Band patterns were
identical for these two isolates with each of the three primers
used, while differences in band intensity and location were
observed compared to the unrelated isolate 0562 with primers
OPA-18 and AP50-1 (Fig. 1).

Conserved regions of the glucan synthase enzyme complex
hot spot regions were identified within the C. glabrata genome
sequence (http://cbi.labri.fr/Genolevures/index.php) for C.
glabrata FKS1 (CgFKS1) (CAGL0G01034g) and CgFKS2
(CAGL0K04037g). Genomic DNA was exracted using a com-
mercially available kit (MasterPure yeast DNA purification kit;
Epicentre Biotechnologies, Madison, WI), and regions of interest
were sequenced with primers prepared at the UTHSCSA Ad-
vanced Nucleic Acid Core facility (Table 1). Sequence analysis of
susceptible isolate 7754 revealed wild-type sequences in hot spots
1 and 2 of CgFKS1 and CgFKS2. However, a mutation within hot
spot 1 of CgFKS2 that conferred an F659V amino acid substitu-
tion in CgFks2p was found in isolate 7755 with reduced caspo-
fungin susceptibility.

Although rare, recent reports have illustrated the potential
for echinocandin resistance to emerge during therapy (7, 10,
13, 14, 22). Many of these reports have identified mutations
within genes encoding subunits of the glucan synthase com-
plex, and all mutations described to date reside within highly
conserved regions of FKS1 or its homolog, FKS2 (5, 6, 11, 21).
Candida albicans isolates comprise the majority of these cases,
with mutations leading to codon changes F641S, S645F,
S645Y, S645P, and R1361H (13, 14, 21). Additionally, a mu-
tation resulting in amino acid change R1361G within the FKS1
homolog in Candida krusei has been described (8).

Reduced echinocandin susceptibility and clinical failure
have also been reported with C. glabrata. One case report
detailed the emergence of caspofungin resistance and clinical
failure after prolonged therapy, a finding supported by both in
vitro and in vivo studies (10). However, no sequence analysis of
either CgFKS1 or CgFKS2 was reported. Conversely, another
study described a mutation within CgFKS2 resulting in an
F659V codon change. Although no clinical information was
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provided, this mutation was proven to confer caspofungin re-
sistance (9). The same mutation within CgFKS2 was also found
in isolate 7755 in our patient and was associated with a marked
increase in caspofungin MICs. Similarly, another recent case
report also demonstrated a mutation within hot spot 1 of Fks1p
in a C. glabrata isolate during caspofungin therapy leading to
reduced susceptibility and clinical failure (3).

Despite the 8- to 32-fold increases in the caspofungin 24-
and 48-h MICs for isolate 7755, anidulafungin and micafungin
maintained potency against both 7754 and 7755 (Table 2).
However, this difference in potencies between caspofungin and
the other echinocandins was no longer present when suscepti-
bility testing was repeated in the presence of 50% human
serum. In this setting, the 24- and 48-h MICs for anidulafungin

and micafungin increased 8- to 32-fold against isolate 7754 and
4- to 16-fold for isolate 7755. The prospect of using a different
echinocandin when caspofungin resistance is encountered has
been proposed (7, 10, 22) and is based on enhanced potency of
anidulafungin and micafungin against Candida isolates ob-
served in vitro (4, 18). Unfortunately, these observations have
not translated into improved efficacy in murine models of in-
vasive fungal infections. In these studies, in vivo efficacy cor-
related better with in vitro potency when tested in the presence
of human serum (19, 25). The effect of serum on the activity of
echinocandins is not fully understood. One potential explana-
tion proposes the observed reduction in susceptibility is due to
significant protein binding associated with these agents. Al-
though this reduction in potency may be secondary to protein
binding, significantly higher drug activity has been measured
for micafungin than that predicted by the free drug concentra-
tion using protein binding data (15). The clinical relevance of
reduced in vitro potency for the echinocandins in the presence
of serum is unknown.

Continued exposure to antimicrobials is often associated
with the development of resistance, and as our case and pre-
vious reports illustrate, this also may lead to the development
of echinocandin resistance in Candida species, including
non-C. albicans isolates, during continued drug pressure with
members of this antifungal class. A heightened suspicion for
reduced echinocandin susceptibility as a possible cause of pa-
tient failure is needed as the use of these agents continues to
increase.
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TABLE 1. Primer sequences used for amplification and sequencing
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Primer Sequence

FKS1
HS1

Forward ..............................5�-CCATTGGGTGGTCTGTTCACG
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Sequencing.........................5�-CTCAAACCTTCACTGCCTC
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HS1

Forward ..............................5�-GTGCTCAACATTTATCTCG
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HS2

Forward ..............................5�-CGTAGACCGTTTCTTGACTTC
Reverse...............................5�-CTTGCCAATGTGCCACTG
Sequencing.........................5�-TCTTGACTTTCTACTATGCG

TABLE 2. Caspofungin, anidulafungin, and micafungin MICs in the
presence and absence of 50% human serum

C. glabrata
isolate

MIC (�g/ml) with no human serum/50% human seruma

Caspofungin Anidulafungin Micafungin

24 h 48 h 24 h 48 h 24 h 48 h

7754 0.25/0.5 0.25/0.5 0.125/1 0.125/2 0.125/1 0.125/4
7755 2/2 8/8 0.5/4 1/4 0.25/4 0.5/4

a MICs were read at 24 and 48 h as the lowest concentration of drug resulting
in a significant (�50%) decrease in turbidity compared to the growth control.
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