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The zinc metalloprotease EmpA is a virulence factor for the fish pathogen Vibrio anguillarum. Previous
studies demonstrated that EmpA is secreted as a 46-kDa proenzyme that is activated extracellularly by the
removal of an �10-kDa propeptide. We hypothesized that a specific protease is responsible for processing
secreted pro-EmpA into mature EmpA. To identify the protease responsible for processing pro-EmpA, a
minitransposon mutagenesis (using mini-Tn10Km) clone bank of V. anguillarum was screened for reduced
protease activity due to insertions in undescribed genes. One mutant with reduced protease activity was
identified. The region containing the mini-Tn10Km was cloned, sequenced, and found to contain epp, an open
reading frame encoding a putative protease. Further characterization of epp was done using strain M101,
created by single-crossover insertional mutagenesis. Protease activity was absent in M101 cultures even when
empA protease activity was induced by salmon gastrointestinal mucus. When the epp mutation was comple-
mented with a wild-type copy of epp (M102), protease activity was restored. Western blot analysis of sterile
filtered culture supernatants from wild-type (M93Sm) cells, M101 cells, and M102 cells revealed that only
pro-EmpA was present in M101supernatants; both pro-EmpA and mature EmpA were detected in M93Sm and
M102 supernatants. When sterile filtered culture supernatants from the empA mutant strain (M99) and M101
were mixed, protease activity was restored. Western blot analysis revealed that pro-EmpA in M101 culture
supernatant was processed to mature EmpA only after mixing with M99 culture supernatant. These data show
that Epp is the EmpA-processing protease.

Vibrio anguillarum, a marine bacterium, is the causative agent
of vibriosis, a systemic disease of both wild and cultured marine
fish characterized by hemorrhagic septicemia (2). Outbreaks of
vibriosis result in high mortalities among infected fish, and this
disease continues to be a major obstacle for the aquaculture
industry (2). V. anguillarum enters its fish host through the gas-
trointestinal (GI) tract and quickly colonizes this nutrient-rich
environment (21, 22). Garcia et al. (9) have shown that V. anguil-
larum grows extremely well in salmon intestinal mucus and that
mucus-grown cells specifically express a number of different pro-
teins, including several outer membrane proteins (9) and the
extracellular metalloprotease EmpA (7).

The zinc metalloprotease EmpA has been identified as a viru-
lence factor for V. anguillarum and is important for virulence
during infection of the GI tract of Atlantic salmon (Salmo salar)
(7, 16, 19). In V. anguillarum wild-type strain M93Sm, EmpA is
expressed during stationary phase when cells are incubated in
Atlantic salmon GI mucus (6, 7). The creation of an empA null
mutant (M99) by insertional mutagenesis showed that EmpA is
responsible for the protease activity observed for wild-type strain
M93Sm (7). However, EmpA activity is dependent on successful
secretion and processing of the nascent protein to an active ma-
ture protease (16, 25).

According to Milton et al. (16), EmpA is synthesized as a
66.7-kDa preproenzyme. Sequence analysis predicts that the
removal of both pre- and propeptides during secretion would

result in a mature protein with a molecular mass of 44.6 kDa.
However, EmpA protease activity was repeatedly associated
with a 36-kDa protein (16). This suggests that the 44.6-kDa
protein undergoes further processing to a 36-kDa active form.
Recently, Staroscik et al. (25) used Western blot analysis to
study EmpA secretion in V. anguillarum culture supernatants.
Using anti-LasB antibodies for detection, Western blot analy-
sis revealed an �46-kDa band in all culture supernatants as
well as an �36-kDa band that could be detected only in culture
supernatants possessing protease activity (25). The �46- and
�36-kDa bands correspond to the sizes of the predicted se-
creted proenzyme and the mature protein, respectively (16).
Staroscik et al. (25) also confirmed the presence of the cyto-
plasmic preproenzyme. It has been suggested that the activa-
tion of the proenzyme occurs after secretion by the removal of
an �10-kDa peptide. The protease responsible for the post-
translational modification of pro-EmpA to the mature enzyme
has yet to be identified.

Multiple processing steps have been proposed for other met-
alloproteases, such as the hemagglutinin/protease (HA/pro-
tease) of V. cholerae (12), the Vvp protease of V. vulnificus
(17), and the LasB elastase of Pseudomonas aeruginosa (16). In
this study, we sought to further examine the processing of
pro-EmpA to mature EmpA metalloprotease. Minitransposon
mutagenesis (mini-Tn10Km) was used to create and screen for
protease mutants. One mutant that exhibited a reduction in
protease activity compared to wild-type protease activity was
detected. The region surrounding this mutation in V. anguilla-
rum was cloned and sequenced. One open reading frame was
identified and mutated by insertional mutagenesis. The result-
ing strain was designated M101. Protease assays and Western
blots were performed to determine changes in protease activity
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and processing of EmpA from what was seen for wild-type
strain M93Sm. These experiments led to the identification of a
putative EmpA-processing protease gene (epp). Our results
strongly suggest that epp is the protease responsible for the
activation of pro-EmpA to the mature EmpA protease.

MATERIALS AND METHODS

Bacterial strains and growth conditions. Bacterial strains and plasmids used in
this study are listed in Table 1. V. anguillarum cultures were routinely grown in
Luria-Bertani broth plus 2% NaCl (LB20) (9, 27), supplemented with the ap-
propriate antibiotics, on a rotary shaker at 27°C. Experimental media included
LB20, nine-salt solution (NSS) (a carbon-, nitrogen-, and phosphorus-free salt
solution; formula listed below [15]), and NSS plus 200 �g salmon GI mucus
protein/ml (NSSM) (9). For experiments, 16- to 18-h cultures of V. anguillarum
(grown at 27°C) were centrifuged (9,000 � g, 10 min, 4°C), washed twice with
NSS (9), and resuspended at the appropriate cell densities in either LB20 or
NSSM. Cell densities were determined by serial dilution and plating on LB20
agar plates. For V. anguillarum cultures, antibiotics were used at the following
concentrations: 5 �g/ml chloramphenicol (Cm5), 200 �g/ml streptomycin
(Sm200), 50 �g/ml kanamycin (Km50), 200 �g/ml ampicillin (Ap200), and 1 �g/ml
tetracycline (Tc1). All Escherichia coli strains were routinely grown in Luria-
Bertani broth plus 1% NaCl (LB10), supplemented with the appropriate antibi-
otics, on a rotary shaker at 37°C. For E. coli cultures, antibiotics were used at the
following concentrations: 20 �g/ml Cm (Cm20) and 20 �g/ml Tc (Tc20).

Preparation of NSS. For 1 liter of medium, the following are included: 17.6 g
sodium chloride (NaCl), 1.47 g sodium sulfate anhydrous (Na2SO4), 0.08 g
sodium bicarbonate (NaHCO3), 0.25 g potassium chloride (KCl), 0.04 g potas-
sium bromide (KBr), 1.87 g magnesium chloride (MgCl2 � 6H2O), 0.41 g calcium
chloride (CaCl2 � 2H2O), 0.008 g strontium chloride (SrCl2 � 6H2O), and 0.008 g
boric acid (H3BO3). Instructions are to heat while stirring to dissolve salts and to
adjust the pH to 6.5 before autoclaving. The final pH is �7.5.

Mini-Tn10Km mutagenesis. Mini-Tn10Km mutagenesis was carried out using
the method developed by Herrero et al. (13), as modified by Rock and Nelson
(23). Briefly, V. anguillarum M93Sm cells were mated with E. coli CC118 (�pir)
(pLOFKm) containing the mini-Tn10Km. Aliquots (100 �l) of the cell suspen-
sion were spread plated onto LB20 Sm200 Km50 plates to select for V. anguilla-
rum mutants containing a mini-Tn10Km insertion (6, 13). V. anguillarum colonies
able to grow on LB20 Sm200 Km50 were transferred onto replicate LB20 Sm200

Km50 agar plates and NSSM-plus-1% skim milk agar plates, and protease activity
was determined by measuring zones of proteolysis after 24 h at 27°C. Colonies
that exhibited reduced protease activity on the NSSM-plus-1% skim milk agar

plates were picked from LB20 Sm200 Km50 replicate plates and retested for
proteolytic activity on a second NSSM-plus-1% skim milk agar plate. Colonies
that still showed reduced proteolytic activity were saved for further study.

Preparation of mucus. GI mucus was harvested from Atlantic salmon as
previously described by Garcia et al. (9). Mucus was heat inactivated (100°C, 10
min) to destroy any inherent protease activity. The protein concentration in
harvested mucus was determined using the Bradford assay (Bio-Rad Laborato-
ries, Richmond, CA).

DNA isolation. Genomic DNA was isolated from V. anguillarum strains by use
of the Qiagen DNeasy kit (Qiagen, Valencia, CA) according to the manufactur-
er’s instructions. The purified genomic DNA was quantified spectrophotometri-
cally by measuring absorption at 260 nm and 280 nm using an Ultrospec 4000
spectrophotometer (Pharmacia Biotech, Piscataway, NJ).

Plasmid DNA isolation. Plasmid DNA was isolated from bacterial strains by
use of the Qiagen Qiaprep spin miniprep kit (Qiagen, Valencia, CA) according
to the manufacturer’s instructions. The purified plasmid DNA was quantified
spectrophotometrically by measuring absorption at 260 nm and 280 nm using an
Ultrospec 4000 spectrophotometer.

Detection and quantification of protease activity. The protease activity of
culture supernatants was quantified using the azocasein method of Windle and
Kelleher (28), as modified by Denkin and Nelson (6). Briefly, culture supernatant
was incubated with azocasein (6 mg/ml) dissolved in Tris-HCl (50 mM [pH 8.0])
containing 0.04% NaN3. Culture supernatant was prepared by centrifuging 1 ml
of cells (12,000 � g, 10 min). Supernatant was removed and filtered through a
0.22-�m-pore-size cellulose-acetate filter. Filtered supernatant (100 �l) was in-
cubated for 30 min at 27°C with 100 �l of azocasein solution. Reactions were
terminated by the addition of trichloroacetic acid (TCA) (10% [wt/vol]) to a final
concentration of 6.7% (wt/vol). The mixture was allowed to stand for 2 min and
centrifuged (12,000 � g, 8 min) to remove unreacted azocasein, and supernatant
containing azopeptides was suspended in 700 �l of 525 mM NaOH. The absor-
bance of the azopeptide supernatant was measured at 442 nm. Protease activity
units (U) were calculated with the following equation: U � [1,000 (OD442)/CFU] �

109, where OD442 is the optical density at 442 nm.
Bacterial matings. Bacterial matings were carried out using the procedure

described by Milton et al. (16). Briefly, plasmids were introduced into V. anguil-
larum M93Sm from E. coli SM10 by conjugation using overnight cultures of V.
anguillarum M93Sm and E. coli SM10 prepared and mixed at a ratio of 1:1
(recipient to donor) in NSS plus 10 mM MgSO4. The cell suspension was vacuum
filtered onto a 0.22-�m-pore-diameter nylon membrane, placed on an LB15 agar
plate (LB-plus-1.5% NaCl), and allowed to incubate overnight at 27°C. Follow-
ing incubation, the cells were removed from the filter by vigorous vortexing in
NSS plus 10 mM MgSO4. Cell suspensions (100 �l) were plated on LB20 Sm200

TABLE 1. Strains and plasmids used in this study

Strain or plasmid Characteristic(s) Reference or source

Strains
Vibrio anguillarum

M93Sm Spontaneous Smr mutant of M93 (serotype J-O-1) 6
M99 Smr Cmr empA mutant; pNQEmpA insertion into empA 7
MSD1 Smr Kmr epp mutant; mini-Tn10Km insertion into epp This study
M101 Smr Cmr epp mutant; pMV07 insertion into epp This study
M102 Smr Cmr Tcr; M101 complemented with pSUP202-epp This study

Escherichia coli
DH5� F� 	80dlacZ
M15 
(lacZYA-argF)U169 recA1 endA1 hsdR17(rK

� mK
�) phoA supE44 ��

thi-1 gyrA96 relA1
Invitrogen

XL1MRF� recA1 endA1 gryA96 thi-1 hsdR17 supE44 relA1 (lac-pro) �F� proABlacI lacZ
M15 Tn10
(Tcr)

Stratagene

SM10 thi thr leu tonA lacY supE recA RP4-2-Tc::Mu::Km (�pir) 16
CC118 �pir pLOFKm 13

Plasmids
pBluescript SKII� Apr lacZ; pUC ORI Stratagene
pNQ705-1 Suicide vector, requires pir; Cmr 16
pSUP202 Shuttle vector; Tcr Apr Cmr GenBank accession no.

AY428809; 7
pMV01 pBSK� � MSD1 mini-Tn10Km fragment; Apr Kmr This study
pMV07 pNQ705 � epp fragment in SacI/XbaI site; Cmr This study
pSUP202-epp epp inserted into Apr cassette of pSUP202; Cmr Tcr This study
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Cm5 plus any additional antibiotics and incubated at 27°C until V. anguillarum
colonies were observed (usually 24 to 48 h).

Cloning methods. The region containing the gene interrupted by mini-
Tn10Km mutagenesis was cloned into pBluescript SKII�. Briefly, genomic DNA
from V. anguillarum mini-Tn10Km mutants was digested with SacI restriction
endonuclease (Promega, Madison, WI) and then ligated into the SacI restriction
site of pBluescript SKII�. The resulting ligated DNA was used to transform E.
coli XL1MRF�. Transformants were selected on LB10 agar plates supplemented
with Km50 and Ap200. Plasmid DNA was extracted from any resulting clones and
checked for the presence of the mini-Tn10Km insertion by PCR, restriction
digestion, and gel electrophoresis. Plasmid DNA from appropriate clones was
sequenced by the Rhode Island Genomics and Sequencing Center (http://www
.uri.edu/research/gsc/).

PCR amplification. All PCRs were done using Taq DNA polymerase (Qiagen)
under the following conditions: 94°C for 5 min, 94°C for 30 s, 55 to 60°C for 1
min, and 70°C for 30 s. These steps were repeated for 30 cycles, with a final
extension at 70°C for 10 min. All PCRs were carried out in a GeneAmp PCR
system 9700 (Applied Biosystems, Foster City, CA). Modifications to the PCR
cycle were dependent on the melting temperatures of the primers used and the
lengths of the desired amplicons.

Construction of pMV07. The construction of pMV07 was carried out using the
method described by Milton et al. (16), as modified by Rock and Nelson (23).
Briefly, restriction sites (SacI and XbaI) were engineered into the PCR primers
SDeppF and SDeppR, respectively (Table 2) and were used to amplify a 430-bp
fragment of epp from V. anguillarum M93Sm genomic DNA starting at 479 bp
from the 5� terminus of the epp gene. The amplified PCR product was digested
with the restriction enzymes SacI and XbaI (Promega) and ligated using T4 DNA
ligase (Promega) into the mobilizable suicide vector pNQ705, previously di-
gested with SacI and XbaI, to yield pMV07. The resulting plasmid was then
introduced into E. coli SM10 by electroporation transformation using a gene
pulser (Bio-Rad, Richmond, CA). Transformants were incubated for 1 h at 37°C
in a shaking water bath and plated onto LB agar plates containing Cm20. To
confirm that the insert was successfully ligated into pNQ705, plasmid DNA was
harvested from overnight E. coli cultures and then digested with SacI and XbaI,
and the resulting DNA fragments were separated by electrophoresis through a
1.0% agarose gel in Tris-acetate EDTA (TAE) (3) buffer containing 0.2-�g/ml
ethidium bromide run at 80 V for 1 h. Inserts were further verified by DNA
sequencing (Rhode Island Genomics and Sequencing Center).

Insertional mutagenesis of epp. Site-specific insertional mutagenesis was used
to create a gene interruption within the structural gene of epp by use of the
procedure described by Milton et al. (16). Briefly, the pMV07 mobilizable suicide
vector was transferred into V. anguillarum by conjugation with E. coli SM10.
Cm-resistant colonies were selected and screened for insertion within epp. PCR
was used to confirm the incorporation of pMV07. For PCR analysis, a primer
described previously by Milton et al. (16) which was complementary to the
pNQ705 vector was utilized (Table 2). The forward primer, SDepp (F) (Table 2),
is complementary to a region upstream of the insertion. PCR products were
analyzed by gel electrophoresis. The interruption within epp rendered mutants
resistant to Cm at 5 �g/ml. The resulting V. anguillarum epp mutant was desig-
nated M101 (Table 1).

Complementation of the epp mutation. V. anguillarum strain M101 was com-
plemented by cloning the wild-type epp gene into the shuttle vector pSUP202 (23,
24) (accession no. AY428809). Restriction sites (PstI) were engineered into the
PCR primer set that amplifies epp and its promoter region (Table 2). Amplified
PCR products were digested with PstI (Promega) and the fragment was ligated
using T4 DNA ligase (Promega) into the pSUP202 vector. Insertion was con-
firmed using PCR, digestion, and gel electrophoresis. The resulting pSUP202-epp
construct was introduced into E. coli SM10 by electrotransformation and trans-
ferred to V. anguillarum M101 by conjugation to complement the epp mutation.
The resulting complemented strain was designated M102 (Table 1).

Preparation of protein extracts. Supernatant was collected from V. anguilla-
rum cultures grown for 16 to 18 h in either LB20 or NSSM to be used for sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western
blot analysis in a modification of the procedure described by Staroscik et al. (25).
Briefly, 9-ml cultures were centrifuged (9,000 � g, 10 min, 4°C) to pellet cells,
and supernatants were sterile filtered through 0.22-�m-pore-size MillexGP car-
tridge filters (Millipore, Billerica, MA). Protein was precipitated with 15% TCA
(0°C for 1 h), pelleted by centrifugation (12,000 � g, 15 min at 4°C), rinsed twice
with acetone, and resuspended in 50 �l of 2� Laemmli sample buffer (Sigma-
Aldrich, St. Louis, MO). Any contaminants that could interfere with SDS-PAGE
were removed with the SDS-PAGE sample prep kit (Pierce Biotechnology, Inc.,
Rockford, IL) according to the manufacturer’s instructions. Supernatant proteins
were stored at �70°C until use.

SDS-PAGE and Western blot analysis. Supernatant protein samples were
separated using a 10% Tris-HCl gel. Prestained Precision Plus protein standards
(Bio-Rad) and 2� Laemmli sample buffer (Sigma) were used for all gels. Protein
loaded in each lane represents protein precipitated from 1.5 ml of the original
culture supernatant (�80 �g). Protein concentration was determined using the
Bradford assay (Bio-Rad). Gels were transferred to nitrocellulose membranes
for immunoblotting using the mini-Protean II system (Bio-Rad). Transfers were
performed as described by Towbin et al. (26) at 100 V for 1.5 h. Nitrocellulose
membranes were blocked, as described by Girouard et al. (11), with the addition
of 5% skim milk. EmpA bands were detected with rabbit anti-P. aeruginosa LasB
elastase antibodies at a dilution of 1:5,000, as described by Staroscik et al. (25).
Antibody was detected with horseradish peroxidase-conjugated goat anti-rabbit
antibody (Sigma) at a dilution of 1:2,500 and was visualized with 3,3�,5,5�-
tetramethylbenzidine (TMB) liquid substrate (Sigma).

DNA sequencing. All DNA sequencing was carried out at the Rhode Island
Genomics and Sequencing Center (University of Rhode Island, Kingston, RI)
using the ABI3130XL genetic analysis system (Applied Biosystems, Inc.). Fluo-
rescently labeled dideoxynucleotides and Taq DNA polymerase in a thermal
cycling program were used in the sequence reactions. DNA samples were mixed
with the appropriate primer prior to sequencing.

RESULTS

Mini-Tn10Km mutagenesis. We hypothesized that since
Staroscik et al. (25) had demonstrated that EmpA activity was
dependent upon processing the secreted 46-kDa pro-EmpA

TABLE 2. Primers used in this study

Primer Sequence (5� to 3�)a Target

KanD-S1 GGTTTCATTTGATGCTCGATGAG Kmr gene
KanD-S2 GATGTTGGACGAGTCGGAATCG Kmr gene
KanD-S3 CGCTACCTTTGCCATGTTTCAG Kmr gene
KanD-S4 CGAGCAAGACGTTTCCCGTTG Kmr gene
MT3 GCGCAATTAACCCTCACTAAAGGG pBluescript
MT7 GCGTAATACGACTCACTATAGGGC pBluescript
EmpA-F1 TACAAATTAATTCTCATC empA
EmpA-R1 TGGCAAGAAAAGACTAG empA
EppF3 CTGCAGTGATTTAGGGGTAGTCAATGAAGATAA epp
EppR3 CTGCAGGGTTAAGTGATCAATCGCTTTAATTC epp
SDeppF GCTAGGAGCTCGCTATACAGGCCCTAATGGAGA epp
SDeppR GCTAGTCTAGAAGCGTACTTTTTGTGCCTTGAA epp
pNQ706-R GCGTAACGGCAAAAGCACCGCCGGACATCA pNQ705-1
Epp(complement)F GCTAGCTGCAGCATTAATCGAACGAGGTGTGA epp
Epp(complement)R GCTAGCTGCAGTTAGCGCAGCAGCCAGAAT epp

a Restriction sites within primers are in boldface.
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into mature 36-kDa EmpA, a specific protease was responsible
for the processing. Mini-Tn10Km mutagenesis (13) was used to
create mutants of V. anguillarum M93Sm that exhibited altered
protease activity. Approximately 3,000 mini-Tn10Km-contain-
ing colonies created by a single round of mutagenesis were
screened for altered protease activity on NSSM-plus-1% skim
milk agar plates by measuring the zones of proteolysis around
the colonies after 24 h at 27°C. Several reduced-protease and
protease-negative mutants were observed. A clone bank was
created and screened by PCR with EmpA forward (EmpA-F1)
and reverse (EmpA-R1) primers (Table 2) to identify any
potential empA insertion mutants. One clone (MSD1; Table 1)
that exhibited reduced protease activity compared to wild-type
strain M93Sm and did not contain an insertion in empA was
identified (data not shown). No protease-overproducing mu-
tants were observed during the mini-Tn10Km mutagenesis
screening.

Cloning and identification of a V. anguillarum putative pro-
tease gene. In order to identify and characterize the gene inter-
rupted by the mini-Tn10Km insertion, the region surrounding the
mini-Tn10Km insertion was cloned into the SacI site of pBlue-
script SKII�. The resulting plasmid was designated pMV01 (Ta-
ble 1). Restriction digestion of pMV01 using SacI yielded a 13-
kbp insertion.

Forward and reverse primers from the mini-Tn10Km (KanDS1
and KanDS4) and modified T7 and T3 pBluescript-specific prim-
ers (Table 2) were used to initiate sequencing of pMV01.
The sequence of the inserted DNA was determined by primer

walking. DNA sequence analysis (GenBank accession number
EU650390) by BLASTn and BLASTx (1) resulted in the identi-
fication of an open reading frame (containing the mini-Tn10Km
insertion) encoding a 918-amino-acid putative protease previ-
ously undescribed for V. anguillarum. Additionally, several other
previously unidentified genes, including those encoding a putative
glutamine amidotransferase, a sensor protein, a transcriptional
regulator, a periplasmic protein, a thiol:disulfide interchange pro-
tein, and a homoserine kinase as well as an additional putative
extracellular protease were also found (Fig. 1A). The area con-
taining the insertion was also found to contain the previously
described lactonizing lipase activator gene (llpB), which is part of
the V. anguillarum M93Sm hemolysin cluster 1 (vah1 hemolysin
gene cluster; GenBank accession number DQ008059) (23) (Fig.
1A). BLASTx analysis of the cloned region revealed that the
amino acid sequence of epp is highly conserved in both V. cholerae
and V. splendidus, as well as in several non-Vibrio species (Table
3). The epp amino acid sequence was found to have 78% identity
and 88% similarity to the prtV protease of V. cholerae. It also
shares sequence homology with immune inhibitor A (inhA) of
Aeromonas hydrophila and peptidase M6 of Shewanella sp. strain
MR-7 (Table 3). Additionally, SignalP 3.0 (4) analysis predicts
that the epp gene product (Epp) contains a signal peptide se-
quence with a predicted cleavage site between amino acids 23 and
24, suggesting that Epp is an extracellular protease (data not
shown).

Effect of an epp mutation on protease activity. An epp mu-
tant of V. anguillarum M93Sm, M101, was created by single-

FIG. 1. (A) Maps of pMV01. V. anguillarum DNA, containing the EmpA-processing protease (epp) gene and flanking sequences, that was
cloned into pBluescript SKII� (pMV07) and the adjacent hemolysin cluster 1 are shown. Genes coding for the following products are represented:
phospholipase/lecithinase (plp), hemolysin (vah1), lactonizing lipase (llpA), lactonizing lipase activator (llpB), EmpA-processing protease (epp),
putative glutamine amidotransferase (gat), putative exoprotease (expA), sensor protein (cpxA), transcriptional regulator (cpxR), putative periplas-
mic protein (orfP), thiol:disulfide interchange protein (tdi), and a putative homoserine kinase (hsk). Arrows indicate the direction of transcription.
(B) Map of hemolysin cluster 1, containing a putative protease gene from V. cholerae O1 biovar El Tor strain N16961. Genes and the corresponding
tag numbers coding for the following products are represented: lecithinase (lec), hemolysin (hlyA), chemotaxis transducer (hlyB), lipase accessory
(lipAB), and putative metalloprotease (prtV). Arrows indicate the direction of transcription. Sizes are approximate.

TABLE 3. Epp sequence similarity with proteins from other Vibrio and non-Vibrio species

Epp or predicted protein showing homology to Epp GenBank
accession no.

Predicted protein
size (amino acid

residues)

% Amino acid:

Identity Similarity

V. anguillarum M93Sm Epp protease EU650390 918 100 100
V. cholerae O1 biovar El Tor N16961 protease NP_232622 918 78 88
V. splendidus protease ZP_00988167 918 77 88
Moritella sp. strain PE36 protease ZP_01897859 919 68 82
Marinomonas sp. strain MED121 protease ZP_01074777 840 63 76
Aeromonas hydrophila immune inhibitor A YP_857947 758 50 65
Shewanella sp. strain MR-7 peptidase M6, immune inhibitor A YP_736182 936 39 56
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crossover insertional mutagenesis (see Materials and Meth-
ods) to determine its effect on protease activity compared to
what was seen for other V. anguillarum strains. The pNQ705-
1-derived suicide vector pMV07 (Table 1) was introduced into
M93Sm by conjugation and inserted into epp via a single-
crossover event. PCR and sequence analysis confirmed that the
insertion is located at bp 914 of the epp gene (data not shown).
Experiments were carried out in LB20 and NSSM, and these
experiments demonstrated that M101 grows at approximately
the same rate (g � 0.5 h) and to the same cell density as the
wild-type strain M93Sm in LB20 and NSSM, with maximum
cell densities of 3.5 � 109 CFU/ml and 4.1 � 109 CFU/ml,
respectively.

In order to demonstrate the effect of epp on secreted protease
activity cultures of V. anguillarum strains M93Sm, M99 (empA
mutant; Table 1), and M101, the strains were grown 16 h in LB20,
washed twice in NSS, resuspended in NSSM at �2 � 109 CFU/
ml, and incubated at 27°C. Samples (1 ml) were taken at 0, 60,
120, and 180 min, cell-free culture supernatants were assayed for
protease activity, and their values were normalized to CFU (28).
The data presented in Fig. 2 show that protease activity was
induced in M93Sm culture supernatants by 120 min, reaching a
maximum activity level of �82 U at 180 min. A low level of
activity (8.1 U) was detected for M99 culture supernatant. No
protease activity was detected for M101 culture supernatant (Fig.
2). In order to determine whether the mutation in epp was directly
responsible for the loss of protease activity shown in Fig. 2, the
wild-type epp gene was cloned into pSUP202, and the resulting
plasmid, pSUP202-epp (Table 1), was introduced into M101 by
conjugation. The complemented strain, M102, was able to restore
the protease activity to �73% of that of the M93Sm wild-type
strain (Fig. 2). These results demonstrate that the loss of a func-
tional epp product results in a loss of protease activity, as observed
for the M101 strain.

These data also suggest that Epp protease activity can be
detected in the absence of EmpA, when cells are incubated in

mucus. No measurable protease activity was detected in the
absence of Epp, which strongly suggests that Epp is the pro-
tease responsible for the activity observed for the empA mutant
strain. Results also suggest that epp is directly involved in the
processing of the V. anguillarum EmpA metalloprotease, and
thus its product was designated as the EmpA-processing pro-
tease.

Effect of an epp mutation on EmpA processing. Since a mu-
tation in epp resulted in a loss of protease activity when cells
were incubated in mucus (Fig. 2), Western blot analysis was
used to determine the role of epp in EmpA processing under
the same conditions. Cultures of M93Sm, M99, and M101 were
grown (18 h) to �2 � 109 CFU/ml in NSSM. Culture super-
natants were sterile filtered and used for determining protease
activity and for TCA protein precipitation. The wild-type
M93Sm had a protease activity of 176.6 U. No protease activity
was detected for M101. M99 had a protease activity of 24.3 U,
which is approximately 13% of the wild-type activity level (Fig.
3A). Complemented strain M102 restored protease activity to
�85% of wild-type levels (Fig. 3A), further suggesting that a
functional epp product is necessary for protease activity in
NSSM-grown cells. Note that unlike the previous experiment,
which showed protease activity by LB20-grown stationary-
phase cells induced with mucus for 3 h, this experiment used
cells grown continuously in mucus to stationary phase (see
Materials and Methods).

TCA-precipitated proteins from cell-free culture superna-
tants were separated by SDS-PAGE and transferred to a ni-
trocellulose membrane for Western blot analysis. The amount
of protein loaded in each lane was equivalent to 1.5 ml of the
original NSSM culture (�80 �g). Western blot analysis re-
vealed two anti-LasB reactive bands in M93Sm culture super-
natants with estimated molecular masses of �46 kDa and �36
kDa, representing pro-EmpA and mature EmpA, respectively
(Fig. 3B, lane 2). Only the 46-kDa pro-EmpA could be de-
tected in M101 supernatant (Fig. 3B, lane 4). M99 supernatant
was used as a control and did not react with the anti-LasB
antibodies (Fig. 3B, lane 3). Analysis of the complemented
strain M102 culture supernatant revealed both pro-EmpA and
mature EmpA bands equivalent in intensity to those observed
for M93Sm supernatant (Fig. 3B, lane 5). These data show that
Epp is responsible for the processing of the 46-kDa pro-EmpA
form to the 36-kDa mature active enzyme.

Mixing protease-negative culture supernatants results in
protease activation. Based on the results shown in Fig. 3B, we
hypothesized that if Epp was not dependent on empA tran-
scription, then it would be secreted into the supernatant. We
have shown that M101 secretes pro-EmpA when cells are in-
cubated in mucus, as seen in Fig. 3B. We speculated that M99
cultures produce and secrete Epp under the same conditions.
Moreover, we also hypothesized that Epp produced and se-
creted by M99 can process pro-EmpA in M101 culture super-
natants. To test this, cultures were grown 16 h in LB20, washed
twice in NSS, resuspended in NSSM at �2 � 109 CFU/ml, and
incubated at 27°C for 180 min. Earlier results (Fig. 2) show that
protease activity is fully induced by 180 min in wild-type strain
M93Sm. At 180 min, cells from the M93, M99, and M101
NSSM cultures were harvested and supernatants were sterile
filtered as described in Materials and Methods. Sterile-filtered
cell-free supernatants from M99 and M101 were mixed in a 1:1

FIG. 2. Induction of protease activity in the wild-type strain
(M93Sm [F]) and mutant strains (M99 [empA mutant] [f], M101 [epp
mutant] [Œ], and M102 mutant [pSUPepp] [�]) of V. anguillarum at
high cell densities. Cultures were grown with shaking for 16 h in LB20
at 27°C. Cells were harvested by centrifugation, washed two times with
NSS, and then resuspended in NSSM (�2 � 109 CFU/ml) at 27°C.
Samples (1 ml) were taken at 0, 60, 120, and 180 min, and the super-
natants were sterile filtered through a 0.22-�m filter. Protease activity
was determined and then normalized to CFU as described by Denkin
and Nelson (6). The data presented are from a representative exper-
iment. Experiments were performed in triplicate and repeated at least
three times. Error bars indicate one standard deviation.
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ratio (mix 1) and incubated at 27°C for 4 h. Aliquots of M93Sm
and M99/M101 (mix 1) cell-free supernatants were taken at 0,
1, 2, 3, and 4 h, and protease activities were determined by OD
readings at 442 nm. The remaining M99 and M101 cell-free
supernatants were incubated at 27°C for 2 h and were then
mixed in a 1:1 ratio and incubated for an additional 2 h (mix 2).
Aliquots of M99/M101 (mix 2) cell-free supernatant were
taken at 0, 1, and 2 h. The protease activities of cell-free
supernatants were determined by OD readings at 442 nm. Only
trace amounts of protease activity were detected in unmixed
M99 and M101 cell-free supernatants (Fig. 4). When M99 and
M101 cell-free supernatants were mixed 1:1 in both M99/M101
(mix 1) and M99/M101 (mix 2), protease activity was detected
by 1 h and then reached an activity level close to that of the
wild type by 2 h. Activity did not increase with further incuba-
tion. Protease activity levels remained constant over a 24-h
period (data not shown).

To show that the protease activity detected as shown in Fig.
4A was a result of pro-EmpA activation by Epp, M99/M101
(mix 1) and M99/M101 (mix 2) supernatants were analyzed by
Western blotting. TCA-precipitated proteins from cell-free
culture supernatants from the control strains (M93Sm, M99,
and M101) as well as the supernatants from M99/M101 (mix 1)
and M99/M101 (mix 2) were separated by SDS-PAGE and
transferred to a nitrocellulose membrane. Western blotting
revealed the presence of both pro-EmpA (�46 kDa) and ma-
ture EmpA (�36 kDa) in the M93Sm supernatant (Fig. 4B,

lane 2) as well as for M99/M101 (mix 1) and M99/M101 (mix
2) (Fig. 4C, lanes 2 and 3). Only pro-EmpA (�46 kDa) could
be detected in the M101 supernatant (Fig. 4B, lane 4). M99 did
not react with anti-LasB antibodies (Fig. 4B, lane 3). It should
be noted that the processed EmpA bands in the Western blot
were fainter than those previously observed. The most likely
explanation is the fact that the protein obtained from the
experiment depicted in Fig. 4C was from cultures induced with
mucus for 180 min rather than from cultures grown for 18 h in
NSSM, as was the case in the experiment whose results are
shown in Fig. 3B.

In all, these results support our hypothesis that the epp gene
product is responsible for the processing of EmpA, and with-
out a functional epp gene, EmpA is not able to be converted
from the immature pro-EmpA form to the mature active en-
zyme.

DISCUSSION

Previous studies have shown that incubation of V. anguilla-
rum in salmon GI mucus specifically induces a number of
proteins (9), including the EmpA metalloprotease, during sta-
tionary phase (6). Western blot analysis using V. anguillarum
M93Sm has shown that the cytoplasmic 66.7-kDa pre-pro-
EmpA protein is secreted as an �46-kDa proenzyme that is
activated extracellularly by the removal of a 10-kDa peptide,
resulting in the mature �36-kDa enzyme (25). However, the

FIG. 3. (A) Protease activity of V. anguillarum strains M93Sm, M99 (empA mutant), M101 (epp mutant), and M102 (pSUPepp) grown to
stationary phase in NSSM. Cultures were grown with shaking for 18 h in NSSM at 27°C (�2 � 109 CFU/ml). Cells were harvested by centrifugation
and the supernatants were filtered through a 0.22-�m filter. Protease activity was determined and normalized to CFU. Samples from left to right:
M93Sm, M99, M101, and M102. The data presented are from a representative experiment. Experiments were performed in triplicate and repeated
at least three times. Error bars indicate 1 standard deviation. (B) Western blot analysis of EmpA secretion and activation. TCA-precipitated
proteins from 1.5 ml of 18-h cell-free culture supernatants (�80 �g protein) from strains M93Sm, M99 (empA mutant), M101 (epp mutant), and
M102 (pSUPepp) grown in NSSM were separated by SDS-PAGE, transferred to nitrocellulose, probed with rabbit anti-LasB antibody followed
by immunoglobulin G-labeled goat anti-rabbit antibody, and visualized using TMB as described in Materials and Methods. Lanes: 1, molecular size
protein ladder; 2, M93Sm; 3, M99 (empA mutant); 4, M101 (epp mutant); 5, M102 (pSUPepp). The positions of secreted pro-EmpA (�48 kDa),
and mature EmpA (�36 kDa) are indicated with arrows on the right. The data presented are from a representative experiment. Experiments were
repeated at least three times.
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gene(s) involved in the processing of the EmpA protein from
a nascent protein to an active mature metalloprotease was
unknown. Staroscik et al. (25) hypothesized that the most likely
mechanism by which this occurs is via the production and
secretion of an additional protease that acts to remove the
propeptide from EmpA and activate the enzyme.

In this study, a single gene of V. anguillarum (epp) was
identified and characterized with regard to its ability to pro-
mote the processing of extracellular pro-EmpA to mature
EmpA. Initial mini-Tn10Km mutagenesis created a mutant of

V. anguillarum (MSD1) that lost all extracellular protease ac-
tivity found in the wild-type strain M93Sm (data not shown).
The region surrounding the insertion mutation was cloned and
sequenced, revealing the previously described hemolysin gene
cluster 1 (vah1 hemolysin gene cluster) (Fig. 1A) (23), as well
as epp, which encodes a 918-amino-acid putative protease pre-
viously undescribed for V. anguillarum. A second epp mutation,
M101, created by site-specific insertional mutagenesis, exhib-
ited a phenotype identical to that of MSD1 and was used in all
subsequent experiments.

FIG. 4. (A) Protease activity of V. anguillarum strains (M93Sm [F], M99 [empA mutant] [Œ], M101 [epp mutant] [�], M99 plus M101 after first
mixing [f], and M99 plus M101 after second mixing [E]). Cultures (10 ml) were grown with shaking for 16 h in LB20 at 27°C. Cells were harvested
by centrifugation, washed two times with NSS, and then resuspended in NSSM (�2 � 109 CFU/ml) at 27°C. Cells from all cultures were harvested
at 180 min and the supernatants were sterile filtered through a 0.22-�m filter. Aliquots (5 ml) of M99 and M101 culture supernatant were mixed
1:1 (mix 1) and incubated at 27°C with shaking. Remaining M99 and M101 culture supernatants (4 ml) were incubated separately at 27°C with
shaking. Samples (750 �l) of M99/M101 mix 1 supernatant were taken at 0, 1, 2, 3, and 4 h. Samples (750 �l) of individual M99 and M101
supernatants were taken at 0, 1, and 2 h. At 2 h, M99 and M101 supernatants were mixed 1:1 (mix 2) and incubated at 27°C. Samples (600 �l)
of mix 2 were taken at 0, 1, and 2 h after mixing (2, 3, and 4 h after the start of the experiment). M93Sm was used as a control. Protease activity
was determined by OD readings at 442 nm (OD442). The data presented are from a representative experiment. Experiments were performed in
triplicate and repeated at least three times. Error bars indicate 1 standard deviation. (B) Western blot of individual supernatants. TCA-precipitated
proteins of cell-free supernatants from NSSM-grown cultures of M93Sm, M99 (empA mutant), and M101 (epp mutant) were separated by
SDS-PAGE, transferred to nitrocellulose, probed with rabbit anti-LasB antibody followed by immunoglobulin G-labeled goat anti-rabbit antibody,
and visualized using TMB liquid substrate as described in Materials and Methods. Lanes: 1, molecular size protein ladder; 2, M93Sm; 3, M99
(empA mutant); 4, M101 (epp mutant). (C) Western blot of M99/M101 mix 1 and M99/M101 mix 2. Lanes: 1, molecular size protein ladder; 2,
M99/M101 mix 1 supernatant; 3, M99/M101 mix 2 supernatant. Positions of the secreted pro-EmpA (�48 kDa) and mature EmpA enzyme (�36
kDa) are indicated with arrows on the right. The data presented are from a representative experiment. Experiments were repeated at least three
times.
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The deduced amino acid sequences of the V. anguillarum epp
gene and the previously reported Vibrio cholerae El Tor prtV
gene show high degrees of identity and similarity, with an
identity of 78% and a similarity of 88%. The Epp amino acid
sequence also shares high degrees of homology with those of
other putative proteases found in other Vibrio and non-Vibrio
species (Table 3). As illustrated in Fig. 1A, the epp gene lies
downstream from the vah1 hemolysin gene cluster. The gene
order of this region is identical to that found for the V. cholerae
hlyA hemolysin (Fig. 1B) region, with the exception that V.
anguillarum does not have a hlyB homologue (20). This gene
arrangement is highly conserved in several other Vibrio species
(8). It has been proposed that the genetic organization of this
region of V. cholerae, which includes prtV, is part of a patho-
genicity island encoding products capable of damaging host
cells (20). Moreover, it suggests a possible role for PrtV in V.
cholerae, as a processing protease for the HA/protease (a ho-
mologue of EmpA). This may also be the case for other epp
homologues which have yet to be fully characterized.

Protease activity was lost in M101 NSSM-grown cultures,
and Western blot analysis revealed only the �46-kDa pro-
EmpA present in the cell-free supernatant. Taken together,
these data strongly suggest that Epp is the protease responsible
for the cleavage of the 10-kDa EmpA propeptide from pro-
EmpA to yield mature active EmpA. The presence of stable
pro-EmpA in M101 supernatant supports the findings reported
by Staroscik et al. (25), suggesting that EmpA activation is not
autolytic. The epp mutation was complemented in the M102
strain, restoring protease activity to wild-type levels. Western
blots of M102 NSSM-grown supernatants revealed mature
EmpA bands comparable to those observed for wild-type
strain M93Sm, thereby providing further evidence to support
Epp as being the EmpA-processing protease. The ability of
M102 to fully complement the epp mutation shows that epp is
directly responsible for the differences observed between
M93Sm and M101 with regard to protease activity and EmpA
processing. Further, the gene orientation of the region con-
taining epp strongly suggests that our findings are not the result
of a cis polar effect. We have shown that the epp gene product,
Epp, is a protease that is responsible for the processing and
activation of pro-EmpA to the active mature metalloprotease.

Recent studies using recombinant EmpA synthesized in E.
coli (29–31) have suggested that the presence of a stable �36-
kDa EmpA form is the result of a thermoinduced self-prote-
olysis of a 44.6-kDa precursor (30). The 36-kDa peptide was
detected only if protein samples were boiled prior to SDS-
PAGE and Western blot analysis (29–31). Similar results were
obtained using V. anguillarum W-1 supernatant (31). Our re-
sults, however, revealed no difference in EmpA processing
between boiled and nonboiled samples (data not shown).
Western blot analysis showed that M101 pro-EmpA could not
be converted to the 36-kDa form by boiling. Also, the amount
of mature �36-kDa EmpA did not increase if samples were
boiled when equal amounts of protein were analyzed in either
the wild type or the complemented strain. Perhaps the heat-
induced proteolysis of recombinant EmpA was an artifact of
cloning into E. coli, or it may have been specific to the EmpA
of V. anguillarum W-1 (31); however, we were unable to ob-
serve heat-induced proteolysis. In contrast, our data clearly

demonstrate that in V. anguillarum M93Sm, the conversion of
�46-kDa pro-EmpA to mature �36-kDa EmpA requires epp.

When M99 and M101 supernatants were mixed in a 1:1
ratio, protease activity quickly approached wild-type levels.
This protease activity was stable and remained constant over a
24-h period (data not shown). Western blots reveal that Epp is
secreted by M99 (empA null mutant) into the culture super-
natant, where it is stable and able to process pro-EmpA se-
creted by M101 (epp null mutant) to the mature EmpA pro-
tease. Thus, our data demonstrate that pro-EmpA processing
occurs extracellularly and is mediated by the secreted protease,
Epp. This provides insight into the regulation of empA and epp.
EmpA secretion is independent of epp transcription and Epp
secretion is independent of empA transcription. Both of these
proteins are secreted into the culture supernatant independent
of one another when cells are grown in salmon GI mucus. We
have consistently detected low levels of protease activity in
M99 EmpA-free supernatants by use of assays with azocasein.
The protease activity levels of these cultures are always low, 5
to 10% of the activity seen for wild-type cultures. This seems to
suggest that Epp has some general protease activity and is able
to react with azocasein. It also suggests that Epp is secreted at
low levels compared to those for EmpA secretion in NSSM
culture conditions.

Previous studies by Denkin and Nelson (7) have demon-
strated that the regulation of empA transcription is complex,
requiring RpoS and VanT (a LuxR homologue), and is also
positively affected by salmon GI mucus. Preliminary observa-
tions suggest that epp transcription is also positively regulated
by salmon GI mucus.

Extracellular proteases are virulence factors for many patho-
genic bacteria and are highly regulated proteins that are acti-
vated in response to different environmental factors. For ex-
ample, the V. cholerae HA/protease (Hap) has been shown to
nick and activate the A subunit of cholera enterotoxin (5), and
the V. vulnificus Vvp metalloprotease causes a hemorrhagic
reaction by degrading type IV collagen in basement mem-
branes (17). The LasB elastase of P. aeruginosa is required for
tissue destruction during opportunistic infections (18). These
proteases are highly homologous to EmpA metalloprotease of
V. anguillarum (6, 7, 16).

How secreted proteases are processed extracellularly to be-
come active virulence factors is not fully understood. Multiple
processing steps have been proposed for several other EmpA
homologues, such as the Hap protease of V. cholerae (12), the
Vvp protease of V. vulnificus (17), and the LasB elastase of P.
aeruginosa (16). The Hap protease undergoes several steps of
processing, including cleavage of the signal peptide of the
69.3-kDa propeptide to generate a 45-kDa form. It undergoes
further proteolytic processing of the C-terminal region to form
the mature 32-kDa enzyme (12). In in vivo systems, the 45-kDa
form can be processed to the 35-kDa form autolytically as well
as by other general proteases found in the intestine. Additional
studies have shown that HA/protease has bifunctional proper-
ties; the 45-kDa form is responsible for the enterotoxic re-
sponse and the fully processed 35-kDa protease causes the HA
activity responsible for the cytotoxic effects caused by this or-
ganism (10). We note that the processing of the pro-LasA to
mature LasA protease in P. aeruginosa has been shown to
involve the action of other secreted proteases, including elas-
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tase, lysine-specific protease (protease IV or PrpL), and alka-
line proteinase (14). Kessler et al. (14) showed that purified
preparations of each protease were able to convert the se-
creted 42-kDa pro-LasA into the mature 20-kDa LasA, with
the transient accumulation of a 28-kDa intermediate. In con-
trast, pro-EmpA processing by V. anguillarum involves only
one additional protease, Epp, and we did not detect any tran-
sient intermediate.

Finally, Western blot analysis reveals that pro-EmpA is al-
ways detected in culture supernatants, regardless of culture
conditions or length of incubation, suggesting that not all pro-
EmpA is converted to mature EmpA. This raises the possibility
that pro-EmpA has a role during infection by V. anguillarum
that differs from that for mature EmpA metalloprotease. Per-
haps EmpA, similar to Hap protease of V. cholerae, has bi-
functional properties (10). How pro-EmpA may contribute to
virulence of V. anguillarum is currently under investigation.
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