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Summary
As the global Structural Genomics projects have picked up pace the number of structures annotated
in the Protein Data Bank as “hypothetical protein” or “unknown function” has grown significantly.
A major challenge now involves the development of computational methods to accurately and
automatically assign functions to these proteins. As part of the Midwest Center for Structural
Genomics (MCSG) we have developed a fully automated functional analysis server, ProFunc, which
performs a battery of analyses on a submitted structure. The analyses combine a number of sequence-
based and structure-based methods to identify functional clues. After the first stage of the Protein
Structure Initiative (PSI) we review the success of the pipeline and the importance of structure-based
function prediction. As a dataset we have chosen all structures solved by the MCSG during the 5
years of the first PSI. Our analysis suggests that two of the structure-based methods are particularly
successful and provide examples of local similarity difficult to identify using current sequence
methods. No one method is successful in all cases so through the use of a number of complementary
sequence and structural approaches, the ProFunc server increases the chance that at least one method
will find a significant hit that can help elucidate function. Manual assessment of the results is a time-
consuming process and subject to individual interpretation and human error. We present a method
based on the Gene Ontology schema using GO-slims that can allow the automated assessment of hits
with a success rate approaching that of expert manual assessment.
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Introduction
Structural genomics1 is a large-scale project aimed at experimentally determining a large
number of protein 3D structures as rapidly and accurately as possible using high throughput
methods. There are a number of groups funded as part of the Protein Structure Initiative (PSI)
and other projects exist across the globe such as Riken (Japan), SPiNE (Europe) and the Anglo-
Canadian-Swedish SGC (Structural Genomics Consortium). Each centre has individual targets
and goals but major aims include:

• High-throughput automation of protein production, structure determination and
analysis

• Increased coverage of protein fold space and hence the number of protein sequences
amenable to homology modelling methods

• Investigation of protein structure to elucidate function in health and disease
• Reduction of the cost of structure determination

The Midwest Center for Structural Genomics (MCSG) is funded by the National Institute for
General Medical Sciences (NIGMS), as part of the PSI of the National Institutes of Health.
The centre aims to develop and optimise new, rapid, integrated methods for highly cost-
effective determination of protein structures through X-ray crystallography. In order to achieve
this goal the centre has been optimising all stages of protein structure determination: crystal
growth, data collection, and structural model generation and refinement. The success of the
project is indicated by the fact that as of the 30th of September 2005 (the official end of the
first stage of the PSI) the MCSG had over 5000 active targets and a total of 319 structures
deposited in the Protein DataBank (PDB2). However, of these deposits, over a third have no
functional annotation and are described as merely “hypothetical protein” or “unknown
function”. The determination of a protein’s function by experiment is expensive and time
consuming and cannot be readily accommodated in a high throughput pipeline. Thus there is
a need to develop automated function prediction methods to at least provide an idea of the
likely function of the protein and to help guide experimental determination of its function3.
The scale of the problem is clear when one considers that as of 30 September 2005 there were
over 1100 proteins out of over 32,000 in the PDB labelled as “unknown function”.

In general, computational methods to infer a function for an individual protein, such as its
enzymatic activity, fall into two main types: those that are sequence-based and those that are
structure-based. In addition, functional information can often be inferred through comparisons
of genomic organisation and gene location analysis or by methods analysing protein interaction
and gene regulatory networks.

The most commonly used sequence-based approaches involve simple BLAST4 or FASTA
runs which perform direct sequence-sequence comparisons of the query protein against large
databases such as UniProt5 or GenBank6 in order to identify similarity with proteins of known
function. More powerful and sensitive profile/pattern based methods utilise information from
the sequences in whole protein families, where the family can be defined in terms of 3D
structure, as in Gene3D7 and SUPERFAMILY8, or in terms of sequence similarity and
function, as in Pfam9. Other useful approaches involve the investigation of phylogenetic
profiles and amino acid conservation. A number of studies10,11 have indicated that significant
sequence similarity (>40%) and strong profile matches are the best indicators of function
although there are always exceptions to this rule12.

When the sequence-based methods fail, or provide few functional clues, the examination of
the protein’s 3D structure can identify distant relationships and suggest functional roles. The
structure-based methods can be classified according to the level of protein structure and
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specificity at which they operate, ranging from analysis of the global fold of the protein down
to the identification of highly specific 3D clusters of functional residues13,14.

No single method will be successful in all cases, and there will also be proteins for which no
method is useful. Accordingly, a sensible strategy may be to use as many different methods as
possible, incorporating data from multiple sources, to increase the chances of obtaining some
functional prediction for any given protein. To this end, the ProFunc15 server
(http://www.ebi.ac.uk/thornton-srv/databases/ProFunc) has been developed at the EBI in
collaboration with structural genomics consortia to explore the efficacy of combining multiple
methods and data sources in a semiautomated manner. The data are presented to the depositors
in order to allow them to use their expert knowledge to decide on the most likely functional
clues for experimental testing. The server uses a variety of methods drawing on multiple
databases:

• Sequence analysis primarily involves BLAST runs against the PDB and UniProt
databases to help identify functionally annotated homologues. In addition, the
sequence is also scanned using InterProScan in order to identify motifs indicative of
specific protein families or functional motifs.

• The structure-based approaches used in ProFunc involve large-scale fold matching
methods (using SSM16 and DALI), identification of smaller sub-motifs (e.g. Helix-
turn-helix DNA-binding patterns17), localised pockets (surface cleft analysis and nest
identification), and highly specific n-residue template methods14 (enzyme active
sites, ligand binding sites, DNA-binding residues and reverse template analysis).

• In addition to this, for bacterial proteins, the locus encoding the UniProt BLAST hits
are located in the genome and neighbouring genes are tabulated in the hope that
functional inferences can be made from the functions of the surrounding genes.

In this paper we use the MCSG structures as a test dataset to investigate the ProFunc server’s
ability to determine function from structure, to identify the most successful structure-based
approaches and suggest future directions and improvements.

Results
Our study into automated functional prediction using the MCSG data set is outlined as follows:

1. Functional coverage of the MCSG dataset.

2. Manual assessment of “known-function” dataset.

3. Identification of the best structure-based method in ProFunc.

4. Automated assessment of hits using GO-slims.

5. Analysis of specific examples.

Functional coverage of the MCSG dataset
Of the 282 non-redundant structures used in the analysis only a third have a known function
(Figure 1). An additional 21% have a putative function based on sequence similarity to another
protein of known function while the remainder are of unknown function. A quick way to assess
how representative this dataset is of proteins in general and whether there are any biases to
certain protein types is to examine its “functional space” coverage. To this end the 92 structures
of known function were plotted on an “EC wheel” to estimate the functional coverage (Figure
2a). The black sector represents the 30 structures of known function that are not enzymes, 10
of which are transcriptional regulators (Table 1). Looking at the EC wheel and Table 1 together
suggests there is reasonable coverage of the functional space with a slight tendency towards

Watson et al. Page 3

J Mol Biol. Author manuscript; available in PMC 2008 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ebi.ac.uk/thornton-srv/databases/ProFunc


transcriptional regulators and hydrolases (EC 3.-.-.-). If the MCSG proteins are compared
against the distribution of EC numbers across the entire PDB (Figure 2b) it is evident that the
proportions for each top level EC class are similar except that there appears to be a slightly
greater number of lyases and fewer oxidoreductases.

Many of the MCSG structures have been annotated with GO-terms but for a more general
functional description GO-slim terms can be examined. In this study the “Molecular Function”
section of the gene ontology is of interest and Figure 2c shows the coverage of this area of the
GO-slim hierarchy by the MCSG structures (terms shaded green are covered whereas those in
red are absent), the numbers in brackets refer to the expansion of terms by extending the GO
slim (discussed below).

Manual assessment using “known function” dataset
The results from the structure-based ProFunc analyses for the 92 proteins of known function
in the dataset are illustrated in Figure 3 below (see Supplementary material for a spreadsheet
listing all manual annotations). The results have been backdated to the release date of the query
by removing hits to structures released after that date, giving a picture of what the server would
have suggested had it been available at the time. The SSM results show that in approximately
55% of cases the top fold match was able to provide the correct functional assignment (almost
20% of which are strongly predicted). The standard template methods provide some success
but the most accurate structure-based method is the reverse template approach (SiteSeer [SIT]),
which provides the correct function in 60% of the cases (of which over 75% are strongly
predicted).

Identification of the best structure-based method in ProFunc
The best two structure-based methods identified by manual assessment of the ProFunc results
are the reverse templates and SSM. In order further assess the methods their ROC curves were
calculated (Figure 4). In order to calculate the curves a score was used as a cutoff, in the case
of SSM the Z-score was of interest, whereas for the reverse templates it was the E-value.

Examination of the curves shows the SSM method as having the best performance, the areas
under the curve being 0.83 and 0.70 respectively. An area of 1.00 corresponds to perfect
prediction while 0.50 is equivalent to random prediction. One might expect the two methods
to overlap to some extent – i.e. to hit the same PDB files. In fact, in only 25 of the cases did
both methods return the same PDB file as their top hit. A further 25 cases matched different
PDB files but still obtained identical functional predictions. Of the remaining 32 cases there
were 5 where the reverse templates method found the correct match while SSM missed it, and
one case where SSM gave the correct answer and the reverse templates method was wrong.
This shows that, despite a significant overlap, there are a minority of cases where the one
method identifies matches missed by the other. It should be noted that, even when both methods
match to the same PDB entry, they provide complementary information: SSM identifies the
fold similarity, while the reverse template method pinpoints local regions of high similarity
and, in so doing, usually picks out the functionally important site.

Automated assessment of hits using GO-slims
One question of interest is whether GO-slim terms can be used to assess the functional
predictions in an automated way rather than requiring manual assessment of true and false
positives. To investigate this we used the 77 proteins with GO annotation from the 92 MCSG
proteins of known function. The ProFunc results give a total of 207 structural matches. The
numbers from each method are as follows:
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SSM Fold Match 68
Reverse Templates 74
Enzyme Templates 8
Ligand Templates 47
DNA Templates 10

Total 207

Comparison of the GO terms between a query and hit protein can determine whether the hit is
a true or false positive. However, even for the correct matches, the terms do not usually match
100%, or one protein may have more terms than the other. So the problem of comparing GO
terms is in determining how many terms need to agree before a match can be deemed a true
positive. We tried a number of different cut-offs to see which gave the best agreement with the
manual assignments. The cut-offs we tried were 25%, 50%, 75%, 100%, and a “constrained
50%” wherein a 100% match was required where the query protein has only 2 GO terms. We
tried both the generic GO-slims (31 terms) and our hand-curated molecular function (MF) GO-
slims (190 terms) which have more terms levels than the generic version. The closest agreement
to the manually assessed function prediction results was obtained with a 75% cut-of on the
MF-GO-slims (see Supplementary information for a detailed discussion). The generic GO-
slims fared poorly due to the small number of terms. Of the 207 function predictions over 65%
(136/207) involved only 2 GO-slim terms. So the overall results were significantly affected by
how these cases were treated (hence the introduction of the “constrained 50%” cut-off rule).
Even for the 100% cut-off rule there were identifiable errors. For example, 10 of the 16 false
negatives resulted because the hit protein had fewer GO-slim terms than the query protein,
making a 100% match impossible. In other cases the errors resulted from errors in annotation.
Thus the match to PDB entry 1jvn (a bifunctional protein with amidotransferase and lyase
activity) reported for the MCSG structure 1kxj (glutamine amidotransferase) by both SSM and
the reverse templates was deemed incorrect because the GO annotation for 1jvn only covers
its lyase activity. In another case, the GO annotation of an MCSG HTH transcription regulator
(1sfx) is incorrectly detailed as a ligase with binding activity. The strong structural hit is to a
M. jannaschii DNA-binding protein which is described in GO as a nucleic acid binder with
transcription regulation activity. This hit will always be seen as a false negative match using
the GO-slim method.

The MF-GO-slims performed better than the generic GO-slims, with the best agreement with
the manual assessment (83% of the cases) being achieved for a cutoff of 75% (see
Supplementary information). Not only do the MF-GO-slims perform better, but they also
provide more specific functional annotation and hence are more useful when, say, planning
any experimental verification. For example, the coverage of the E.C. hierarchy in the MF-GO-
slims goes to the third level rather than only the first. Now 6% of the 207 cases have only 2
terms describing a protein, compared with the 65% for the generic GO-slims. Seven of the
cases have 10 or more terms whereas the most terms per protein in the generic GO-slims is 5.

Thus the MF-GO-slims provide a greater specificity and agreement with the manual assessment
than the generic GO-slims but without the problems inherent in the full gene ontology which
is too complicated and unevenly distributed. In the cases where the MF-GO-slims disagree
with the manual assessment the reason for the disagreement tends to be where the former
overpredicts true positives.

In practice the procedure would be to first identify general similarity in function using the MF-
GO-slim followed by more accurate comparisons using the full gene ontology. Clearly any
GO-slim approach is of greatest use when the function of the query and hit proteins are already
known and annotated with GO terms, but what of queries that are of unknown function or as
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yet unreleased? In this situation the method is useful for comparing all hits from all methods
with one another in an attempt to find common general functions amongst the top hits.

ProFunc Typical Examples
Of course, the only sure way of verifying a functional prediction is via experiment. A major
component of our collaborative effort within the MCSG is the experimental validation of
functional predictions made by the ProFunc server. The three examples chosen below illustrate
the various ways the server has been of use to experimentalists and how much work remains.

Example 1: Function experimentally confirmed—One example where predictions
made using the server have been experimental verified has been published previously18. The
example is that of the 1.5Å crystal structure of BioH protein from E. coli solved by the MCSG.
Analysis of the structure using ProFunc returned a significant match (r.m.s.d. of 0.28 Å) to an
enzyme active-site template for the Ser-His-Asp catalytic triad of the lipases. This prompted
the experimental characterisation of this protein which was found to be a novel
carboxylesterase acting on short acyl chain substrates.

Example 2: Function suggested from structure—The 1.9 Å crystal structure of
hypothetical protein IsdG from staphylococcus aureus, PDB deposit 1xbw, was released on
the 12th October 2004. Analysis using the ProFunc server revealed that all the BLAST hits
were to other hypothetical proteins of unknown function. A separate PSI-BLAST run revealed
weak similarity to antibiotic biosynthesis monooxygenases. An InterProScan run provided
significant hits to two functions: the first was a PROSITE pattern match to “Peptidase, cysteine
peptidase active site” and the other a Pfam domain “Antibiotic biosynthesis monooxygenase”.
The genome analysis suggests a number of possible functions including oxidoreductase,
methyltransferase, epimerase, transportation, possible RNA binding, and others.

When the structure-based methods were employed, we found that the strongest SSM fold
matches were to hypothetical proteins and all bar one of the remaining hits were
monooxygenases. There were no hits to known enzyme or ligand-binding templates and only
two rather weak matches to DNA-binding templates. If the reverse templates were examined
we found the majority of the top hits were to proteins of unknown function but the first
significant match with an assigned function was to a monooxygenase from Streptomyces
coelicolor (PDB entry 1lq9).

This is an example where the sequence-based methods provide a variety of suggested functions
with similar confidence and the structure-based approaches provided additional supporting
evidence that support the prediction.

Experimental analysis has characterised the protein as a haem-degrading enzyme with
structural similarity to monooxygenases19.

Example 3: Function remains unknown—The 1.5Å crystal structure of a hypothetical
protein (pa4017) from Pseudomonas aeruginosa, PDB deposit 2a35, was released on 9th

August 2005. The structure was submitted to the ProFunc server and the results analysed.
BLAST searches against the UniProt database showed similarity to other hypothetical proteins.
The sequences of the majority of these hits (and that of 2a35 itself) had similarity to domains
associated with NAD binding oxidoreductase activity. Structural comparisons provide
additional evidence for this prediction: fold similarities to NADP-dependant reductases;
ligand-binding template matches to NAD and NAP complexed structures; an enzyme template
match to the short-chain dehydrogenase-reductase family; and reverse-template matches to
members of the short-chain dehydrogenase-reductases and other NAD/NADP binding
proteins. Further examination of the structure indicated that the 2a35 structure had its C-

Watson et al. Page 6

J Mol Biol. Author manuscript; available in PMC 2008 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



terminal section (about 10 residues) lying in the cleft blocking the potential NADP binding
site. This means that the predictions may be invalid but it is also possible that this conformation
is not the one adopted in the cell. The question then becomes if the cleft is blocked by the C-
terminus, what is the new function and why?

The purified protein was used to assess the binding of a variety of small molecules (including
NAD, NADH, NADP, NADPH, cAMP, ATP, ADP, nucleotide sugars, amino acids, etc),
however none of the selected molecules showed significant binding. It would therefore appear
that 2a35 is not capable of binding the predicted co-factors and its function may differ from
those suggested by computational methods.

One interesting observation is that 2a35 shows 30% sequence similarity to Tat-interacting
protein Tip30 (a human protein deposited in the PDB (2bka) that has pro-apoptotic and anti-
metastatic properties). Bioinformatic analysis of this Tip30 protein shows similarity to the
short-chain dehydrogenase-reductases and biochemical studies show NADPH binding
specificity. The function of the Tip30 protein appears to have been adapted from a metabolic
enzyme to a regulatory protein, perhaps a similar adaptation has occurred in the 2a35 protein.

Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic pathogen affecting plants
and immunocompromised humans (e.g. burns, wounds, hospital aquired infections). It is
observed that hypothetical protein PA4017 showed strong structural similarities to human
Tip30 protein and Arabidopsis thaliana proteins. If the plant proteins are active (as in humans)
to induce apoptosis, an inactive homologue from the Pseudomonas pathogen could prevent the
plant (or human) host from destroying infected cells. This hypothesis is conjecture and requires
further experimental analysis, however it illustrates that even in the cases where predictions
are tested but provide negative results, they can open up new avenues of research.

Discussion
The MCSG has produced a large number of structures during the first stage of the PSI (over
300 in 5 years); the structures have a wide range of functions and a number have novel folds.
The MCSG structures have therefore been a useful dataset to test and develop the ProFunc
server. The idea behind ProFunc is that a combined approach of sequence-based and structure-
based methods, although providing the experimentalist with a lot more data, is more likely to
provide the correct function or at least provide clues that can be tested.

It is widely accepted that strong sequence similarity is generally a good indicator of similarity
in function. When we looked at the sequence-based methods for the dataset we found that
InterProScan gave a success rate of 70% correct, BLAST vs. UniProt was 95% correct and
genome analysis provided about 85% correct. It would appear from this that the sequence-
based methods are all we would need, however these are likely to be an over-estimate as the
results have not been backdated like the structure-based analyses. UniProt archives previous
versions of sequences and each entry contains release dates and version numbers, but the
backdating process is not a straightforward one. As the expectation values for BLAST hits
depend on the size of the database it is not enough to just ignore the entries after the release
date; a new UniProt database would be needed for each structure. This is an even greater
problem for the HMM libraries as they are continually updated with limited archives. To
address this problem we have initiated the collection and storage of data from ProFunc sequence
and structural analyses on deposition for all MCSG structures produced during PSI2 to give
an accurate reflection of the state of the databases at the time of release.

Although the sequence-based approaches are the most successful, when they fail to provide
any interesting hits (such as hypothetical proteins of unknown function) or the sequences have
diverged too far to detect their common ancestry, the structure can be important in narrowing
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down the options. Similarly, when a sequence match is weak, the information from any
structural matches can increase the confidence in any tentative functional assignment that the
sequence may suggest. The first stage of such functional studies is the identification of similar
folds using software such as SSM. Our analysis suggests this is an effective method even in
the “twilight zone” of low sequence similarity. Additional evidence for more specific functions
can be provided by using local structural comparisons such as the reverse template method,
that can help identify functional similarities independently of the global fold comparison. Our
comparison of these methods suggests that SSM, giving a slightly better ROC curve, provides
more successful function predictions overall, although the information from the reverse
template method is more specific in that it usually locates the functionally important regions.

Occasionally SSM misses cases where folds have diverged but local, functional regions have
been preserved over evolutionary time. These cases are picked up by the reverse template
method. One such example is that of MCSG target APC5049 (PDB entry 1tjn). This structure
was deposited on 6th June 2004 and is annotated as a “sirohydrochlorin cobaltochelatase” (EC
4.99.1.3). Analysis using ProFunc provided strong structural matches using the reverse
templates method. The top non-self hit, with a score of 253 and an e-value of 0.005, was to
PDB entry 1qgo (an anaerobic cobalt chelatase involved in cobalamin biosynthesis). This
correct match was not identified using SSM and in fact its top hit, with a rather poor Z-score
of 3.9, was to a “MICAREC pH 4.9, DNA-binding response regulator” (PDB entry 1nxs) and
is a false positive match. Examination of the full list of SSM results for this structure reveals
that the hit identified using reverse templates appears at position 65 in the SSM results at a
marginally lower Z-score of 3.8. One reason that the true positive fails to achieve a higher Z-
score is that the superposition of secondary structures is attempting to align a strand from the
MCSG target with a helix from 1qgo. The reverse template approach is unaffected by this
mismatch as it is looking at a locally conserved region distant from the mismatched secondary
structures.

Another case involves a putative protein from Aquifex aeolicus (PDB entry 1t6t). The most
likely function of this protein is a topoisomerase or primase with strong supporting evidence
coming from sequence-based approaches. The structural analyses performed by ProFunc once
again provided strong reverse template hits to primase-helicase proteins and also a reverse
gyrase. The SSM results provided weak matches to a variety of proteins including
sulphotransferases and PEP-dependent phosphotransferases. If the reverse template hits are
examined in closer detail it becomes apparent that the putative protein is a single domain
whereas the primase and topoisomerase proteins are multi-domain. As SSM is attempting to
match the putative protein with the entire multi-domain structures the hits are scoring badly
and are not even listed as they fall below the requisite 50% of secondary structure to be
considered a match. The reverse template method once again has no such problem as it is
dealing with local similarity within a 10Å radius of any putative site. One way round this issue
with SSM would be to alter its search parameters but this creates additional problems with
increased run-time and a far greater number of hits, the majority of which will be false positives.

The other structure-based methods are useful in different ways. When a strong match is found
to one of the enzyme templates, the functional significance is greater as the templates have
been created from a carefully annotated database of known enzyme reactions and catalytic
residues. In the case of the ligand- and DNA-binding templates the matches can be used to
identify likely substrates, cofactors or fragments of ligands that can fit in the active site. This
information can be of importance to the user when trying to set up ligand binding assays or co-
crystallisation experiments.

One of the biggest problems is the definition and comparison of function – how do we determine
a “correct” prediction? In this analysis the assignment of whether or not a hit is correct was
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achieved through a laborious manual process fraught with difficulties and occasional human
error. One particularly tricky case involves an ABC transporter protein that binds ATP (PDB
entry 1ji0). In this example the ProFunc reverse template results provide a number of hits to
other ABC transporter proteins but there are also hits to numerous other structures such as
“DNA mismatch repair protein”, “gluconate kinase”, “replication factor C” and “cell division
control protein”. The problem with assessing these hits is that they all have GO terms that
include “ATP binding” – so are these to be marked as true positives or false positives? The
question arises because the reverse template method is looking for local similarities in structure
– in this case the ATP binding region. It could therefore be argued that all of these hits are
“correct” as they all bind ATP, but when one looks at the function as a whole these become
false positive hits. In the initial manually based analysis these cases are identified as false
positives but the issue is a contentious one and illustrates the need for a clearer definition of
what a “correct” hit is.

Another example is that of tartronate semialdehyde reductase (PDB entry 1tea) which was
found to have 2 significant hits to “hydroxyisobutyrate dehydrogenase”. These hits were
annotated as false positive based on an initial textual comparison but further examination
reveals both tartronate semialdehyde reductase and hydroxyisobutyrate dehydrogenase to share
the top three levels of EC classification (in this case EC 3.1.1.-). The EC class was not picked
up in the procedures and illustrates some of the problems that can occur if entries are not fully
annotated in the databases. In this situation, it can be argued that the manual classification
should be altered to true positive as they are performing similar reactions even though substrate
specificity has diverged.

A more robust method to compare the functions of two proteins is to use GO annotation from
the entire gene ontology but this has its own difficulties, the greatest being that not every protein
in the structure or sequence databases has GO annotation. This issue will only improve with
time so this problem aside, the most pressing problems relate to the confidence of assignments:
some are manually curated whereas others have been inferred from electronic annotation. The
two situations do not have the same weighting or confidence and therefore this needs to be
reflected in any comparisons. Additionally, the GO system is not a linear hierarchy and how
exactly you compare any two terms is difficult.

Instead of using the entire ontology to compare the functions of two proteins we have shown
that the use of generic GO-slim terms can bypass many of the difficulties in comparing sets of
terms. In this initial study we have found that using a cutoff of 75-100% of the GO-slim terms
matching between a query protein and a hit is a good indicator of a positive match. The success
rate was comparable to expert manual assessment of the same data. One problem that did come
to light was that the generic GO-slim is too generic - any functional comparisons made are too
vague to be of use when trying to design experiments to test functional predictions. In order
to bridge the gap between the two approaches we constructed a more extended molecular
function GO-slim (MF-GO-slim) that allows for more detailed comparisons. This extended
MF-GO-slim showed a marked improvement on the Generic GO-slim and a cut-off of 75%
matching terms gives the best performance. Once a similarity in general function has been
identifed by the MF-GO-slim more detailed comparisons can then be made using the full
ontology. The study has shown that this very simplistic approach is useful for comparing the
functions of annotated proteins but it is evident that further work will be required in order to
define a quantitative measure for the similarity in GO-slim terms, perhaps using the method
described by Lord et al20 for identifying semantic similarity between entries in a database.
The greatest problem with the method is that it is only useful for situations where a hit has been
assigned gene ontology terms – this issue will only be resolved by greater coverage by GO of
the sequence and structure databases. One final question is where this approach would be used
when examining results from hypothetical proteins of unknown function. The GO-slim
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approach can be used in this case to compare all the annotated hits from all methods with one
another in order to identify commonalities in functions – the greater the similarity in function
amongst the hits the more likely it is that the function is correct.

From our experiences with the ProFunc server and from the success rates described previously
it is evident that, in order to improve our success rate for the second phase of the PSI, the range
of analyses will need to be improved and include new predictive methods not based on
homology. This is echoed by the need to look at higher level functions where we will need to
take into account the cellular component, interacting partners, networks, expression,
regulation, etc. The MCSG structures were a good dataset to develop and test the methods but
specific benchmark datasets will be required in order to test the variety of methods and allow
comparisons to be made between them rather than the current state with each method having
its own “good examples”. The consideration of various functional attributes (e.g. enzyme/non-
enzyme, DNA binding, metal binding, etc) and having benchmark datasets for each attribute
would be a much more successful strategy than trying to build a complete dataset to test the
rather vague concept of “function prediction” as a whole.

Methods
Dataset construction

The starting dataset comprised the 319 PDB deposits solved by the MCSG as of 30/09/2005.
This was then culled using the PISCES server at 30% sequence identity to provide a non-
redundant set of 282 structures. The resultant dataset was then split into those structures for
which the functions were known, those where putative functions had been assigned by the
depositors before submission to ProFunc, and those for which the function remained unknown
(e.g. “hypothetical protein”).

Structural Analysis
Each structure was submitted to the ProFunc server and the results stored for analysis. The
various methods within ProFunc use their own scoring scheme to rank the hits and classify
them by the confidence of the match15. These scoring schemes were adopted for this analysis
and used to assign confidence to the functional predictions. The parameters used to measure
confidence and rank hits are described in Table 2 along with their respective ranges.

Filtering hits
In order to compensate for any temporal bias, the structure-based results were “backdated” to
the time of release of the MCSG query protein by ignoring hits to protein structures released
after the MCSG structure. This allows us to see what the results would have suggested at the
time of release. Note that it is not possible to backdate the sequence-based analyses in the same
way hence our focus on the structure-based approaches only.

Manual functional comparison
Any free text was extracted from the PDB record along with any keywords from the
corresponding PDBsum database entry for each post-filtered top hit. These were placed in a
file alongside the functional annotation of the MCSG structure for comparison. The match was
then assessed as a correct hit, false hit, unknown function, or no hit and noted in the file. The
global sequence identity of the match was also calculated using SSEARCH21,22 in order to
identify clear homologues when assessing cases of moderate structural similarity.
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Comparing the best methods from manual assessment
A robust way of assessing the effectiveness of the best structure-based procedures is to calculate
their Receiver Operating Characteristic (ROC) curves. The ROC curve is a graphical
representation of the trade off between the false negative and false positive rates for every
possible cut off value. For each structure of known function, the top hit (after the filtering
process) was extracted from ProFunc. Each hit was then annotated with true positive (+), false
positive (−) or unknown (?) by manual comparison of the known function with the header
details and any GO annotation of the hit. Only the true and false positive results were kept (hits
to unknown function cannot be grouped in either category and can be ignored) and used,
alongside their scores, to create the ROC curve.

Automatic functional comparison: GO-slim method
The Gene Ontology23 is an attempt to standardise the description and definition of biological
terms through three structured, controlled vocabularies. The three major sections are Cellular
Component, Biological Process and Molecular Function – it is the last of these that is of interest
in this study. Many recent automated function prediction methods (e.g. Phunctioner24) have
utilised the Gene Ontology data in order to aid the prediction and comparison of function25–
29. There are a number of ways to compare gene ontology terms but the task is made difficult
by the fact that not all GO-terms are useful (e.g. “molecular function unknown”), the level of
annotation differs between proteins of the same function, and any probability-based approach
will be more biased towards those proteins that appear regularly in the sequence databases. In
addition, the ontology is not an even hierarchy and some areas of research are over-represented,
as are some species.

One way to deal with the inconsistencies in the ontology is to use the GO-slim system. A study
by Dolan et. al. 30 demonstrated their use in assessing the consistency of GO annotations from
different groups. GO-slims are cut down versions of the gene ontology that give a broad
overview of the ontology and are useful in situations where a broad classification of a gene
product function is required. The terms included in any one GO-slim can be selected by the
user according to their needs, such as the aforementioned study where comparisons were made
using a GO-slim consisting of only 19 terms. As standard the gene ontology consortium
provides a generic, species-independent GO-slim that condenses the entire ontology into 68
key parent terms of which only 31 are in the “molecular function” class (Table 1a in
supplementary material). This generic GO-slim was selected as a starting point to investigate
automatic assessment of function prediction accuracy.

Procedure to compare known function with predicted function from top hit
In order to compare a query protein with any hit protein, a list of GO-slim terms was required
for each. This information was obtained using various mapping files from the Gene Ontology
FTP site. If a UniProt code is available for the protein, the terms were extracted from the GOA-
UniProt mapping31, if a PDBcode is available then the GOA-PDB mapping file was scanned.
Every GO term was then compared against the GO-slim list and, if present, added into the final
list of GO-slim terms for that hit as is. If however, the term was further down the graph its GO-
slim terms needed to be identified by searching the GO to GO-slim mapping file (maps all of
the ontology to the GO-slim). The full list of identified “GO-slim” terms was then condensed
down to a final list of unique GO-slim terms.

If a hit were correct the protein would be expected to lie in a similar “region” of the GO graph
and therefore it should in theory share more GO-slim terms than would be expected of proteins
with very different functions. The unique GO-slim terms from the hit were compared against
the unique GO-slims from the query. If the number of terms matched was deemed to be
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significant it was assigned as a true hit, otherwise it was deemed false. The derivation of what
constitutes a significant number of matched terms is discussed in the Results section.

Creation of Molecular Function GO-slim (“MF-GO-slim”)
One problem with using the generic GO-slim is its generality (7844 molecular function GO
terms slimmed down to 31 key parent terms) which is exemplified by the enzymes. The generic
GO-slim condenses the gene ontology at a level that is equivalent to the top level of the EC
schema (e.g. E.C. 1.-.-.- : Oxidoreductases). In order to derive an extended GO-slim that is
more specific for molecular function prediction the ontology needed to be edited. The gene
ontology consortium offers the DAG-edit tool to view the entire ontology and allow users to
select terms of interest to put into a new GO-slim. A perl script supplied by the GO team was
then used to map the entire ontology to the newly created extended GO-slim (MF-GO-slim)
so that it could be used in place of the generic GO-slim. The 190 “molecular function” GO-
terms selected for inclusion as part of the MF-GO-slim are listed in the supplementary material
(Table 1b in supplementary material).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Breakdown of prior information for the 282 MCSG structures
The pie chart illustrates the proportion of the 282 non-redundant structures classed as “known
function”, “putative function” or “unknown function”.
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Figure 2.
Figure 2a: EC wheel for 92 proteins of known function
The EC wheel illustrates the proportion of known function proteins with different Enzyme
Commission numbers. The central core corresponds to the top level of the E.C. schema and is
the source of the colouring:

Red = E.C. 1.-.-.- (Oxidoreductases)

Blue = E.C. 2.-.-.- (Transferases)

Green = E.C. 3.-.-.- (Hydrolases)

Yellow = E.C. 4.-.-.- (Lyases)

Purple = E.C. 5.-.-.- (Isomerases)

Orange = E.C. 6.-.-.- (Ligases)

Each shell then corresponds to the next stage down the E.C. schema through the second, third
and finally the fourth level.
Figure 2b: Pie chart showing distribution of EC classes in the entire PDB
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The proportions illustrated are taken from the numbers of PDB entries in the PDB with each
top level E.C. number. This information is extracted from the Enzyme Structures Database at
the EBI (http://www.ebi.ac.uk/thornton-srv/databases/enzymes/).
Figure 2c: Map showing the coverage of the generic GO-slim by the MCSG dataset
Any MCSG structures from the full dataset annotated with GO terms had all their GO-terms
extracted and the associated GO-slim terms derived from the GOA-GOslim mapping file. All
GO-slims from the “Molecular Function” branch of the gene ontology were mapped. Those
GO-slim terms found in the annotations of the MCSG structures are coloured green whereas
those coloured red are not covered by the MCSG dataset.
The numbers in brackets correspond to the number of terms added at that point in the hierarchy
by the extended GO-slim and shows the spread of the additional information.
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Figure 3. ProFunc results for proteins of known function
The 92 proteins classed as having “known function” in the MCSG dataset were analysed using
ProFunc. The top hit (after parsing for release dates) was classified by success and strength of
hit. Those hits to hypothetical proteins or members of families/domains of unknown function
are classified as “unknown”. The structure-based methods used by ProFunc are as follows:
SSM – Secondary Structure Matching (MSDfold): fold comparison service.
ENZ – Enzyme template search (Catalytic Site Atlas data)
LIG – Ligand binding template search (Automatically generated templates)
DNA – DNA binding template search (Automatically generated templates)
SIT – SiteSeer (“Reverse template” method)
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Figure 4. ROC curves for SSM and SIT based on manual function assignment
The ROC curves are plotted for SSM results and for SiteSeer (“reverse template”) results. The
cut-off used by SSM is the Z-score of the hit, whereas it is the E-value that is of interest in
SiteSeer (reverse templates). The ideal curve would rise vertically from the origin and then
horizontally out to the right and would give an area under the curve of 1. The plot shows that
the SSM Z-score appears to be a better measure for distinguishing between true and false
positives than the SiteSeer (“reverse template”) measures.
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Table 1
Description of 30 known function proteins with no EC class

PDB code Function description
1td5 Repressor of aceBA operon, IclR transcriptional regulator (repressor)
1lj9 Transcription regulator (MarR-like transcription factor)
2a61 Transcriptional regulator tm0710
1mkm Transcriptional regulator, IclR family
1z05 Transcriptional regulator, ROK family
1z0x Transcriptional regulator, TetR family
1zk8 Transcriptional regulator, tetr family
1sfx HTH transcription regulator
1s3j MarR/SlyA like transcriptional factor
1ylf RRF2 family protein (Transcriptional regulator)
1sr8 Cobalamin biosynthesis protein
1u7n Fatty acid/phospholipid synthesis protein
1mkz Molybdopterin biosynthesis, protein B
1xau B and T lymphocyte attenuator
1otk Phenylacetic acid degradation protein paac
1y89 DevB protein (sol/devb family)
1kr4 Divalent cation tolerance protein
1zma Bacterocin transport accessory protein
1xwm Phosphate transport system protein phoU
1zox Clm-1 mouse myeloid receptor extracellular domain (ig-like receptor)
1pqz Murine cytomegalovirus immunomodulatory protein m144, Modulation of NK cell, immunoglobulin-like
1tua mitochondrial-type HSP70
1vzy HSP 33 Chaperonin
1r0d I/LWEQ domain bind to actin, huntingtin interacting protein-1-related
1y71 Kinase-associated protein B
1x7f Outer surface protein
1j8r PapG Receptor-Binding, Pyelonephritic adhesin
2a5l Trp repressor binding protein wrba
1mkf Viral chemokine binding protein M3
1pzx Signal recognition particle (DegV-like)
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