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Abstract
Motivated by a real example of understanding the so-called “building related occupant complaint
syndromes” (BROCS), we propose a tree-based method for analyzing a multivariate ordinal response.
Our method is semiparametric by assuming a within-node parametric distribution on the adaptive
nonparametric tree framework. We use simulation experiments to demonstrate the ability of our
method to identify underlying structures in the data and the fact that analyzing ordinal response data
with proper methods that take ordinality into account is considerably more powerful than
dichotomization. The reanalysis of the BROCS data also suggests new insights that go beyond a
previous analysis based on the dichotomization.
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1. INTRODUCTION
In many studies such as health surveys, researchers collect information from multiple items or
sources to determine the condition or disease status of a subject. For example, in a study of the
so-called “building related occupant sick syndromes” (BROCS), responses on six clusters of
complaints were collected from each of the 6,800 respondents. It is noteworthy that the choices
for many items in the BROCS study are “never”, “rarely”, “sometimes”, “often”, and “always”,
or a subset of these choices. To analyze such data, a common practice is to dichotomize the
ordinal scaled responses by collapsing them into “yes” or “no” and then model the derived
multivariate binary response as in Zhang (1998). While convenient, such a dichotomization is
not ideal because it leads to loss of information and the decision of collapsing which levels
into the same group is often subjective. We will demonstrate later that analyzing ordinal
response data with proper methods that take ordinality into account is considerably more
powerful than dichotomization.

In the past decade, it has become a very active research area to directly analyze ordinal
responses instead of dichotomizing them first. Agresti (1999) provides a thorough review and
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extensive literature on some of the advances in this area. For example, Hedeker and Gibbons
(1994) proposed a random-effect regression model for the analysis of multiple correlated
ordinal responses. They assumed a linear regression model for latent unobserved continuous
responses that underlie the observed ordinal responses. Then, either a cumulative probit or
cumulative logit link function was used to model the response functions. Ten Have (1996)
proposed a mixed effects model to analyze ordinal responses and derived a closed form for the
marginal log-likelihood when the distribution of the random effects is log-gamma with the
cumulative complementary log-log link function.

It is evident from Agresti (1999) and other work that random or mixed effects models are the
basis of the parametric models for analyzing ordinal responses and that many useful models
and approaches have been established. However, little progress has been made in using
nonparametric techniques to deal with correlated ordinal responses, which can be particularly
useful when the underlying structure in the data is not apparent and an exploratory step is
desirable. In one exception, Kauermann (2000) introduced local smoothing in a regression
model for clustered or longitudinal data with ordinal responses. In essence, the nonparametric
technique is used to estimate the marginal parameters such as fixed effects and within-subject
correlations. The main motivation for this work is to fill in this methodological gap.

Analyzing ordinal response data with proper methods that take ordinality into account is
considerably more powerful than dichotomization (e.g., Zhang et al. 2003, Zhang et al.
2006). We mentioned a few different ways to analyze a multivariate ordinal response. In this
paper, we develop a tree-based approach to the analysis of multivariate ordinal data, because
it is an undeveloped area, and in many studies we have little information as to which and how
predictors are related to the responses.

Like Zhang (1998) and Kauermann (2000), our approach is a hybrid of nonparametric and
parametric methods, and is best termed as a semiparametric one. The idea is that the specific
tree structure is not known and will be determined from the data – this is the nonparametric
aspect of the method – and that whenever we have a tree, even temporarily, we assume a
particular form of within-node distribution – this is the parametric aspect of the method. This
idea has been frequently used in the development of tree-based methods (Zhang, 1998; Zhang
and Singer 1999). Later, we will describe in detail what we mean by a node as well as other
terminologies.

2. METHOD
2.1 The model

Assume that there are N units of observations in the data. Within unit i, we observe n ordinal
responses denoted by zi and p covariates denoted by xi. In longitudinal studies, the set of
responses within a unit results from repeated measures from the same subject, and the
covariates may be constant in the unit or depend on the component of the unit, i.e., time varying.
In other studies such as in Zhang (1998), the set of responses within a unit is comprised of
different sites or symptoms of a disease, e.g., different sites of cancer, different respiratory
symptoms, comorbid psychiatric diseases, and different substance abuses. Again, the
covariates can be constant within the unit, or vary by the individual component of the unit. In
this work, we only consider covariates that are common within the observation unit.

Let zij denote the jth ordinal response in the ith unit, and suppose that it takes a value from 1,
…, K. For clarity and without loss of generality, the number of categories K is assumed to be
the same for all response variables, because we can create extra levels with zero frequency
when different responses have different numbers of categories. Let us define K − 1 indicator
variables yijk = I (zij > k), for k = 1,…, K − 1. Here I(·) is the indicator function. Let
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(1)

Then, the observed responses from the ith unit can be rewritten as

and the covariates are

i = 1,…, N. Our objective is to characterize the distribution of yi based on xi.

2.2 Node-split criterion
As in the general tree methodology (Breiman et al. 1984 and Zhang and Singer 1999), the
construction of a tree begins with splitting the root node that consists of all data in a learning
sample. Once the root node is divided into two daughter nodes, we apply the same procedure
to partition the daughter nodes. This process is referred to as the recursive partitioning
procedure, and it is the thrust of the tree formation. Thus, in this section, we concentrate on
splitting the root node into the left daughter(tL) and right daughter(tR).

For an ordered covariate (on an ordinal or continuous scale), say xj, and a threshold value c,
whether unit i is assigned to the left or right daughter node is based on the question whether
or not xij > c. If xj is a categorical covariate, the assignment is made according to a particular
set of some levels that this covariate can take. All covariates and their splitting values together
usually yield many ways of splitting the root node. Hence, a splitting criterion to select the best
split is needed.

Following the approach of Zhang (1998) for handling multiple binary responses, we assume
an intermediate within-node joint distribution of the responses within a unit. Precisely, for the
ith unit, we consider a within-node joint distribution for zi as follows

(2)

where ψ and ω are vectors of parameters, Ai(ψ, ω) is the normalization constant which is the
summation over Kn possible assignments for the value of zi. Moreover, yi is defined in (1) and

(3)

Because wi consists of pairwise interactions between all indicators of two responses, its
coefficient vector ω contains the information on the “correlation” of the two responses. In fact,
in simple cases, these coefficients are odds ratios, which are commonly used to describe the
association between two binary variables.

Without restrictions, ψ and ω have (K − 1)n and (K − 1)2n(n − 1)/2 elements, respectively. To
reduce the number of the free parameters and retain the ordinality property of the responses,
we introduce a link matrix C and let ω = Cθ, where

(4)
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Here Im denotes an m × m identity matrix for an integer m, 1n is an n-vector of ones, and ⊗
refers to the operator for the Kronecker product. Then, the joint probability distribution of zi
becomes

(5)

Remark—The implication of this parameter reduction is to assume that the correlation
structure among any two pair of responses is the same, but varies for different ordinal levels
to retain the ordinality of the responses. We should note that the heterogeneity in different
responses is reflected through the “prevalence” parameter ψ. In other words, the “prevalence”
parameters depend on a specific response and its ordinal level while the “correlation”
parameters are only functions of the ordinal level. Such assumptions may not be ideal, but are
quite common in analysis of correlated data.

Once the within-node distribution is defined, the maximum log-likelihood can serve as a
splitting criterion. That is, for any node t, we obtain

(6)

where ψ ̂ and θ ̂ are the maximum likelihood estimators of ψ and θ based on samples in node t.
Thus, we select a split from all allowable ones to maximize the sum of the generalized entropies,
h(tL)+h(tR), from the resulting two daughter nodes. Because the pool of allowable splits is
usually large and the assessment of each allowable split entails a maximization, we want to
reduce the computational burden to its minimal level. In the appendix, we discuss in detail the
computation issues.

In addition to the distribution assumed in (2), there are other alternative distributions that are
commonly used in analysis of multivariate ordinal variables. For example, we considered a
simple approach by treating the ordinal responses as numerical responses, and we will present
simulation results from this approach below. In addition, we evaluated another approach based
on the multivariate distribution of Hedeker and Gibbons (1994). This approach is
computationally complicated and the resulting trees were not preferable according to our
simulation (data are not presented here). On the basis of this empirical evidence, we adopted
the exponential distribution in (2).

2.3 Tree pruning
So far, we have explained the recursive partitioning procedure for growing a tree. Because we
do not employ any stopping procedure, the resulting tree is generally large and over grown.
Thus, it is important to determine an appropriate size of the final tree for interpretation. This
step is usually referred to as pruning. The commonly used procedures include error based
pruning (Quinlan 1987, 1993), minimum error pruning (Niblett and Bratko 1986), critical value
pruning (Mingers 1987), and cost-complexity pruning (Breiman 1984). Esposito et al.
(1997) compared these pruning methods and found no clear winner. Later, Li et al. (2001)
proposed a pruning method that combines dynamic programming and classical optimization
technique. Here, we use the cost-complexity concept, because it can be easily generalized from
a single response to multiple responses.

Briefly, we divide the entire sample into a number of groups (e.g., 2, 5 or 10) of approximately
equal sizes. If we use a υ-fold cross validation, the original sample is randomly divided into
υ groups. We repeat the tree growing procedure υ times, and each time we use υ −1 of the υ
subgroups of the sample as the learning sample alternatively for tree growing and the left-over
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subgroup as the test sample to evaluate the predictive quality of the tree. The final tree is
determined to optimize the predictive quality based on the cross-validation.

To determine the final tree, we follow the steps of Breiman et al. (1984). There are four
preparation steps before cross validation is applied. First, we introduce a complexity parameter,
α that is used to penalize a large tree. Secondly, let T ̃ denote the set of all terminal nodes of a
tree T. We define the cost for tree T, denoted by R(T), as

(7)

where f is defined as in (5). Thirdly, we introduce a cost-complexity for a tree T as

(8)

where |T ̃| is the number of terminal nodes. Lastly, we can find an increasing sequence of
complexity parameters,

(9)

each of which leads to a smallest subtree of T with the lowest cost. Here, α0 = 0. It is important
to note that the resulting sequence of subtrees is nested. That is, we have a sequence of nested
optimal subtrees as follows:

where T0 is the initial tree and corresponds to α0 and Tn is the smallest tree containing the root
node only.

Now, we are ready to select the final tree from the above sequence of optimal subtrees through
cross validation. During the kth fold of the cross validation, we regrow a large tree, denoted

by  using the learning sample. Then, we apply the sequence of the complexity-parameters

in (9) to produce a nested sequence of subtrees of . We denote this sequence by

For each subtree , we compute its cost, , as in (7) using the test sample, whereas
Ψ̂ and θ ̂ are fixed from the learning sample. The cross validation cost, Rcυ(Tl), of subtree Tl is

the average of  over the υ folds. We can select the subtree with the smallest cross
validation cost. However, as discussed in Breiman et al. (1984), it is sometimes helpful to
consider the so-called one-standard error rule to overcome the instability of the subtree with
the minimal cross validation cost. Instead of choosing the subtree Ts with the minimal cross
validation cost, we choose the smallest subtree Ts1 such that

(10)

where SE(Rcυ (Ts)) is the standard error of Rcυ (Ts).

Theoretical estimation of SE(Rcυ (Ts)) is complex even in the simplest tree framework. Thus,
we repeat the five-fold cross-validation process a number of times (e.g., 10) and obtain an
estimate of SE(Rcυ (Tl)) for l = 0,…, m.
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3. SIMULATION
In this section, we present simulation studies to evaluate the node-splitting measure, h(t), in
(6). The data are simulated as follows. We included the same 22 covariates as in the real data
set to be presented in Section 4. A latent continuous variable U underlying the observed ordinal
variable Z was generated from the following model:

(11)

where bi ~ N (0, 1) is the random intercept, εik ~ N (0, 2) is the residual term, and they are all
independent for k = 1,…, 6, i = 1,…, 6800. A 3-level ordinal response is determined by

Thus, 19 of the 22 covariates were included in the dataset as noise variables. We should note
that the data generating model is not in a tree structure.

To speed up the computation, we used a 2-fold cross-validation during the tree pruning, and
replicated the cross-validation 10 times to obtain the standard error of the cross validation
estimate of the tree cost. The simulation experiment was replicated 100 times.

The resulting trees correctly selected X7 > 1, X13 > 3, and X15 > 1 as the splits in 96 of the 100
runs. X13 > 3 is always the one to split the root node. In only 1 of the 100 runs, the tree included
an additional split based on X10 > 1. In only 3 of the 100 runs, the trees did not select X15 > 1.
Thus, the trees based on h(t) are highly sensitive and specific in revealing the true splits.

As mentioned earlier, we also evaluated alternative splitting criteria. For example, the simplest
way is to treat the ordinal responses as numerical values and use the correlation matrix with
each node as the basis for splitting. This criterion was studied by Segal (1992) and Zhang
(1998). In 21 of the 100 runs, the final trees selected a noise variable. In six runs out of 100,
the final trees had only one split, which was X13 > 3. The other two variables were not used.
Hence, treating the ordinal responses as if they were numerical is not a satisfactory approach.

To further evaluate the validity of our method, we performed additional simulations to
investigate the ability of our proposed method in identifying the relevant splits when the data
are generated from tree-based models. Although the real data are not likely to conform the
exact tree structures, it is still useful to understand the performance of the trees under the
hypothetical situations.

Our simulation data were generated from a tree with 3 layers and 4 terminal nodes as displayed
in Figure 1. The units in the four terminal nodes had different joint probability distributions
determined by the parameters (ψ11, ψ12, ψ21,…, ψ62, θ11, θ12, θ21, θ22). These parameters were
set to (−1., −3., −1.4, −3., −1., −3.2, −1.2, −3., −1.4, −3.6, −1.4, −3.2, 0.5, 0.0, 0.4, 0.5); (−1.,
−3., −1.5, −3., −1., −3.2, −1.2, −3., −1.2, −3.2, −1.3, −3.1, 0.5, 0.4, 0.4, 0.5); (−1., −3.1, −0.9,
−3., −1.1, −3.1, −1.0, −3.2, −1.0, −3.2, −1.0, −3.4, 0.5, 0.2, 0.4, 0.5); and (−1., −3.1, −1.0, −3.,
−1.4, −3.1, −1.0, −3., −1.1, −3.2, −1.0, −3.4, 0.5, 0., 0., 0.5) for nodes 4, 5, 6 and 7, respectively.
Again, we used the same covariates as the real data set to be analyzed below, and 19 of the 22
covariates were included in the data sets as noise variables. Furthermore, we generated six 3-
level ordinal responses.

We replicated our simulation 50 times. After pruning, 49 of the 50 final trees were exactly the
same as in Figure 1. The lone missed one contained the three underlying splits, however. Thus,
this simulation experiment validates our method.
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If the goal is to identify relevant splits that are predictive of the responses, it is useful to know
whether we can also achieve this goal by collapsing the three-level ordinal responses to two-
level binary responses and applying the existing tree based method. For example, let us collapse
the first two levels into the same one. Using the same 50 replications as described above, we
constructed 50 trees using the multiple binary outcomes. Thirteen out of the 50 trees are the
same as the underlying tree in Figure 1. Thirty trees out of 50 are of the same form as depicted
in Figure 2. The remaining 7 trees are extensions of the tree shown in Figures 1 and 2. Therefore,
certain information is lost as a result of the dichotomization while some essential information
is also kept.

Using this experiment, we re-evaluated the idea of treating the ordinal responses as continuous
ones. Table 3 summarizes all of the final tree structures. Like the dichotomization approach,
this approach does not perform as well as the use of h(t) in (6).

4. APPLICATION
We now apply our method to the BROCS data set analyzed by Zhang (1998). BROCS contains
a set of highly correlated symptoms of discomfort reported by occupants of buildings. It is a
common occurrence in office buildings, hospitals, etc. all over the world. There are several
common symptoms of BROCS such as irritation of the eyes, nose, and throat, headache, and
nausea. Continuing efforts have been dedicated to understand the nature and find the cause of
BROCS. See Zhang (1998) for the related references. Our data set is a subset of the data from
a 1989 survey of 6,800 employees of the Library of Congress (LOC) and the headquarters of
the Environmental Protection Agency (EPA) in the United States. In Zhang (1998), BROCS
is represented by six binary outcome variables in Table 1, and 22 predictors described in Table
2 are considered as risk factors of BROCS. While we use the same covariates, because the six
outcome variables were originally defined in ordinal scales, we reanalyze the data set using
the six three-level ordinal responses (0: rarely; 1: sometimes; 2: often).

Based on (5), an initial tree T0 of 103 nodes was grown. The pruning step produced a sequence
of 52 nested optimal subtrees. The cost-complexity plot for these nested subtrees is displayed
in Figure 3. Ten replications of 5-fold cross-validation were used to obtain the estimates of the
subtree costs and their standard errors. As can be seen in Figure 3, the 1-standard error rule
leads to the final subtree with 15 terminal nodes, which is displayed in Figure 4. This figure
also summarizes the information for the 15 terminal nodes.

Figure 4 reveals more information than that presented by Zhang (1998). First, it includes all
risk factors related to air quality measures that were identified by Zhang (1998). Furthermore,
it suggests that subjects in terminal nodes 16 and 17 reported the fewest numbers of complaints
for all six types of symptoms. People in those groups experienced better air quality in their
working environment. For example, the air was never too dusty, rarely too dry, and might be
occasionally too stuffy. Comparison of nodes 16 to 17, and 22 to 23 reveals the gender
difference in that females complained more frequently of discomfort than males, especially for
pain.

Even though subjects in terminal nodes 24 and 25 were allergic to mold, comparison of these
nodes suggests that a too dusty air quality in the work space resulted in more frequent
discomfort in the upper airway and pain.

It is interesting to note that Zhang (1998) did not note a clear increase of discomfort of eye
symptoms as a result of experiencing a glare. Examining terminal nodes 26 and 27 suggests a
notable increase of eye symptoms at level 2, although this is less notable at level 1. An increase
of comfort in some of the other symptoms is more apparent.
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Figure 4 reveals that the variation in the level 1 responses among all terminal nodes is relatively
modest for every symptom. In other words, the 22 covariates are not so predictive at this
discomfort level. The variation in the level 2 responses is evident, although as noted by Zhang
(1998) the eyes-related complaints are quite rare in general. In contrast to Zhang (1998) in
which levels 1 and 2 were merged, our analysis suggests that it would have been more
reasonable to merge levels 0 and 1. In other words, if collapsing some levels are desirable, our
proposed method can provide useful information as to how the collapsing should be executed.

5. DISCUSSION
We proposed a tree-based method to analyze multivariate ordinal responses. Our method is
semiparametric and takes advantage of the adaptive and intuitive tree structures as well as the
simplicity of parametric assumptions. While this general idea appears straightforward,
developing a computationally feasible and practically interpretable approach remains a
challenge.

It is very common for multivariate ordinal responses to have missing data. For example, in
longitudinal analysis, missing values occur when the subject of interest is unavailable for the
measurements. In our analysis, we assumed that the number of observations are equal for each
subject. Since missing data in the response variables result in a varying number of observations
for each subject, it remains important to investigate multiple imputation schemes in the context
of tree based modeling.

While we have examined multivariate responses with the same number of ordinal scales, our
model and method are readily applicable to a mix of ordinal and nominal responses, including
the binary case. The challenge is to define a tractable and justifiable joint distribution.

Unlike parametric methods that are best suited for data with simple relations in the data, tree-
based approach is more advantageous for data that include a large number of covariates and
response variables, such as the BROCS data set. We have demonstrated through simulation
studies that our method can perform exploratory data analysis, choose the important covariates
from a long list of potentially influential covariates, and unravel the appropriate data structures.
Applying our method to the BROCS data set led to useful insights into the understanding of
the BROCS.

Dealing with multivariate responses, binary or ordinal, is a challenging and complicated task.
Compared to the modeling of multiple binary responses, the task is even more complex for
multiple ordinal responses. In an effort to reduce the computational burden, we proposed and
evaluated a time-saving algorithm for optimization. A continuing effort to improve the
computational efficiency remains worthwhile.

Through the analysis of a specific data set, we see that there are some clear advantages of
analyzing ordinal responses. By beginning with the ordinal responses, we may also find helpful
information to collapse the responses if we want to simplify the data and analysis.

Many other topics are worthwhile for future investigations. In this work, we focused on
establishing an adaptive framework. In addition to the important issues mentioned above, with
a large number of predictors, there may be alternative and competitive tree structures. To learn
and utilize as much information as possible from such a data set, it is useful to consider forests
such as bagging (Breiman 1996) and deterministic procedures (Zhang et al. 2003). Finally,
Bayesian approach is also worth pursuing.
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APPENDIX: COMPUTATIONAL ISSUES
It follows from the node specific likelihood function (2) that

Using the link matrices defined in (4) and based on model (5), we have

where B = In×(K−1) and C is defined in (4).

The likelihood function from the N units of observations is
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and the log-likelihood is

Thus, the score equations are

To find ψ ̂ and θ ̂ that maximize the log-likelihood l(z, ψ, θ), we tested Newton’s method, Quasi-
Newton method and our simplified iteration procedure. The updating formula for Newton’s
method is listed below

(12)

where V(J) is the covariance matrix of (Y, W) at the J-th step. As noted in Zhang (1998),
however, the computation for updating the estimators, especially the computation of (V(J))−1

can be very time consuming. Also as the number of repeated response n increases, the method
rarely converges. For example, when n = 6, the Newton’s method rarely converged.

The BFGS method is one of the Quasi-Newton methods that avoids computing the inverse
Hessian matrix. It calculates the score function and approximates the inverse Hessian matrix
at step k. Let ν = {ψ, θ}. We first choose a initial guess ν0 and set B0 = I, the identity matrix.
At the k + 1-th step of BFGS method, we proceed as follows:

1. Compute the score function sk+1. If sk+1=0, stop. Otherwise, let dk+1 = Bksk+1 (Bk is
the approximation of the inverse Hessian matrix).

2. Perform a linear search to find the optimal step length αk+1 and set νk+1 = νk +
αk+1sk+1.

3. Update Bk+1, the approximation of inverse Hessian matrix. Let νk = sk+1 − sk and wk
= νk+1 − νk, then

The computation for BFGS method is also very extensive. It includes several vector and matrix
operations during each updating step.

We adopt and verify a simplified iteration procedure to reduce the computational burden.
Specifically, we use the sample variance-covariance matrix V0 of
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and update the estimators of the parameters ψ and θ as follows:

(13)

We report our simulation study to validate our simplified maximization procedure. Using

model (5), we generate N units of observations, , where N is chosen from
100 and 200. We consider the following four settings for n: (a) n=3; (b) n=4; (c) n=5; and (d)
n=6. The level K for the ordinal response is set to 3. The parameters to be estimated are ψ11,
ψ12,…, ψ (n−1),1, ψ (n−1),2, θ11, θ12, θ21, θ22.

Tables 4, 5, 6, and 7 report parameter estimates and their standard errors for the four settings
of n, using our simplified method and the Quasi-Newton method. The results show that the
simplified estimation procedure performs nearly identically to the Quasi-Newton method in
all settings. It is also interesting to note that when n = 6, the Quasi-Newton method significantly
underestimates the ψ while our proposed simplified procedure has sufficient accuracy. As
expected, an increased sample size improves the accuracy of the parameter estimates. Table 8
displays the dramatic savings in terms of computational time. In summary, Tables 4, 5, 6, 7,
and 8 demonstrate that the simplified algorithm reduces computation time by 20 to 160 folds
while maintaining the same or better level of accuracy as the Quasi-Newton method. This
saving of computational time is significant in the present context because the selection of splits
and the determination of the tree require numerous rounds of maximizing the likelihoods.
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Figure 1.
Predefined Tree Used in the Simulation.
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Figure 2.
Final Tree Identified by Most Simulation Runs Using Collapsed Binary Responses.
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Figure 3.
Cost-Complexity for Sequence of Nested Subtrees. ***, Cross-Validation Estimates of Cost;
⋄ ⋄ ⋄, One Standard Error Above the Cross-Validation Estimated Cost.
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Figure 4.
Tree Structure for the Risk Factors of BROCS. Each Terminal Node is Represented by a 3 ×
6 Table in which Rows Correspond to Levels of Response 0, 1, 2 from Bottom Up and Columns
to the 6 Multivariate Responses. From Left to Right, They Are CNS, UA, Pain, Flu-like, Eyes,
and LA. Each Cell Is Colored by Its Corresponding Frequency with the Color Scale Displayed
on Top of Node 27.
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Table 1
Ordinal Response Variables

Response Cluster Symptoms

y1 CNS Difficulty remembering/concentrating, dizziness, lightheadedness
y2 Upper airway Runny/stuffy nose, sneezing, cough, sore throat
y3 Pain Aching muscles/joints, pain in back/shoulders/neck, pain in hands/wrists
y4 Flu-like Nausea, chills, fever
y5 Eyes Dry, itching, or tearing eyes; sore/strained eyes; blurry vision
y6 Lower airway Wheezing in chest, shortness of breath, chest tightness
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Table 2
Description of Explanatory Variables

Name Questions Answer

x1 What is the type of your working space? enclosed office with door, cubicle without
door, stacks, etc.

x2 How is your working space shared single, occupant, shared, etc.
x3 Do you have a metal desk? yes or no
x4 Do you have new equipment at your work area? yes or no
x5 Are you allergic to pollen? yes or no
x6 Are you allergic to dust? yes or no
x7 Are you allergic to mold? yes or no
x8 How old are you? 16–79 years old
x9 Gender male or female
x10 Is there too much air movement at your work area? never, rarely, sometimes, often, always
x11 Is there too little air movement at your work area? same as x10
x12 Is your work area too dry? same as x10
x13 Is the air too stuffy at your work area? same as x10
x14 Is your work area too noisy? same as x10
x15 Is your work area too dusty? same as x10
x16 Do you experience glare at your workstation? no, sometimes, often, always
x17 How comfortable is your chair? reasonably, somewhat, very uncomfortable,

no one specific chair
x18 Is your chair easily adjustable? yes, no, not adjustable
x19 Do you have influence over arranging the furniture? very little, little, moderate, much, very much
x20 Do you have children at home? yes or no
x21 Do you have major childcare duties? yes or no
x22 what type of job do you have? managerial, professional, technical, etc.
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Table 3
Distinct Final Trees and Their Frequencies In 50 Simulation Runs by Treating Ordinal Responses as Continuous
Measures

Frequency Tree Structure
27

12

10

1
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