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Abstract
The LASSO-Patternsearch algorithm is proposed to efficiently identify patterns of multiple
dichotomous risk factors for outcomes of interest in demographic and genomic studies. The patterns
considered are those that arise naturally from the log linear expansion of the multivariate Bernoulli
density. The method is designed for the case where there is a possibly very large number of candidate
patterns but it is believed that only a relatively small number are important. A LASSO is used to
greatly reduce the number of candidate patterns, using a novel computational algorithm that can
handle an extremely large number of unknowns simultaneously. The patterns surviving the LASSO
are further pruned in the framework of (parametric) generalized linear models. A novel tuning
procedure based on the GACV for Bernoulli outcomes, modified to act as a model selector, is used
at both steps. We applied the method to myopia data from the population-based Beaver Dam Eye
Study, exposing physiologically interesting interacting risk factors. We then applied the the method
to data from a generative model of Rheumatoid Arthritis based on Problem 3 from the Genetic

†Corresponding Author. Research supported in part by NIH Grant EY09946, NSF Grants DMS-0505636, DMS-0604572 and ONR
Grant N0014-06-0095..
*Research supported in part by NIH Grant EY09946, NSF Grants DMS-0505636, DMS-0604572 and ONR Grant N0014-06-0095.
‡Research supported in part by NSF Grants SCI-0330538, DMS-0427689, CCF-0430504, CTS-0456694, CNS-0540147 and DOE Grant
DE-FG02-04ER25627.
§Research supported in part by NIH grants EY06594 and EY015286.
¶Research support in part by NIH grants EY06594, EY015286 and Research to Prevent Blindness Senior Investigator Awards.

NIH Public Access
Author Manuscript
Stat Interface. Author manuscript; available in PMC 2008 October 10.

Published in final edited form as:
Stat Interface. 2008 ; 1(1): 137–153.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Analysis Workshop 15, successfully demonstrating its potential to efficiently recover higher order
patterns from attribute vectors of length typical of genomic studies.

1. INTRODUCTION
We consider the problem which occurs in demographic and genomic studies when there are a
large number of risk factors that potentially interact in complicated ways to induce elevated
risk. The goal is to search for important patterns of multiple risk factors among a very large
number of candidate patterns, with results that are easily interpretable. In this work the LASSO-
Patternsearch algorithm (LPS) is proposed for this task. All variables are binary, or have been
dichotomized before the analysis, at the risk of some loss of information; this allows the study
of much higher order interactions than would be possible with risk factors with more than
several possible values, or with continuous risk factors. Thus LPS may, if desired, be used as
a preprocessor to select clusters of variables that are later analyzed in their pre-dichotomized
form, see [39]. Along with demographic studies, a particularly promising application of LPS
is to the analysis of patterns or clusters of SNPs (Single Nucleotide Polymorphisms) or other
genetic variables that are associated with a particular phenotype, when the attribute vectors are
very large and there exists a very large number of candidate patterns. LPS is designed
specifically for the situation where the number of candidate patterns may be very large, but the
solution, which may contain high order patterns, is believed to be sparse. LPS is based on the
log linear parametrization of the multivariate Bernoulli distribution [35] to generate all possible
patterns, if feasible, or at least a large subset of all possible patterns up to some maximum
order. LPS begins with a LASSO algorithm (penalized Bernoulli likelihood with an l1 penalty),
used with a new tuning score, BGACV. BGACV is a modified version of the GACV score
[37] to target variable selection, as opposed to Kullback-Liebler distance, which is the GACV
target. A novel numerical algorithm is developed specifically for this step, which can handle
an extremely large number of basis functions (patterns) simultaneously. This is in particular
contrast to most of the literature in the area, which uses greedy or sequential algorithms. The
patterns surviving this process are then entered into a parametric linear logistic regression to
obtain the final model, where further sparsity may be enforced via a backward elimination
process using the BGACV score as a stopping criterion. Properties of LPS will be examined
via simulation, and in demographic data by scrambling responses to establish false pattern
generation rates.

There are many approaches that can model data with binary covariates and binary responses,
see, for example CART [1], LOTUS [2], Logic regression [27] and Stepwise Penalized Logistic
Regression (SPLR) [26]. Logic regression is an adaptive regression methodology that
constructs predictors as Boolean combinations of binary covariates. It uses simulated annealing
to search through the high dimensional covariate space and uses five-fold cross validation and
randomization based hypothesis testing to choose the best model size. SPLR is a variant of
logistic regression with l2 penalty to fit interaction models. It uses a forward stepwise procedure
to search through the high dimensional covariate space. The model size is chosen by an AIC-
or BIC-like score and the smoothing parameter is chosen by 5-fold cross validation. For
Gaussian data the LASSO was proposed in [32] as a variant of linear least squares ridge
regression with many predictor variables. As proposed there, the LASSO minimized the
residual sum of squares subject to a constraint that the sum of absolute values of the coefficients
of the basis functions be less than some constant, say t. This is equivalent to minimizing the
residual sum of squares plus a penalty which is some multiple λ (depending on t) of the sum
of absolute values (l1 penalty). It was demonstrated there that this approach tended to set many
of the coefficients to zero, resulting in a sparse model, a property not generally obtaining with
quadratic penalties. A similar idea was exploited in [3] to select a good subset of an over-
complete set of nonorthogonal wavelet basis functions. The asymptotic behavior of LASSO
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type estimators was studied in [16], and [25] discussed computational procedures in the
Gaussian context. More recently [5] discussed variants of the LASSO and methods for
computing the LASSO for a continuous range of values of λ in the Gaussian case. Variable
selection properties of the LASSO were examined in [20] in some special cases, and many
applications can be found on the web. In the context of nonparametric ANOVA decompositions
[39] used an overcomplete set of basis functions obtained from a Smoothing Spline ANOVA
model, and used ℓ1 penalties on the coefficients of main effects and low order interaction terms,
in the spirit of [3]. The present paper uses some ideas from [39], although the basis function
set here is quite different. Other work has implemented ℓ1 penalties along with quadratic
(reproducing kernel square norm) penalties to take advantage of the properties of both kinds
of penalties, see for example [12,19,38,40].

The rest of the article is organized as follows. In Section 2 we describe the first (LASSO) step
of the LPS including choosing the smoothing parameter by the B-type Generalized
Approximate Cross Validation (BGACV), “B” standing for the prior belief that the solution is
sparse, analogous to BIC. An efficient algorithm for the LASSO step is presented here. Section
3 describes the second step of the LASSO-Patternsearch algorithm, utilizing a parametric
logistic regression, again tuned by BGACV. Section 4 presents three simulation examples,
designed to demonstrate the properties of LPS as well as comparing LPS to Logic regression
and SPLR. Favorable properties of LPS are exhibited in models with high order patterns and
correlated attributes. Section 5 applies the method to myopic changes in refraction in an older
cohort from the Beaver Dam Eye Study [15], where some interesting risk patterns including
one involving smoking and vitamins are found. Section 6 applies the method to data from a
generative model of Rheumatoid Arthritis Single Nucleotide Polymorphisms adapted from the
Genetics Analysis Workshop 15 [6], which examines the ability of the algorithm to recover
third order patterns from extremely large attribute vectors. Section 7 notes some
generalizations, and, finally, Section 8 gives a summary and conclusions. Appendix A derives
the BGACV score; Appendix B gives details of the specially designed code for the LASSO
which is capable of handling a very large number of patterns simultaneously; Appendix C
shows the detailed results of Simulation Example 3. When all of the variables are coded as 1
in the risky direction, the model will be sparsest among equivalent models. Appendix D gives
a lemma describing what happens when some of the variables are coded with the opposite
direction as 1.

2. THE LASSO-PATTERNSEARCH ALGORITHM
2.1 The LASSO-Patternsearch algorithm –Step 1

Considering n subjects, for which p variables are observed, we first reduce continuous variables
to “high” or “low” in order to be able to examine very many variables and their interactions
simultaneously. We will assume that for all or most of the the p variables, we know in which
direction they are likely to affect the outcome or outcomes of interest, if at all. For some
variables, for example smoking, it is clear for most endpoints in which direction the smoking
variable is likely to be “bad” if it has any effect, and this is true of many but not all variables.
For some continuous variables, for example systolic blood pressure, higher is generally
“worse”, but extremely low can also be “bad”. For continuous variables, we need to initially
assume the location of a cut point on one side of which the variable is believed to be
“risky” (“high”) and the other side “not risky” (“low”). For systolic blood pressure that might,
for example, be 140 mmHg. For an economic variable, that might be something related to the
current standard for poverty level. If the “risky” direction is known for most variables the
results will be readily interpretable. Each subject thus has an attribute vector of p zeroes and
ones, describing whether each of their p attributes is on one side or the other of the cutoff point.
The LASSO-Patternsearch approach described below is able to deal with high order
interactions and very large p. The data is {yi, x(i), i = 1, …, n}, where yi ∈ {0, 1} codes the
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response, x(i) = (x1(i), x2(i), …, xp(i)) is the attribute vector for the ith subject, xj (i) ∈{0, 1}.

Define the basis functions , that is, Bj1j2..jr (x) = 1 if xj1, …, xjr are all 1’s
and 0 otherwise. We will call Bj1j2.. jr (x) an rth order pattern. Let q be the highest order we

consider. Then there will be  patterns. If q = p, we have a complete set of NB
= 2p such patterns (including the constant function μ), spanning all possible patterns. If q = 1
only first order patterns (henceforth called “main effects”) are considered, if q = 2 main effects
and second order patterns are considered, and so forth. Letting p(x) = Prob[y = 1|x] and the
logit (log odds ratio) be f (x) = log[p(x)/(1 − p(x))], we estimate f by minimizing

(1)

where  is  times the negative log likelihood:

(2)

with

(3)

where we are relabeling the NB −1 (non-constant) patterns from 1 to NB −1, and

(4)

If all possible patterns are included in (3) then f there is the most general form of the log odds
ratio for y given x obtainable from the log linear parametrization of the multivariate Bernoulli
distribution given in [35]. In Step 1 of the LASSO-Patternsearch we minimize (1) using the
BGACV score to choose λ. The next section describes the BGACV score and the kinds of
results it can be expected to produce.

2.2 B-type Generalized Approximate Cross Validation (BGACV)
The tuning parameter λ in (1) balances the trade-off between data fitting and the sparsity of the
model. The bigger λ is, the sparser the model. The choice of λ is generally a crucial part of
penalized likelihood methods and machine learning techniques like the Support Vector
Machine. For smoothing spline models with Gaussian data, [34] proposed ordinary leave-out-
one cross validation (OCV). Generalized Cross Validation (GCV), derived from OCV, was
proposed in [4,11], and theoretical properties were obtained in [21] and elsewhere. For
smoothing spline models with Bernoulli data and quadratic penalty functionals, [37] derived
the Generalized Approximate Cross Validation (GACV) from an OCV estimate following the
method used to obtain GCV. In [39] GACV was extended to the case of Bernoulli data with
continuous covariates and l1 penalties.

The derivation of the GACV begins with a leaving-out-one likelihood to minimize an estimate
of the comparative Kullback-Leibler distance (CKL) between the true and estimated model
distributions. The ordinary leave-out-one cross validation score for CKL is
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(5)

where fλ is the minimizer of the objective function (1), and  is the minimizer of (1) with
the ith data point left out. Through a series of approximations and an averaging step as described
in Appendix A, we obtain the GACV score appropriate to the present context. It is a simple to
compute special case of the GACV score in [39]:

(6)

here H = B*(B*′W B*)−1B*′, where W is the n × n diagonal matrix with iith element the
estimated variance at x(i) (piλ(1 −piλ)) and B* is the n × NB0 design matrix for the NB0 non-

zero cℓ in the model. The quantity  plays the role of degrees of freedom
here. As is clear from the preceding discussion, the GACV is a criterion whose target is the
minimization of the (comparative) Kullback-Liebler distance from the estimate to the unknown
“true” model. By analogy with the Gaussian case (where the predictive mean squared error
and comparative Kullback-Liebler distance coincide), it is known that optimizing for predictive
mean square error and optimizing for model selection when the true model is sparse are not in
general the same thing. This is discussed in various places, for example, see [10] which
discusses the relation between AIC and BIC, AIC being a predictive criterion and BIC, which
generally results in a sparser model, being a model selection criterion, with desirable properties
when the “true” model is of fixed (low) dimension as the sample size gets large. See also
[13,20] and particularly our remarks at the end of Appendix A. In the AIC to BIC
transformation, if γ is the degrees of freedom for the model, then BIC replaces γ with

. By analogy we obtain a model selection criterion, BGACV, from GACV as follows.
Letting γ be the quantity playing the role of degrees of freedom for signal in the Bernoulli-l1
penalty case,

(7)

γ is replaced by  to obtain

(8)

We illustrate the difference of empirical performances between GACV and BGACV on a “true”
model with a small number of strong patterns. Let ,  and  be
independently distributed from a bivariate normal distribution with mean 0, variance 1 and
covariance 0.7. Xi = 1 if  and 0 otherwise, i = 1, 2, …, 6. X7 is independent of the others
and takes two values {1, 0}, each with a probability of 0.5. X = (X1, …, X7). The sample size
n = 800. Three patterns that consist of six variables are important, and X7 is noise. The true
logit is

(9)
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This problem is very small so we chose the maximum order q = p = 7, so 127 patterns plus a
constant term are entered in the trial model. We ran the simulation 100 times and the result is
shown in Table 1. Both GACV and BGACV select the three important patterns perfectly, but
GACV selects more noise patterns than BGACV. Note that a total of 27−4 noise patterns have
been considered in each run. The maximum possible number in the last column is 100 ×(27

−4) = 12, 400. Neither GACV or BGACV is doing a bad job but we will discuss a method to
further reduce the number of noise patterns in Section 3. Figure 1 shows the scores of these
two criteria in the first data set. BGACV selects a bigger smoothing parameter than GACV
does. These scores are not continuous at the the point where a parameter becomes zero so we
see jumps in the plots.

2.3 Computation
From a mathematical point of view, this optimization problem (1) is the same as the likelihood
basis pursuit (LBP) algorithm in [39], but with different basis functions. The solution can easily
be computed via a general constrained nonlinear minimization code such as MATLAB’s
fmincon on a desktop, for a range of values of λ, provided n and NB are not too large. However,
for extremely large data sets with more than a few attributes p (and therefore a large number
NB of possible basis functions), the problem becomes much more difficult to solve
computationally with general optimization software, and algorithms that exploit the structure
of the problem are needed. We design an algorithm that uses gradient information for the
likelihood term in (1) to find an estimate of the correct active set (that is, the set of components
cℓ that are zero at the minimizer). When there are not too many nonzero parameters, the
algorithm also attempts a Newton-like enhancement to the search direction, making use of the
fact that first and second partial derivatives of the function in (1) with respect to the coefficients
cℓ are easy to compute analytically once the function has been evaluated at these values of
cℓ. It is not economical to compute the full Hessian (the matrix of second partial derivatives),
so the algorithm computes only the second derivatives of the log likelihood function  with
respect to those coefficients cℓ that appear to be nonzero at the solution. For the problems that
the LASSO-Patternsearch is designed to solve, just a small fraction of these NB coefficients
are nonzero at the solution. This approach is similar to the two-metric gradient projection
approach for bound-constrained minimization, but avoids duplication of variables and allows
certain other economies in the implementation.

The algorithm is particularly well suited to solving the problem (1) for a number of different
values of λ in succession; the solution for one value of λ provides an excellent starting point
for the minimization with a nearby value of λ. Further details of this approach can be found in
Appendix B.

3. THE LASSO-PATTERNSEARCH ALGORITHM – STEP 2
In Step 2 of LASSO-Patternsearch algorithm, the NB0 patterns surviving Step 1 are entered
into a linear logistic regression model using glmfit in MATLAB and pattern selection is then
carried out by the backward elimination method. We take out one of the NB0 patterns at a time,
fit the model with the remaining patterns and compute the tuning score. The pattern that gives
the best tuning score to the model after being taken out is removed from the model. This process
continues until there are no patterns in the model. A final model is chosen from the pattern set
with the best tuning score. Note that all-subset selection is not being done, since this will
introduce an overly large number of degrees of freedom into the process.

If copious data is available, then a tuning set can be used to create the tuning score, but this is
frequently not the case. Inspired by the tuning method in the LASSO step, we propose the
BGACV score for the parametric logistic regression. The likelihood function is smooth with
respect to the parameters so the robust assumption that appears in Appendix A is not needed.
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Other than that, the derivation of the BGACV score for parametric logistic regression follows
that in Appendix A. Let s be the current subset of patterns under consideration and Bs be the
design matrix. The BGACV score for logistic regression is the same as (8) with

.

(10)

where fsi is the estimated log odds ratio for observation i and psi is the corresponding
probability. The BGACV scores are computed for each model that is considered in the
backward elimination procedure, and the model with the smallest BGACV score is taken as
the final model.

The following is a summary of the LASSO-Patternsearch algorithm:

1. Solve (1) and choose λ by BGACV. Keep the patterns with nonzero coefficients.

2. Put the patterns with nonzero coefficients from Step 1 into a logistic regression model
and select models by the backward elimination method with the selection criterion
being BGACV.

For simulated data, the results can be compared with the simulated model. For observational
data, a selective examination of the data will be used to validate the results. Other logistic
regression codes, e.g. from R or SAS can be used instead of glmfit here.

4. SIMULATION STUDIES
In this section we study the empirical performance of the LPS through three simulated
examples. The first example continues with simulated data in Section 2.2. There are three pairs
of correlated variables and one independent variable. Three patterns are related to the response.
The second example has only one high order pattern. The correlation within variables in the
pattern is high and the correlation between variables in the pattern and other variables varies.
The last example studies the performance of our method under various correlation settings.
We compare LPS with two other methods, Logic regression [27] and Stepwise Penalized
Logistic Regression (SPLR) [26]. We use the R package LogicReg to run Logic regression
and the R package stepPlr to run SPLR. The number of trees and number of leaves in Logic
regression are selected by 5-fold cross validation. The smoothing parameter in SPLR is also
selected by 5-fold cross validation, and then the model size is selected by a BIC-like score
based on an approximation to a degrees of freedom reproduced in the Comments section of
Appendix A.

4.1 Simulation Example 1
In this example we have 7 variables and the sample size is 800. The true logit is f (x) = −2 +
1.5B1(x) + 1.5B23(x) + 2B456(x). The distribution of the covariates was described in Section
2.2. We simulated 100 data sets according to this model and ran all three methods on these
data sets. The results are shown in the last three rows of Table 1.

Let’s compare LPS with the LASSO step (third row in Table 1) first. LPS misses all three
patterns a few times. However, these numbers are still very close to 100 and more importantly,
LPS significantly reduced the number of noise patterns, from over 500 to 34. Here we see why
a second step is needed after the LASSO step. Now let’s look at LPS compared with the other
two methods. Logic regression picks the first term perfectly but it doesn’t do as well as LPS
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on the remaining two patterns. It also selects more noise patterns than LPS. SPLR does worse,
especially on the last pattern. It is not surprising because this example is designed to be difficult
for SPLR, which is a sequential method. In order for B456 to be in the model, at least one main
effect of X4, X5 and X6 should enter the model first, say X4. And then a second order pattern
should also enter before B456. It could be B45 or B46. However, none of these lower order
patterns are in the true model. This makes it very hard for SPLR to consider B456, and the fact
that variables in the higher order pattern are correlated with variables in the lower order patterns
makes it even harder. We also notice that SPLR selects many more noise patterns than LPS
and Logic regression. Because of the way it allows high order patterns to enter the model, the
smallest SPLR model has 6 terms, B1, one of B2 and B3, B23, one main effect and one second
order pattern in B456, and B456. Conditioning on the appearance frequencies of the important
patterns, SPLR has to select at least 90 + 2 × 55 = 200 noise patterns. The difference, 426 −200
= 226 is still much bigger than 34 selected by LPS.

4.2 Simulation Example 2

We focus our attention on a high order pattern in this example. Let  through  be generated
from a normal distribution with mean 1 and variance 1. The correlation between any of these
two is 0.7. Xi = 1 if  and 0 otherwise for i = 1, …, 4. Xi+4 = Xi with probability ρ and
Xi+4 will be generated from Bernoulli(0.84) otherwise for i = 1, …, 4. ρ takes values 0, 0.2, 0.5
and 0.7. X = (X1, …, X8). Note that P (X1 = 1) = 0.84 in our simulation. The sample size is
2000 and the true logit is f (x) = −2 + 2B1234(x). We consider all possible patterns, so q = p =
8. We also ran this example 100 times and the results are shown in Table 2.

LPS does a very good job and it is very robust against increasing ρ, which governs the
correlation between variables in the model and other variables. We selected the high order
pattern almost perfectly and kept the noise patterns below 10 in all four settings. Logic
regression selects the important pattern from 70 to 80 times and noise patterns over 130 times.
There is a mild trend that it does worse as the correlation goes up, but the last one is an exception.
SPLR is robust against the correlation but it doesn’t do very well. It selects the important pattern
from 50 to 60 times and noise patterns over 500 times. From this example we can see that LPS
is extremely powerful in selecting high order patterns.

4.3 Simulation Example 3
The previous two examples have a small number of variables so we considered patterns of all
orders. To demonstrate the power of our algorithm, we add in more noise variables in this
example. The setting is similar to Example 2. Let  through  be generated from a normal
distribution with mean 1 and variance 1. The correlation between any of these two is ρ1 and
ρ1 takes values in 0, 0.2, 0.5 and 0.7. Xi = 1 if  and 0 otherwise, i = 1, 2, 3, 4. Xi+4 = Xi
with probability ρ2 and Xi+4 will be generated from Bernoulli(0.84) otherwise for i = 1, 2, 3,
4. ρ2 takes values 0, 0.2, 0.5 and 0.7 also. X9 through X20 are generated from Bernoulli(0.5)
independently. X = (X1, …, X20). The sample size n = 2000 and the true logit is

Unlike the previous two examples, we consider patterns only up to the order of 4 because of

the large number of variables. That gives us a total of  basis
functions.

Figure 2 shows the appearance frequencies of the high order pattern B1234. From the left plot
we see that LPS dominates the other two methods. All methods are actually very robust against
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ρ1, the correlation within the high order pattern. There is a huge gap between the two blue lines,
which means SPLR is very sensitive to ρ2 which governs the correlation between variables in
the high order pattern and others. This is confirmed by the right plot, where the blue lines
decrease sharply as ρ2 increases. We see similar but milder behavior in Logic regression. This
is quite natural because the problem becomes harder as the the noise variables become more
correlated with the important variables. However, LPS handles this issue quite well, at least in
the current setting. We see a small decrease in LPS as ρ2 goes up but those numbers are still
very close to 100. The performance of these methods on the second order pattern B67 is
generally similar but the trend is less obvious as a lower order pattern is easier for most methods.
The main effect B9 is selected almost perfectly by every method in all settings. More detailed
results are presented in Table 7 in Appendix C.

5. THE BEAVER DAM EYE STUDY
The Beaver Dam Eye Study (BDES) is an ongoing population-based study of age-related ocular
disorders including cataract, age-related macular degeneration, visual impairment and
refractive errors. Between 1987 and 1988, a private census identified 5924 people aged 43
through 84 years in Beaver Dam, WI. 4926 of these people participated the baseline exam (BD
I) between 1988 and 1990. Five (BD II), ten (BD III) and fifteen (BD IV) year follow-up data
have been collected and there have been several hundred publications on this data. A detailed
description of the study can be found in [15].

Myopia, or nearsightedness, is one of the most prevalent world-wide eye conditions. Myopia
occurs when the eyeball is slightly longer than usual from front to back for a given level of
refractive power of the cornea and lens and people with myopia find it hard to see objects at a
distance without a corrective lens. Approximately one-third of the population experience this
eye problem and in some countries like Singapore, more than 70% of the population have
myopia upon completing college [29]. It is believed that myopia is related to various
environmental risk factors as well as genetic factors. Refraction is the continuous measure from
which myopia is defined. Understanding how refraction changes over time can provide further
insight into when myopia may develop. Five and ten-year changes of refraction for the BDES
population were summarized in [17,18]. We will study five-year myopic changes in refraction
(hereinafter called “myopic change”) in an older cohort aged 60 through 69 years. We focus
on a small age group since the change of refraction differs for different age groups.

Based on [18] and some preliminary analysis we carried out on this data, we choose seven risk
factors: sex, inc, jomyop, catct, pky, asa and vtm (sex, income, juvenile myopia, nuclear
cataract, packyear, aspirin and vitamins). Descriptions and binary cut points are presented in
Table 3. For most of these variables, we know which direction is bad. For example, male gender
is a risk factor for most diseases and smoking is never good. The binary cut points are somewhat
subjective here. Regarding pky, a pack a day for 30 years, for example, is a fairly substantial
smoking history. catct has five levels of severity and we cut it at the third level. Aspirin (asa)
and vitamin supplements (vtm) are commonly taken to maintain good health so we treat not
taking them as risk factors. Juvenile myopia jomyop is assessed from self-reported age at which
the person first started wearing glasses for distance. For the purposes of this study we have
defined myopic change as a change in refraction of more than −0.75 diopters from baseline
exam to the five year followup; accordingly y is assigned 1 if this change occurred and 0
otherwise. There are 1374 participants in this age group at the baseline examination, of which
952 have measurements of refraction at the baseline and the five-year follow-up. Among the
952 people, 76 have missing values in the covariates. We assume that the missing values are
missing at random for both response and covariates, although this assumption is not necessarily
valid. However the examination of the missingness and possible imputation are beyond the
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scope of this study. Our final data consists of 876 subjects without any missing values in the
seven risk factors.

As the data set is small, we consider all possible patterns (q = 7). The first step of the LASSO-
Patternsearch algorithm selected 8 patterns, given in Table 4.

Figure 3 plots the coefficients of the 8 patterns plus the constant that survived Step 1 along
with 90% confidence intervals. These patterns are then subject to Step 2, backward elimination,
tuned via BGACV. The final model after the backward elimination step is

(11)

The significance levels for the coefficients of the four patterns in this model (11) can be
formally computed and are, respectively 3.3340e-21, 1.7253e-05, 1.5721e-04, and 0.0428. The
pattern pky × vtm catches our attention because the pattern effect is strong and both variables
are controllable. This model tells us that the distribution of y, myopic change conditional on
pky = 1 depends on catct, as well as vtm and higher order interactions, but myopic change
conditional on pky = 0 is independent of vtm. This interesting effect can easily be seen by going
back to a table of the original catct, pky and vtm data (Table 5). The denominators in the risk
column are the number of persons with the given pattern and the numerators are the number
of those with y = 1. The first two rows list the heavy smokers with cataract. Heavy smokers
who take vitamins have a smaller risk of having myopic change. The third and fourth rows list
the heavy smokers without cataract. Again, taking vitamins is protective. The first four rows
suggest that taking vitamins in heavy smokers is associated with a reduced risk of getting more
myopic. The last four rows list all non-heavy smokers. Apparently taking vitamins does not
similarly reduce the risk of becoming more myopic in this population. Actually, it is commonly
known that smoking significantly decreases the serum and tissue vitamin level, especially
Vitamin C and Vitamin E, for example [8]. Our data suggest a possible reduction in myopic
change in persons who smoke who take vitamins. However, our data are observational and
subject to uncontrolled confounding. A randomized controlled clinical trial would provide the
best evidence of any effect of vitamins on myopic change in smokers.

Since the model is the result of previous data mining, caution in making significance statements
may be in order. To investigate the probability of the overall procedure to generate significant
false patterns, we kept the attribute data fixed, randomly scrambled the response data and
applied the LPS algorithm on the scrambled data. The procedure was repeated 1000 times, and
in all these runs, 1 main effect, 10 second order, 5 third order and just 1 fourth order patterns
showed up. We then checked on the raw data. There are 21 people with the pattern sex × inc
× jomyop × asa and 9 of them have myopic change. The incidence rate is 0.4286, as compared
to the overall rate of 0.137. Note that none of the variables in this pattern are involved with
variables in the two lower order patterns catct and pky × vtm so it can be concluded that the
incidence rate is contributed only by the pattern effect. People with the other size four pattern
sex × inc × catct × asa have an incidence rate of 0.7727 (17 out of 22), which can be compared
with the incidence rate of all people with catct, 0.4919.

We also applied Logic regression and SPLR on this data set. Logic selected both catct and
pky × vtm but missed the two high order patterns. Instead, it selected asa as a main effect. Note
that asa is present in both size four patterns. SPLR selected the same patterns as Logic
regression with an addition of pky, which is necessary for pky × vtm to be included. These
results agree with what we have found in the simulation studies: they are not as likely as LPS
in finding higher order patterns. It is noted that in the original version of LPS [31], Step 1 was
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tuned by GACV rather than BGACV, and resulted in the above eight patterns in Table 4 plus
four more, but the final model after Step 2 was the same.

6. RHEUMATOID ARTHRITIS AND SNPS IN A GENERATIVE MODEL BASED
ON GAW 15

Rheumatoid arthritis (RA) is a complex disease with a moderately strong genetic component.
Generally females are at a higher risk than males. Many studies have implicated a specific
region on chromosome 6 as being related to the risk of RA, recently [7], although possible
regions on other chromosomes have also been implicated. The 15th Genetic Analysis
Workshop (GAW 15, November 2006 [6]) focused on RA, and an extensive simulation data
set of cases and controls with simulated single nucleotide polymorphisms (SNPs) was provided
to participants and is now publicly available [24]. SNPs are DNA sequence variations that
occur when a single nucleotide in the genome sequence is changed. Many diseases are thought
to be associated with SNP changes at multiple sites that may interact, thus it is important to
have tools that can ferret out groups of possibly interacting SNPs.

We applied LPS to some of the simulated SNP RA GAW 15 data [30]. This provided an
opportunity to apply LPS in a context with large genetic attribute vectors, with a known genetic
architecture, as described in [24], and to compare the results against the description of the
architecture generating the data. We decided to use the GAW data to build a simulation study
where we modified the model that appears in [30] to introduce a third order pattern, and in the
process deal with some anomalous minus signs in our fitted model, also observed by others
[28]. We then simulated phenotype data from the GAW genotypes and covariates, and can
evaluate how well the LPS of this paper reproduces the model generating the data with the
third order pattern. This section describes the results.

In the simulated genetic data sets [24] genome wide scans of 9187 SNPs were generated with
just a few of the SNPs linked to rheumatoid arthritis, according to the described model
architecture. The data simulation was set up to mimic the familial pattern of rheumatoid arthritis
including a strong chromosome 6 effect. A large population of nuclear families (two parents
and two offspring) was generated. This population contains close to 2 million sibling pairs.
From this population, a random sample of 1500 families was selected from among families
with two affected offspring and another random sample of 2000 families was selected from
among families where no member was affected. A total of 100 independent (replicate) data
sets were generated. We randomly picked one offspring from each family in replicate 1 as our
data set. As for covariates we take the 674 SNPs in chromosome 6 that were generated as a
subset of the genome wide scan data and three environmental variables: age, sex and
smoking. We created two dummy variables for each SNP since most of them have three levels:
normal, one variant allele and two variant alleles. For environmental variables female gender
is treated as a risk factor, smoking is treated as a risk factor and age ≥55 is treated as a risk
factor. We first describe a reanalysis of this data using the LPS algorithm of this paper. We
began our analysis with a screen step. In this step, each variable is entered into a linear logistic
regression model. For SNPs with three levels, both dummy variables are entered into the same
model. We fit these models and keep the variables with at least one p-value less than 0.05. The
screen step selected 74 variables (72 SNPs plus sex and smoking). We then ran LPS on these
74 variables with q = 2, which generates 10371 basis functions. The final model was

(12)
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where SNP6_153_1 is SNP number 153 on chromosome 6 with 1 variant allele, SNP6_154_1
is SNP number 154 on chromosome 6 with 1 variant allele, SNP6_162_1 is SNP number 162
on chromosome 6 with 1 variant allele and SNP6_153_2 is SNP number 153 on chromosome
6 with 2 variant alleles. When the analysis in [30] was presented at the GAW 15 workshop in
November 2006 the tuning procedure presented here had not been finalized, and both Step 1
and Step 2 were tuned against prediction accuracy using replicate 2 as a tuning set. The model
(12) obtained here is exactly the same as [30]. We were pleased to find that the in-sample
BGACV tuning here was just as good as having a separate tuning set. It is interesting to note
that in this particular problem, tuning for prediction and for model selection apparently led to
the same results, although in general this is not necessarily the case.

According to the description [24] of the architecture generating the data the risk of RA is
affected by two loci (C and D) on chromosome 6, sex, smoking and a sex by locus C interaction.
It turns out that both SNP6_153 and SNP6_154 are very close to locus C on chromosome 6
and SNP6_162 is very close to locus D on chromosome 6. The LPS method picked all important
variables without any false positives. The description of the data generation architecture said
that there was a strong interaction between sex and locus C. We didn’t pick up a sex by locus
C interaction in [30], which was surprising.

We were curious about the apparent counter-intuitive negative coefficients for both SNP6_153
patterns and the SNP6_154_1 pattern, which appear to say that normal alleles are risky and
variant alleles are protective. Others also found an anomalous protective effect for SNP6_154
normal alleles [28]. We went back and looked at the raw data for SNP6_153 and SNP6_154
as a check but actually Table 4 of [30] shows that this protective effect is in the simulated data,
for whatever reason, and it also shows that this effect is stronger for women than for men. We
then recoded the SNP6_153 and SNP6_154 responses to reflect the actual effect of these two
variables as can be seen in tables of the simulated data.

Table 6 shows the results. The new fitted model, above the double line, has four main effects
and five second order patterns. The estimated coefficients are given in the column headed
“Coef”. The sex × SNP6_153 and sex × SNP6_154 are there as expected. Two weak second
order patterns involving SNP6_553 and SNP6_490 are fitted, but do not appear to be explained
by the simulation architecture. This model resulted from fitting with q = 2. Then the LPS
algorithm was run to include all third order patterns (q = 3) of the 74 variables which passed
the screen step. This generated 403,594 basis functions. No third order patterns were found,
and the fitted model was the same as in the q = 2 case. To see if a third order pattern would be
found if it were there, we created a generative model with the four main effects and five second
order patterns of Table 1, with their coefficients from the “Coef” column, and added to it a
third order pattern sex × SNP6_108_2 × SNP6_334_2 with coefficient 3. The two SNPs in the
third order pattern were chosen to be well separated in chromosome 6 from the reported gene
loci. LPS did indeed find the third order pattern. The estimated coefficients are found under
the column headed “Est”. No noise patterns were found, and the two weak second order patterns
in the model were missed. However, the potential for the LPS algorithm to find higher order
patterns is clear. Further investigation of the properties of the method in genotype-phenotype
scenarios is clearly warranted, taking advantage of the power of the LASSO algorithm to handle
a truly large number of unknowns simultaneously. Run time was 4.5 minutes on an AMD Dual-
Core 2.8 GHz machine with 64 GB memory. Using multiple runs with clever designs to
guarantee that every higher order pattern considered is in at least one run, will allow the analysis
of much larger SNP data sets with tolerable computer cost.
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7. DISCUSSION
In any problem where there are a large number of highly interacting predictor variables that
are or can be reduced to dichotomous values, LPS can be profitably used. If the “risky” direction
(with respect to the outcome of interest) is known for all or almost all of the variables, the
results are readily interpretable. If the risky direction is coded correctly for all of the variables,
the fitted model can be expected to be sparser than that for any other coding. However, if a
small number of risky variables are coded in the “wrong” way, this usually can be detected.
The method can be used as a preprocessor when there are very many continuous variables in
contention, to reduce the number of variables for more detailed nonparametric analysis.

LPS, using the algorithm of Appendix B is efficient. On an Intel Quad-core 2.66 GHz machine
with 8GB memory the LPS Steps 1 and 2 can do 90,000 basis functions in 4.5 minutes. On an
AMD Dual-Core 2.8 GHz machine with 64 GB memory the algorithm did LPS with 403,594
basis functions in 4.5 minutes. It can do 2,000,000 basis functions in 1.25 hours. On the same
AMD machine, problems of the size of the myopia data (128 unknowns) can be solved in a
few seconds and the GAW 15 problem data (10371 unknowns) was solved in 1.5 minutes.

A number of considerations enter into the choice of q. If the problem is small and the user is
interested in high order patterns, it doesn’t hurt to include all possible patterns; if the problem
is about the size of Simulation Example 3, q = 4 might be a good choice; for genomic data the
choice of q can be limited by extremely large attribute vectors. In genomic or other data where
the existence of a very small number of important higher patterns is suspected, but there are
too many candidates to deal with simultaneously, it may be possible to overcome the curse of
dimensionality with multiple screening levels and multiple runs. For example, considering say,
third or even fourth order patterns, variables could be assigned to doable sized runs so that
every candidate triple or quadruple of variables is assigned to at least one run. With our purpose
built algorithm, the approach is quite amenable to various flavors of exploratory data mining.
When a computing system such as Condor (http://www.cs.wisc.edu/condor/) is available,
many runs can compute simultaneously.

Many generalizations are available. Two classes of models where the LASSO-Patternsearch
approach can be expected to be useful are the multicategory end points model in [22,33], where
an estimate is desired of the probability of being in class k when there are K possible outcomes;
another is the multiple correlated endpoints model in [9]. In this latter model, the correlation
structure of the multiple endpoints can be of interest. Another generalization allows the
coefficients cℓ to depend on other variables; however, the penalty functional must involve ℓ1
penalties if it is desired to have a convex optimization problem with good sparsity properties
with respect to the patterns. In studies with environmental as well as genomic data selected
interactions between SNP patterns and continuous covariates can be examined [39]: the
numerical algorithm can be used on large collections of basis functions that induce a reasonable
design matrix, for example collections including splines, wavelets or radial basis functions.

8. SUMMARY AND CONCLUSIONS
The LASSO-Patternsearch algorithm brings together several known ideas in a novel way, using
a tailored tuning and pattern selection procedure and a new purpose built computational
algorithm. We have examined the properties of the LPS by analysis of observational data, and
simulation studies at a scale similar to the observational data. The results are verified in the
simulation studies by examination of the generated “truth”, and in the observational data by
selective examination of the observational data directly, and data scrambling to check false
alarm rates, with excellent results. The novel computational algorithm allows the examination
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of a very large number of patterns, and, hence, high order interactions. We believe the LASSO-
Patternsearch will be an important addition to the toolkit of the statistical data analyst.
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APPENDIX A. THE BGACV SCORE

We denote the estimated logit function by fλ(·) and define fλi = fλ(x(i)), 
for i = 1, …, n. Now define

(13)

From [37,23] the leave-one-out CV is
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(14)

Here  and the approximation in (14) follows upon recalling that .

Denote the objective function in (1)–(4) by Iλ (y, c), let Bij = Bj(x(i)) be the entries of the design
matrix B, and for ease of notation denote μ = cNB. Then the objective function can be written

(15)

Denote the minimizer of (15) by cλ. We know that the l1 penalty produces sparse solutions.
Without loss of generality, we assume that the first s components of cλ are nonzero. When there
is a small perturbation ε on the response, we denote the minimizer of Iλ(c, y + ε) by . The 0’s
in the solutions are robust against a small perturbation in the response. That is, when ε is small
enough, the 0 elements will stay at 0. This can be seen by looking at the KKT conditions when
minimizing (15). Therefore, the first s components of  are nonzero and the rest are zero. For
simplicity, we denote the first s components of c by c* and the first s columns of the design
matrix B by B*. Then let  be the column vector with i entry fλ(x(i)) based on data y, and let

 be the same column vector based on data y + ε.

(16)

Now we take the first-order Taylor expansion of :

(17)

Define

and
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By the first-order conditions, the left-hand side and the first term of the right-hand side of (17)
are zero. So we have

(18)

Combine (16) and (18) we have , where

(19)

Now let ε be ; then , where  and Hi is the
ith column of H. By the Leave-Out-One Lemma (stated below), . Therefore

(20)

where hii is the iith entry of H. From the right hand side of (14), the approximate CV score is

(21)

The GACV score is obtained from the approximate CV score in (21) by replacing hii by
 and  by . It is not hard to see that tr(W H) = trW1/2 H × W1/2 = s ≡ NB0,

the number of basis functions in the model, giving

(22)

Adding the weight  to the “optimism” part of the GACV score, we obtain the B-type
GACV (BGACV):

(23)

Lemma A.1 (Leave-Out-One Lemma)

Let the objective function Iλ(y, f) be defined as before. Let  be the minimizer of Iλ(y, f) with
the i th observation omitted and let  be the corresponding probability. For any real number
ν, we define the vector z = (y1, …, yi−1,ν, yi+1, −, yn)′. Let hλ(i, ν, ·) be the minimizer of Iλ(z,
f); then .

The proof of Lemma A.1 is quite simple and very similar to the proof of the Leave-Out-One-
Lemma in [39] so we will omit it here.
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We remark that in this paper we have employed the BGACV criterion twice as a stringent
model selector under the assumption that the true or the desired model is sparse. Simulation
experiments (not shown) suggest that the GACV criterion is preferable if the true model is not
sparse and/or the signal is weak. The GACV and the BGACV selections probably bracket the
region of interest of λ in most applications.

Comments
A referee has asked how BGACV might be compared to the more familiar

. where df is the degrees of freedom in the case of Bernoulli data.
The short answer to this question is that an exact expression for df does not, in the usual sense,
exist in the case of Bernoulli data. Thus, only a hopefully good approximation to something
that plays the role of df in the Bernoulli case can be found. This argument, which is independent
of the nature of the estimate fλ of f, is found in Section 2 of [23]. We sketch the main idea. Let
KL(λ) = KL(f, fλ) be the Kullback-Liebler distance between the distribution with the true but
unknown canonical link f and the distribution with link fλ and let

(24)

be the comparative Kullback-Liebler distance. The goal is to find an unbiased estimate of CKL
(λ) as a function of λ, which will then be minimized to estimate the λ minimizing the true but

unknown CKL. Letting  we can write CKL(λ) = OBS (λ) + D(λ).

Where . Then . Ye and Wong (1997)
show, in exponential families, for any estimate fλ of f

(25)

Here Eμi (fλi) is the expectation with respect to yi conditional on the yj, j ≠ i being fixed. (Their
proof is reproduced in [23].) Ye and Wong call n times the right hand side of (25) the
generalized degrees of freedom (GDF). and it does indeed reduce to the usual trace of the
influence matrix in the case of Gaussian data with quadratic penalties. Unbiased estimates of
the GDF can be found for Poisson, Gamma, Binomial distribution taking on three or more
values, and other distributions, using the results in [14] but Ye and Wong show that no unbiased
estimate of the GDF in the Bernoulli case exists. See [36]. Thus, in the absence of a bona fide
unbiased risk method of estimating the CKL(λ) the alternative GACV based on leave-one-out

to target the CKL has been proposed. Thus, in this paper , say, plays the
role of df. Since no exact unbiased estimate for df exists, the issue of the accuracy of the
approximations in obtaining D ̂ reduces to the issue of to what extent the minimizer of GACV
(λ) is a good estimate of the minimizer of the (unobservable) CKL(λ). The GACV for Bernoulli
data was first proposed in [37] for RKHS (quadratic) penalty functionals, where simulation
results demonstrated the accuracy of this approximation. Further excellent favorable results
for a randomized version of the GACV with RKHS penalties were presented in [23]. In [39]
the GACV was derived for Bernoulli data with l1 penalties with a nontrivial null space, and
favorable results for the randomized version were obtained. The derivation was rather
complicated, and a simplified derivation as well as a simpler expression for the result which
is possible in the present context are presented above. A recent work involving the LASSO in
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the Bernoulli case with l1 penalty uses a tuning set to choose the smoothing parameters. SPLR
[26] uses tr(B∗′W B∗ + λI∗)−1(B∗′W B∗), where I is the diagonal matrix with all 1’s except
in the position of the model constant, as their proxy for df in their BIC-like criteria for model
selection after fixing λ. In the light of the Ye and Wong result it is no surprise that an exact
definition of df in this case cannot be found in the literature.

APPENDIX B. MINIMIZING THE PENALIZED LOG LIKELIHOOD FUNCTION
The function (1) is not differentiable with respect to the coefficients {cℓ} in the expansion (4),
so most software for large-scale continuous optimization cannot be used to minimize it directly.
We can however design a specialized algorithm that uses gradient information for the smooth
term  to form an estimate of the correct active set (that is, the set of components cℓ that
are zero at the minimizer of (1)). Some iterations of the algorithm also attempt a Newton-like
enhancement to the search direction, computed using the projection of the Hessian of  onto
the set of nonzero components cℓ. This approach is similar to the two-metric gradient projection
approach for bound-constrained minimization, but avoids duplication of variables and allows
certain other economies in the implementation.

We give details of our approach by simplifying the notation and expressing the problem as
follows:

(26)

When T is convex (as in our application), z is optimal for (26) if and only if the following
condition holds:

(27)

for some vector υ in the subdifferential of ||z||1 (denoted by ∂||z||1), that is,

(28)

A measure of near-optimality is given as follows:

(29)

We have that δ(z) = 0 if and only if z is optimal.

In the remainder of this section, we describe a simplified version of the algorithm used to solve
(26), finishing with an outline of the enhancements that were used to decrease its run time.

The basic (first-order) step at iteration k is obtained by forming a simple model of the objective
by expanding around the current iterate zk as follows:

(30)

where αk is a positive scalar (whose value is discussed below) and dk is the proposed step. The
subproblem (30) is separable in the components of d and therefore trivial to solve in closed
form, in O(m) operations. We can examine the solution dk to obtain an estimate of the active
set as follows:

(31)
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We define the “inactive set” estimate  to be the complement of the active set estimate, that
is,

If the step dk computed from (30) does not yield a decrease in the objective function Tλ, we
can increase αk and re-solve (30) to obtain a new dk. This process can be repeated as needed.
It can be shown that, provided zk does not satisfy an optimality condition, the dk obtained from
(30) will yield Tλ(zk + dk) < Tλ(zk) for αk sufficiently large.

We enhance the step by computing the restriction of the Hessian ∇2T(zk) to the set  (denoted

by ) and then computing a Newton-like step in the  components as follows:

(32)

where δk is a small damping parameter that that goes to zero as zk approaches the solution, and
 captures the gradient of the term ||z||1 at the nonzero components of zk + dk. Specifically,

 coincides with ∂|| zk + dk||1 on the components . If δk were set to zero,  would be
the (exact) Newton step for the subspace defined by ; the use of a damping parameter ensures

that the step is well defined even when the partial Hessian  is singular or nearly
singular, as happens with our problems. In our implementation, we choose

(33)

where δ(z) is defined in (29).

Because of the special form of T (z) in our case (it is the function  defined by (2) and (3)),
the Hessian is not expensive to compute once the gradient is known. However, it is dense in
general, so considerable savings can be made by evaluating and factoring this matrix on only
a reduced subset of the variables, as we do in the scheme described above.

If the partial Newton step calculated above fails to produce a decrease in the objective function
Tλ, we reduce its length by a factor γk, to the point where  has the same sign as  for
all . If this modified step also fails to decrease the objective Tλ, we try the first-order step
calculated from (30), and take this step if it decreases Tλ. Otherwise, we increase the parameter
αk, leave zk unchanged, and proceed to the next iteration.

We summarize the algorithm as follows.

Algorithm B.1
given initial point z0, initial damping α0 > 0, constants tol > 0 and η ∈ (0, 1);

for k = 0, 1, 2, …

if δ(zk) < tol

stop with approximate solution zk;

end

Solve (30) for dk; (∗ first-order step ∗)
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Evaluate  and ;

Compute  from (32); (∗ reduced Newton step ∗)

Set  and ;

if Tλ(z+) < min(Tλ(zk + dk), Tλ(zk)) (∗ Newton step successful ∗)

zk+1 ← z+;

else

Choose γk as the largest positive number such that

 for all i with ;

(∗ damp the Newton step ∗)

Set  and ;

if Tλ(z+) < min(Tλ(zk + dk), Tλ(zk)) (∗ damped Newton step successful ∗)

zk+1 ← z+;

else if Tλ(zk + dk) < Tλ(zk) (∗ first-order step successful; use it if Newton steps have failed ∗)

zk+1 ← zk + dk;

else (∗ unable to find a successful step ∗)

zk+1 ← zk;

end

end

(∗ increase or decrease α depending on success of first-order step ∗)

if Tλ(zk + dk) < Tλ(zk)

αk+1 ← ηαk; (∗ first-order step decreased Tλ, so decrease α ∗)

else

αk+1 → αk/η;

end

end

We conclude by discussing some enhancements to this basic approach that can result in
significant improvements to the execution time. Note first that evaluation of the full gradient
∇T(zk), which is needed to compute the first-order step (30) can be quite expensive. Since in
most cases the vast majority of components of zk are zero, and will remain so after the next
step is taken, we can economize by selecting just a subset of components of ∇T (zk) to evaluate
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at each step, and allowing just these components of the first-order step d to be nonzero.
Specifically, for some chosen constant σ ∈ (0, 1], we select σm components from the index set
{1, 2, …, m} at random (using a different random selection at each iteration), and define the
working set  to be the union of this set with the set of indices i for which . We then
evaluate just the components of ∇T(zk) for the indices , and solve (30) subject to the
constraint that di = 0 for .

Since δ(zk) cannot be calculated without knowledge of the full gradient ∇T(zk), we define a
modified version of this quantity by taking the norm in (29) over the vector defined by ,
and use this version to compute the damping parameter δk in (33).

We modify the convergence criterion by forcing the full gradient vector to be computed on the
next iteration k + 1 when the threshold condition δ(zk) < tol is satisfied. If this condition is
satisfied again at iteration k + 1, we declare success and terminate.

A further enhancement is that we compute the second-order enhancement only when the
number of components in  is small enough to make computation and factorization of the
reduced Hessian economical. In the experiments reported here, we compute only the first order
step if the number of components in  exceeds 500.

APPENDIX C. RESULTS OF SIMULATION EXAMPLE 3
See Table 7.

APPENDIX D. EFFECT OF CODING FLIPS

Proposition
Let f (x) = μ + Σcj1j2..jrBj1j2..jr(x) with all cj1j2..jr which appear in the sum strictly positive. If xj
→ 1 − xj for j ∈ some subset of {1, 2,…, p} such that at least one xj appears in f, then the
resulting representation has at least one negative coefficient and at least as many terms as f.
This follows from the

Lemma
Let gk (x) be the function obtained from f by transforming xj →1 − xj, 1 ≤ j ≤ k. Then the
coefficient of Bj1j2..jr(x) in gk (x) is

where |·| means number of entries.
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Figure 1.
Comparison of BGACV and GACV in the First Data Set of Simulation Example 1. The Solid
Dots Are The Minima. BGACV Selects a Bigger λ than GACV Does.
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Figure 2.
Appearance Frequency of the High Order Pattern B1234 in Simulation Example 3. In the Left
Panel, the x-Axis Is ρ1. ρ2 is 0.2 for the Dashed Line and 0.7 for the Solid Line. In the Right
Panel, the x-Axis Is ρ2. ρ1 is 0.2 for the Dashed Line and 0.7 for the Solid Line. The Red
Triangles Represent LPS, the Blue Diamonds Represent Logic Regression [27] and the Green
Circles Represent SPLR [26].
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Figure 3.
The Eight Patterns that Survived Step 1 of LPS. The Vertical Bars Are 90% Confidence
Intervals Based on Linear Logistic Regression. Red Dots Mark the Patterns that Are Significant
at the 90% Level. The Orange Dots Are Borderline Cases, the Confidence Intervals Barely
Covering 0.
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Table 1
The Results of Simulation Example 1. The Second Through Fourth Columns Are the Appearance Frequencies of the
Three Important Patterns in the 100 Runs. The Last Column Is the Total Appearance Frequency of All Other Patterns.
The Second and Third Row Compare GACV and BGACV Within the First Step of LPS. The Fourth Through Sixth
Rows, which Compare the Full LPS with Logic Regression and SPLR Will Be Discussed in Section 4.1

Method B1 B23 B456 other

GACV 100 100 100 749
BGACV 100 100 100 568

LPS 97 96 98 34
Logic 100 94 94 64
SPLR 100 90 55 426
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Table 2
The Results of Simulation Example 2. The Numerators Are the Appearance Frequencies of B1234 and the Denominators
Are the Appearance Frequencies of All Noise Patterns

ρ 0 0.2 0.5 0.7

LPS 98/10 100/9 97/8 98/5
Logic 82/132 73/162 72/237 74/157
SPLR 53/602 60/576 57/581 58/552
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Table 3
The Variables in the Myopic Change Example. The Fourth Column Shows which Direction Is Risky

code variable unit higher risk

sex sex Male
inc income $1000 <30

jomyop juvenile myopia age first wore glasses for distance yes before age 21
catct nuclear cataract severity 1–5 4–5
pky packyear pack per day × years smoked >30
asa aspirin taking/not taking not taking
vtm vitamins taking/not taking not taking
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Shi et al. Page 30

Table 5
The Raw Data for Cataract, Smoking and Not Taking Vitamins

catct pky no vitamins risk

1 1 1 17/23 = 0.7391
1 1 0 7/14 = 0.5000
0 1 1 22/137 = 0.1606
0 1 0 2/49 = 0.0408
1 0 1 18/51 = 0.3529
1 0 0 19/36 = 0.5278
0 0 1 22/363 = 0.0606
0 0 0 13/203 = 0.0640
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