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Abstract
Background: Due to their role of receptors or transporters, membrane proteins play a key role
in many important biological functions. In our work we used Grammatical Inference (GI) to localize
transmembrane segments. Our GI process is based specifically on the inference of Even Linear
Languages.

Results: We obtained values close to 80% in both specificity and sensitivity. Six datasets have been
used for the experiments, considering different encodings for the input sequences. An encoding
that includes the topology changes in the sequence (from inside and outside the membrane to it
and vice versa) allowed us to obtain the best results. This software is publicly available at: http://
www.dsic.upv.es/users/tlcc/bio/bio.html

Conclusion: We compared our results with other well-known methods, that obtain a slightly
better precision. However, this work shows that it is possible to apply Grammatical Inference
techniques in an effective way to bioinformatics problems.

Background
Membrane proteins are involved in a variety of important
biological functions [1,2] where they play the role of
receptors or transporters. The number of transmembrane
segments of a protein and some characteristics such as
loop lengths can identify features of the proteins, as well
as their role [3]. Therefore, it is very important to predict
the location of transmembrane domains along the
sequence, since these are the basic structural building
blocks defining the protein topology. Several works have
dealt with this prediction task from different approaches,
mainly using Hidden Markov Models (HMM) [4-6], neu-
ral networks [7,8] or statistical analysis [9]. A rich litera-
ture is available on proteins prediction. For reviews on
different methods for predicting transmembrane domains
in proteins, we refer the reader to [10-12].

This work addresses the problem of protein transmem-
brane domains prediction by making use of a Grammati-
cal Inference (GI) based approach. GI is a particular case
of Inductive Inference, an iterative process that takes into
account a set of facts and tries to obtain a model consist-
ent with the available data. In GI the model resulting from
the induction process is a formal grammar (that generates
a formal language) inferred from a set of sample strings,
composed by a set M+ of strings belonging to a target for-
mal language and, in some cases, another set M- of strings
that do not belong to the language. The results of the
inference process gives as the result a language (hypothe-
sis) that, in essence, models all the common features of
the strings. This grammatical approach is suitable for the
task due to the sequential nature of the information.
Some works apply formal languages methods to molecu-
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lar biology [13]. Figure 1 depicts a general GI scheme. Sev-
eral classifications of the GI algorithms can be made, for
instance: when both sets are non-empty we
remalgo[cont2]Algorithm refer to complete presentation
algorithms; positive presentation algorithms are those
that use an empty M- set; taking into account these alge-
braic properties of the obtained languages, it is possible to
distinguish between characterisable and non-characterisa-
ble algorithms. It is difficult to identify what information
is suitable to be considered into M-, therefore we will take
into account only positive presentation in our approach.
For more information, we refer the reader to [14-16].

Usually, the model used in GI is a finite state abstract
machine commonly named finite automata. HMMs are
closely related to finite automata, and therefore our
approach is also related to several works that succesfully
tackle this task [4-6]. Nevertheless, it is to note that the
topology of a HMM, number of states and their connec-
tion, is a priori fixed by an expert that takes profit from
known information. Once the topology is fixed, the avail-
able data is used to set the probability of each transition
of the HMM. As stated above, the input of a GI algorithm
is a set of sequences, therefore no aid from an expert is
needed, because both the topology of the automaton and
the probability between states is automatically stablished
by the algorithm.

Generally speaking, HMMs provide a good solution when
the topology of the HMM can be fairly set. In that case, the
sequences provided are used just to set the transition
probabilities among states. A GI approach tries to extract
more information from the sequences and provides good
prediction tools using only sequential information. The

most important drawback of GI is the lack of enough data
to infer proper models.

GI has been used previously in various bioinformatics
related tasks, such as gene-finding or prediction of coiled
coil domains [17]. The good performance of those works
leds us to apply GI algorithms to the prediction of other
domains in proteins, such as transmembrane segments.

Our work takes into account a set of protein sequences
with known evidence of transmenbrane domains. Firstly,
these sequences are processed in order to distinguish
among inner, outer and transmembrane residues. This
labelling allows to obtain an Even Linear structure (that
considers a relationship among the symbols in a
sequence, such that the first and the last symbols are
related, the second and the last but one are also related
and so on). It is possible to model this structure by using
an Even Linear Language (ELL) that can be learned using
GI techniques. The obtained language is then used to
build a probabilistic transducer (an abstract machine that
processes an input sequence and obtains another output
sequence or transduction with an occurrence probability).
The resulting transducer allows to process any unknown
protein sequence to obtain a transduction. The transduc-
tion shows those detected transmembrane domains. The
experimental results have been compared with TMHMM
2.0 [4], Pred-TMR [9], Prodiv-TMHMM [6], HMMTOP 2.0
[18,5], PHOBIUS [19-21], TMpred [22,23] and MEMSAT3
[24].

Results and discussion
Introduction
We consider the prediction of transmembrane domains as
a transduction problem. That is, given an amino acid

Process of a Grammatical Inference processFigure 1
Process of a Grammatical Inference process. A formal language can be represented by means of an automaton or a 
grammar, that will be used together with the problem sequences in the analysis phase. The output of the analysis phase can be 
a transduction of the input sequence, an error-free form of the input, or a value that tells whether the sequence belongs to the 
language or not.
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sequence, the output of our system is a sequence with the
same length which distinguishes between those amino
acids that are within a transmembrane domain and those
that are not.

The available data are transformed in a training set with
even linear structure. An item of the data set is a string
whose first half is made up by the symbol sequence of the
protein and the second by the symbols of the expected
output string in reverse order. In order to learn the ELL
with this set, we considered as the main feature the seg-
ments of a given length k set as a input parameter. The
class of ktss languages is a well-known subclass of the reg-
ular languages and it is characterized by the set of seg-
ments of length k that appear in the words of the
language, therefore, we can take profit of previous learn-
ing results in order to address this task [25-27].

The transducer is obtained using the structure of the
inferred ELG (Even Linear Grammar). The general
method is described in Algorithm 1. Please refer to section
Notation and definition to details.

Algorithm 1 Transmembrane Grammatical Inference 
approach
Input:

• A set P of amino acid sequences with known transmembrane
domains.

• A set L of domain labeled sequences. Each string x in P has
its corresponding string lx in L.

Output:

• A transducer to locate transmembrane domains.

Method:

• Combine the sets P and L to obtain the training set M with

strings 

• Apply to the strings in M the transformation function σ

• Apply a GI algorithm for (a subclass of) regular languages

• Undo the transformation σ to obtain the ELG from the regu-
lar language

• Return the transducer obtained from the ELG

End

The returned transducer can be used to analyse problem
sequences to obtain the corresponding transduction.

Datasets
Due to the fact that each approach to transmembrane pre-
diction uses its own dataset, in order to test our approach
six different datasets has been considered. The first one
was a set of 160 membrane proteins used in [4], which we
refer to as the TMHMM set. Experimental topology data is
available for these proteins, most of them have been ana-
lysed with biochemical and genetic methods (these meth-
ods are not always reliable), and only a small number of
membrane protein domains of this dataset have been
determined at an atomic resolution. The dataset contains
108 multi-spanning and 52 single-spanning proteins. The
original dataset was larger, but those proteins whith con-
flicting topologies for different experiments were not
included.

The second set used was TMPDB [28], whose latest ver-
sion (Release 6.3) contains 302 transmembrane protein
sequences (276 alpha-helical sequences, 17 beta-stranded
sequences and 9 alpha-helical sequences with short pore-
forming alpha-helices buried in the membrane). The
topologies of these sequences are based on definite exper-
imental evidences such as X-ray crystallography, NMR,
gene fusion technique, substituted cysteine accessibility
method, Asp(N)-linked glycosylation experiment and
other biochemical methods. The third and fourth datasets
are subsets of TMPDB, where homologous proteins have
been removed: the third set, TMPDB-α-nR, contains 230
alpha-helix non redundant proteins; and the fourth set
TMPDB-αβ-nR, has been obtained by adding 15 β-barrel
proteins to the third set.

The fifth dataset used is the 101-Pred-TMR database, a set
of 101 non-homologous proteins, extracted form Swiss-
Prot database, used in [9,29]. These proteins were selected
from a set of 155 proteins, discarding those with more
than 25% of similarity.

The last dataset used was the MPTOPO dataset [30]. In its
last version (August 2007) the set contains 185 proteins:
25 of them β-barrels and the rest α-helix transmembrane.
All the segments have been experimentally validated. The
3D structure of 119 of these proteins has been determined
using x-ray diffraction or NMR methods, therefore, these
transmembrane segments are known precisely. The rest of
transmembrane segments correspond to 41 helices that
have been identified by experimental techniques such as
gene fusion, proteolytic degradation, and amino acid
deletion. The proteins whose topologies are based solely
on hydropathy plots have not been included in the data-
set.

Codification
Protein sequences can be considered as strings from a 20
symbols alphabet, where each symbol represents one of

xlx
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the amino acids. In order to reduce the alphabet size with-
out loss of information, we considered an encoding based
on some properties of the amino acids (originally pro-
posed by Dayhoff). The Table 1 shows the correspond-
ence of each amino acid for Dayhoff encoding. This
encoding has been previously used in some GI papers [31-
33].

Performance measures
Several measures are suitable to evaluate the results. Some
of them, addressing gene-finding problems, are reviewed
in [34]. This measures can also be applied to functional
domain location tasks. Among all the proposed measures,
Sensitivity and Specificity are probably the most used. Intu-
itively, Sensitivity (Sn) measures the probability of pre-
dicting a particular residue inside a domain. Specificity
(Sp) measures the probability of predicted residues to be
actually into a domain. Therefore, Sn and Sp can be com-
puted as follows:

Where:

True positives (TP): correctly localized amino acids into
a TM domain.

True Negatives (TN): correctly annotated amino acids out
of a TM domain.

False positives (FP): amino acids out of a TM domain
annotated as belonging to a domain.

False Negative (FN): amino acids into a TM domain not
correctly localized (annotated as out of any domain).

Note that neither Sn nor Sp, took individually, constitute
an exhaustive measure. A single value that summarizes
both measures into a better one is the Correlation Coeffi-

cient (CC), also referred to as Mathews Correlation Coeffi-
cient [35]. It can be computed as follows:

Unfortunately, although CC has some interesting statisti-
cal properties [34], it has also an undesirable drawback. It
is not defined if any factor of the root is equal to zero. In
the literature there exist some measures that overcome
this inconvenient, in this work we will use the Approximate
Correlation (AC) which is defined as follows:

We have to note that we were not able to calculate CC for
every sample of the testing set (independently the dataset
considered). In those cases, the samples were not taken
into account. The Approximate Correlation AC has a
100% coverage, including those samples for which it was
not possible to calculate CC or Sp. This can explain the rel-
evant difference between AC and CC observed in some
experiments. In addition to this, we have used the com-
mon segment-based measure Segment overlap, (Sovδobs)
defined by [36]:

where N is the total number of residues observed within
all the domains of the protein, s1 and s2 are two overlaped
segments, E is {end(s1); end(s2)}, B is {beg(s1); beg(s2)}
and δ is a parameter for the accepted (maximal) deviation.
We used a value of δ = 3.

We have also calculated the number of segments correctly
predicted at three accuracy thresholds: 100%, 90% and
75%, that is, number of segments with the 100%, 90% or
more, and 75% or more of their amino acids are correctly
predicted. This measure is similar to Sensibility, but it is
based on segments. Therefore it is necessary to calculate
also the Sp measure in order to complement it. This meas-
ure allows to obtain a reliable evaluation for those seg-
ments that contain false negatives not only at the
extremities of the segment. For example, this occurs when
a viewed segment is recognized as more than one seg-
ment, and there are some false negatives between two of
this predicted segments. Figure 2 shows how this measure
is calculated.

Experimentation
Note that our approach needs some information to learn
a model. In order to obtain probabilistic relevance in the
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Table 1: Amino acid encoding. 

Amino acid Property Dayhoff

C sulfur polymerization a
G, S, T, A, P small b
D, E, N, Q acid and amide c

R, H, K, basic d
L, V, M, I hydrofobic e
Y, F, W aromaticity f

The Dayhoff encoding takes into account the properties of each 
residue: sulfur polymerization, small, acid and amide, basic, 
hydrophobic and aromaticity. For example, for the input protein 
segment SVMEDTLLSVLFETYNPKVRPAQTVGDKVTVRV the output 
encoded sequence would be: beeeccbeebeefcbfcbdedbbcbebcdebede
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test of our method, we followed a leaving one out scheme:
each sample protein of the dataset is annotated using as
training set all the other samples. The process is repeated
until all sample proteins have been used as test sequences.
We carried out various experiments, taking into account
different annotations for the test sequences. Each experi-
ment was carried out over the six databases TMHMM,
TMPDB, TMPDB-α-nR, TMPDB-αβ-nR, 101pred-tmr and
MPTOPO. Note that all these sets but TMPDB have non
homologous sequences.

We hereby provide a description of each experiment, all
the experiments but the last consider a previous reduction
using the Dayhoff code: The first one (exp1) considered a
two-classes encoding, that is, residues inside and outside
a transmembrane domain; the second experiment (exp2)
added another class in order to consider the topology of
the protein (inner and outer residues); the third experi-
ment (exp3) also included a class to distinguish among
transmembrane domains with previous inner and outer
regions; the fourth (exp4) experiment took into account
the previous encoding with a special labelling of the last
five residues of each region preceding a transmembrane
one; the fifth experiment (exp5) added special symbols to
track the transition to a transmembrane and out to one;
the last experiment (exp6) did not consider the Dayhoff
encoding and used the annotation of the second experi-
ment.

Each of the experiments builds a different model for the
language of the TM proteins, that highlights differents
propierties of them, by searching different patterns among
the amino acids, depending on whether they belong, for
instance, to a TM zone or not (exp1), to an inner or outer
zone (exp2 and exp6), to a TM domain with previous inner
or outer regions (exp3), to the sequence of the last 5 resi-
dues that precede a TM segment (exp4), or to the set of
amino acids that represent a transition from a TM zone to

an inner or outer zone, or vice versa (exp5). Figure 3 shows
the annotation and encoding of an example sequence for
each different experimental configuration.

Once encoded the sequences, and for each of the
described encodings, a set of experiments were run to test
the best learning parameter of the inference algorithm.
The best accuracy was obtained in the experiment with the
configuration of exp5 and exp6. The HMM-based methods
we compared our system with, obtain a slightly better pre-
cision. The difference in results can be explained with the
fact that GI algorithms need a greater quantity of data
than the amount needed by Hidden Markov Models in
order to achieve the same accuracy.

The main advantage of our approach is that it learns the
topology of the model from samples, without the need of
the external knowledge, as in HMM-based methods,
where states and edges are determined by an expert. In a
GI method, the automata are built by the algorithm,
which stablishes the topology, number of states, the tran-
sitions or edges between states and probabilities of transi-
tion. Tables 2, 3, 4, 5, 6 show the experimental results of
the fifth and sixth experiments (those which returned the
best results) with the six datasets.

Although it may seem erroneous or non-sense to build a
model to predict both α and β transmembrane domains,
we would like to illustrate with this experiment the way a
GI approach distinguishes from other approaches: if the
dataset contains enough data (sequences in our case)
from differents classes (α-helices and β-barrels), the
model obtained should be able recognize all the different
patterns. Table 7 compares the results of the experiment
carried out over TMPDB-α-nR and TMPDB-αβ-nR data-
sets. The results with TMPDB-αβ-nR are slightly worse,
but it can be explained because the set of β-barrel proteins
contains only 15 sequences, and it is difficult to learn an

Example of segments correctly predicted with different levels of precisionFigure 2
Example of segments correctly predicted with different levels of precision. The first line shows the protein to pre-
dict, the second one is the prediction. This example shows a segment completely predicted (a), one segment correctly pre-
dicted at least at 75\% (b) and one segment predicted at least at 90\% (c).

......bbbbbbbbbbbbbbbbbbb......aaaaaaa......cccccccccccc......

iiiiiiMMMMMMMMMMMMMMMMMMMooooooMMMMMMMiiiiiiMMMMMMMMMMMMoooooo

iiiiiiMMMMMMooMMMMiiiMMMMMoooooMMMMMMMiiiiiMMMMMMMMMMMMooooooo
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accurate model from this set. In fact, when we train and
test with only this set of β-barrel proteins (which would
be TMPDB-β-nR) the result are roughly worse: (results
from exp5) 0.506 for Sp, 0.170 for AC and 0.318 for
Sov3

obs; and in exp6:0.541 for Sp, 0.270 for AC and 0.584
for Sov3

obs.

Conclusion
This work addresses the problem of the localization of
transmembrane segments within proteins by making use
of Grammatical Inference (GI) algorithms. GI has been
effectively used in some bioinformatic related tasks, such

as gene-finding or prediction of coiled coil domains. IgTM
exploits the features of proteins by using Even Linear Lan-
guages as the inferred class of languages. We tested differ-
ent labellings for the input sequences, with the best
accuracy achieved using a labelling that takes into account
several changes in the sequence topology: from inside and
outside the membrane to it and vice versa. We compared
our method with other methods to predict transmem-
brane domains in proteins, obtaining slightly less accu-
racy with respect to them. This should be due to the fact
that in GI the training phase need more data than the
most common approach, based on Hidden Markov Mod-

Examples of sequences annotated and codified for each experimentFigure 3
Examples of sequences annotated and codified for each experiment. This figure shows the annotation  and encoding  
of an example sequence for each different experimental configuration.

Sequence: MRVTAPRTLLLLLWGAVALTETWAGSHSMR

Dayhoff: edebbbdbeeeeefbbebebcbfbbbdbed

TM domains: 4-10, 20-25

exp1: edebbbdbeeeeefbbebebcbfbbbdbed...MMMMMMM.........MMMMMM.....

exp2: edebbbdbeeeeefbbebebcbfbbbdbedoooMMMMMMMiiiiiiiiiMMMMMMooooo

exp3: edebbbdbeeeeefbbebebcbfbbbdbedoooNNNNNNNiiiiiiiiiPPPPPPooooo

exp4: edebbbdbeeeeefbbebebcbfbbbdbedOOONNNNNNNiiiiIIIIIPPPPPPooooo

exp5: edebbbdbeeeeefbbebebcbfbbbdbedooocMMMMMMdiiiiiiiiaMMMMMboooo

exp6: MRVTAPRTLLLLLWGAVALTETWAGSHSMRoooMMMMMMMiiiiiiiiiMMMMMMooooo

Table 2: Experimental results TMHMM. 

TMHMM database

Sn Sp CC AC Sov3
obs 100% ≥ 90% ≥ 75%

igTM exp5 0.808 0.810 0.707 0.702 0.680 0.474 0.603 0.756

exp6 0.819 0.796 0.715 0.707 0.707 0.490 0.618 0.789

TMHMM 2.0 0.900 0.879 0.830 0.827 0.915 0.339 0.636 0.920
Pred-TMR 0.786 0.898 0.769 0.767 0.843 0.200 0.378 0.723
Prodiv-TMHMM 0.832 0.854 0.778 0.768 0.866 0.269 0.523 0.848
HMMTOP 0.849 0.894 0.810 0.802 0.913 0.255 0.537 0.844
PHOBIUS 0.891 0.850 0.804 0.924 0.936 0.367 0.635 0.902
MEMSAT3 0.896 0.843 0.799 0.912 0.801 0.412 0.750 0.926
TMpred 0.834 0.796 0.741 0.738 0.899 0.331 0.540 0.813

Experimental results and comparison with results of other methods, with the TMHMM α-helix database. As discussed in the Performance Measures 
section, 100%, ≤ 90% and ≥ 75% stand for segments correctly detected in that percentage.
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els. In addition to this, many of the available prediction
tools are closed, that is, there is no way to know exactly the
training set used by the tools which we have compared
igTM with, therefore it is possible that some of our six
datasets included proteins used by these tools in the train-
ing phase (in this case, the tools we compare our algo-
rithm with, would obtain better results). The same
problem happens with online prediction tools, where the
data considered to build the tools is not available. Then,
since the other methods can have been trained on
sequences that share homology with the test set (or even
sequences included in the test set), the comparison could
be not very reliable. However, the obtained results show
that GI can be used effectively in bioinformatics related
tasks. Furthermore, the main advantage of GI when
applied to bioinformatics tasks is that an expert is not

needed in order to give additional information (in this
case the topology of transmembrane proteins). An online
version of IgTM is publicly available at http://
www.dsic.upv.es/users/tlcc/bio/bio.html

It remains as a future work to use this method together
with another one (based on HMM or not). This could lead
to improve the performance. At present we are testing
other inference algorithms to learn the automata, the use
of new codings to the sequences [37,38], and the consid-
eration of new datasets (for instance the Möller dataset
[39]).

Table 3: Experimental results TMPDB. 

TMPDB

Sn Sp CC AC Sov3
obs 100% ≥ 90% ≥ 75%

igTM exp5 0.683 0.750 0.587 0.539 0.519 0.444 0.515 0.608

exp6 0.710 0.759 0.617 0.557 0.533 0.487 0.562 0.652

TMHMM 2.0 0.739 0.831 0.717 0.659 0.745 0.259 0.465 0.671
Pred-TMR 0.777 0.899 0.785 0.756 0.831 0.209 0.426 0.736
Prodiv-TMHMM 0.737 0.829 0.709 0.659 0.756 0.208 0.427 0.647
HMMTOP 0.769 0.802 0.686 0.861 0.670 0.189 0.381 0.651
PHOBIUS 0.775 0.786 0.686 0.670 0.811 0.258 0.452 0.693
MEMSAT 3 0.775 0.793 0.668 0.671 0.783 0.278 0.487 0.692
TMpred 0.702 0.755 0.615 0.598 0.746 0.222 0.361 0.572

Experimental results and comparison with results of other methods, with the TMPDB α-helix database. As discussed in the Performance Measures 
section, 100%, ≥ 90% and ≥ 75% stand for segments correctly detected in that percentage.

Table 4: Experimental results TMPDB-α-nR. 

TMPDB-α-nR

Sn Sp CC AC Sov3
obs 100% ≥ 90% ≥ 75%

igTM exp5 0.637 0.757 0.571 0.533 0.488 0.431 0.516 0.623

exp6 0.698 0.771 0.618 0.578 0.511 0.487 0.575 0.674

TMHMM 2.0 0.814 0.813 0.728 0.710 0.818 0.335 0.569 0.805
Pred-TMR 0.775 0.826 0.696 0.700 0.823 0.183 0.376 0.688
Prodiv-TMHMM 0.823 0.802 0.720 0.712 0.841 0.272 0.543 0.802
HMMTOP 0.823 0.782 0.699 0.699 0.875 0.257 0.486 0.777
PHOBIUS 0.845 0.791 0.717 0.860 0.881 0.333 0.559 0.847
MEMSAT 3 0.820 0.808 0.711 0.714 0.828 0.328 0.582 0.808
TMpred 0.765 0.747 0.643 0.643 0.813 0.264 0.441 0.673

Experimental results and comparison with results of other methods, with the TMPDB-α-nR α-helix database. As discussed in the Performance 
Measures section, 100%, ≤ 90% and ≥ 75% stand for segments correctly detected in that percentage.
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Methods
Introduction
Our approach considers the concatenation of the protein
symbols with the inverted annotation string, the whole
considered as an ELL string. We subsequently apply a
transformation to it, in order to obtain a string belonging
to a regular language. The transformation is done by join-
ing the first symbol of the first half with the last of the sec-
ond one, the second symbol of the first half with the
second-last symbol, and so on. Then, a GI process learns
a language building a transducer that accepts the first part
of each symbol (the one coming from the first half of the
string) and returns the second part as output. The test
phase consists in using Viterbi's algorithm to analyse the
string. This algorithm returns the transduction that is
most likely to be produced by the input string.

Notation and definitions
Let Σ be an alphabet and Σ* the set of words over the
alphabet. A language is any subset of Σ*, that is a set of
words. For any word x over Σ* let xi denote the i-th symbol
of the sequence. Let |x| denote the length of the word and
let xr denote the reverse of x. Let also λ denote the empty
word. A grammar is denoted by G = (N, Σ, P, S) where N
and Σ are the auxiliar and terminal alphabets, P is the set
of productions and S ∈ N is the initial symbol or axiom.
Intuitively, a grammar can be seen as a rewritting system
that uses the set of productions to generate a set of words
over Σ*. The language generated by a grammar G is
denoted by L(G).

Table 5: Experimental results MPTOPO. 

MPTOPO

Sn Sp CC AC Sov3
obs 100% ≥ 90% ≥ 75%

igTM exp5 0.651 0.708 0.443 0.439 0.491 0.312 0.400 0.509

exp6 0.672 0.752 0.511 0.469 0.576 0.409 0.472 0.572

TMHMM 2.0 0.634 0.882 0.663 0.563 0.666 0.121 0.240 0.465
Pred-TMR 0.572 0.893 0.617 0.542 0.630 0.061 0.145 0.345
Prodiv-TMHMM 0.609 0.887 0.643 0.547 0.647 0.087 0.199 0.410
HMMTOP 0.630 0.868 0.637 0.558 0.683 0.084 0.175 0.415
PHOBIUS 0.640 0.884 0.670 0.576 0.687 0.105 0.225 0.466
MEMSAT 3 0.667 0.821 0.581 0.584 0.701 0.139 0.283 0.506
TMpred 0.578 0.831 0.567 0.506 0.622 0.096 0.182 0.383

Experimental results and comparison with results of other methods, with the MPTOPO α-helix database. As discussed in the Performance 
Measures section, 100%, ≥ 90% and ≥ 75% stand for segments correctly detected in that percentage.

Table 6: Experimental results 101pred-tmr. 

101-PRED-TMR-DB

Sn Sp CC AC Sov3
obs 100% ≥ 90% ≥ 75%

igTM exp5 0.793 0.821 0.697 0.692 0.651 0.522 0.613 0.725

exp6 0.801 0.820 0.718 0.709 0.714 0.423 0.577 0.739

TMHMM 2.0 0.899 0.871 0.822 0.817 0.909 0.346 0.625 0.899
Pred-TMR 0.814 0.909 0.792 0.795 0.873 0.229 0.416 0.751
Prodiv-TMHMM 0.831 0.840 0.772 0.760 0.864 0.297 0.542 0.828
HMMTOP 0.862 0.890 0.811 0.808 0.926 0.258 0.546 0.846
PHOBIUS 0.895 0.836 0.798 0.796 0.936 0.375 0.636 0.883
MEMSAT 3 0.889 0.834 0.787 0.790 0.893 0.432 0.732 0.913
TMpred 0.845 0.775 0.725 0.732 0.908 0.343 0.530 0.798

Experimental results and comparison with results of other methods, with the 101pred-tmr α-helix database. As discussed in the Performance 
Measures section, 100%, ≥ 90% and ≥ 75% stand for segments correctly detected in that percentage.
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An Even Linear Grammar (ELG) is a context-free grammar
[40] where the productions are of the forms:

The class of Even linear Languages (ELL) is a subclass of
the context free languages and includes properly the class
of regular languages. Given an ELG, it is possible to obtain
an equivalent one where the productions are of the form:

The learning of ELL can be reduced to the inference of reg-
ular languages [41]. The general algorithm consists in
transforming the training strings through a function σ: Σ*
→ [Σ × Σ]* ∪ [Σ]* defined as follows:

Intuitively, this function relates the first and last symbols
of the word, as well as the second and the last but one, and
so on. Once applied the function σ, it is possible to use
any regular language inference algorithm to learn a lan-
guage over the alphabet [Σ × Σ]* ∪ [Σ]*, that is, the alpha-
bet of paired symbols. The learned language can be
processed to undo the transformation σ as follows:

Several inference algorithms are suitable to be applied,
each obtaining a different solution. In fact, if the GI algo-
rithm identifies a subclass of regular languages, then a
subclass of ELL is obtained and applied with good per-
formance.

A finite state transducer is an abstract machine formally
defined by a system τ = (Q, Σ, Δ, q0, QF, E) where: Q is a

set of states, Σ and Δ are respectively the input and output
alphabets, q0 is the initial state, QF ⊆ Q is the set of final
states and E ⊆ (Q × Σ* × Δ* × Q) is the set of transitions
of the transducer. A transducer processes an input string
(word of a language), and outputs another string. A suc-
cessful path in a transducer is a sequence of transitions
(q0, x1, y1, q1), (q1, x2, y2, q2), ..., (qn-1, xn, yn, qn) where qn ∈
QF and for 1 ≤ i ≤ n: qi ∈ Q, xi ∈ Σ* and yi ∈ Δ*. Note that
a path can be denoted as (q0, x1x2 ... xn, y1y2 ... yn, qn) when-
ever the sequence of states are not of particular concern. A
transduction is defined as a function t: Σ* → Δ* where t(x)
= y if and only if there exist a successful path (q0, x, y, qn).
Figure 4 shows an example of transducer, and the trans-
duction that an accepted sequence generates. We refer the
interested reader to [42].

Grammatical inference approach to transmembrane 
segments prediction
We consider the transmembrane segments prediction
problem as a transduction problem. That is, given an
amino acid sequence, the output of our system is a
sequence with the same length which distinguishes
between those amino acids within transmembrane seg-
ment and those that are not. In our work, we took into
account the special features of our problem to propose a
method based on inference of ELL.
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Table 7: igTM experimental comparison when TMPDB-α-nR and TMPDB-αβ-nR datasets were taken into account.

Sn Sp CC AC Sov3
obs 100% ≥ 90% ≥ 75%

TMPDB-αβ-nR exp5 0.618 0.732 0.545 0.498 0.462 0.412 0.481 0.564

exp6 0.676 0.750 0.600 0.542 0.476 0.471 0.547 0.621

TMPDB-α-nR exp5 0.637 0.757 0.571 0.533 0.488 0.431 0.516 0.623

exp6 0.698 0.771 0.618 0.578 0.511 0.487 0.575 0.674

A three states transducer exampleFigure 4
A three states transducer example. A label x/y denotes 
that the transition symbol is x with output y. For instance, the 
transduction of baabaab is 1110001

b/0

a/1b/1a/0

a/1b/1 ABS
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First of all, we had to transform the available data to
obtain a training set with even linear structure. This set
was used to infer an ELL. The transducer is obtained using
the structure of the inferred ELG. Given a ELG G = (N, Σ,
P, S) that does not contain productions of the form A →
a, a ∈ Σ, it is possible to obtain a transducer τ = (N, Σ, Σ,
S, QF, E) where:

Example 1 shows how this transformation work.

Example 1 Given the ELG G = (N, Σ, P, S) with the produc-
tions:

then, the transducer τ = (N, Σ, Σ, S, {B}, E) is obtained where:

The resulting transducer is shown in Figure 4.

As we stated before, the learning problem for ELL can be
reduced to the problem of learning regular languages. In
our work, in order to learn the ELL, we use an algorithm
to infer k-testable in the strict sense (k-TSS) languages [25-
27]. The class of ktss languages is contained into the regu-
lar languages one; it is characterized by the set of segments
of length k that appear in the words of the language.

Our approach considered a set of protein sequences P
with known transmembrane domains and another set L
of strings over an alphabet of labels Δ = {i, o, M}. For each
sequence x in P, a labeled sequence lx is obtained. The
labelling allows to distinguish the transmembrane seg-
ments from the non-transmembrane ones. That is, given
the string x = x1x2 ... xn ∈ P and its corresponding labeled
string lx, = l1l2 ... ln ∈ L, li = M whenever xi correspond to a
transmembrane segment, li = i, when correspond to a
inner segment, and li = o, when correspond to a outer seg-
ment.

These sets were combined to obtain another set, named

M, with the strings . Note that the strings in this set

have an even linear structure and an even length. The set
M was used to obtain a probabilistic transducer by ELL
inference. The general method is summarized in Algo-
rithm 1.

The returned transducer can be used to analyse problem
sequences to obtain the corresponding transduction. It is
possible that the transducer may result to be non-deter-
ministic and the test sequences may not belong to the lan-
guage accepted by the transducer. Therefore, an error-
correcting parser (for instance Viterbi's algorithm) is nec-
essary to analyze the test sequences. We employed a stand-
ard configuration of Viterbi's algorithm used when a GI
approach is applied to pattern recognition tasks (i.e.
[33]).

Complexity
The igTM method is composed by two phases: inference
and analysis. The first one consists in inferring an trans-
ducer from the sequences of the dataset.

The execution time of the GI algorithm used in this work
is linear with the size of the dataset. The space require-
ments of this step is bounded by |Σ|k, where Σ is the alpha-
bet of the samples and k is the parameter of the k-tss
algorithm. Therefore, depending on the parameter used,
the automaton obtained can be relatively big. The trans-
formation of the automaton into a transducer is bounded
by a polynomial of degree k.

The execution time of the second phase, the analysis one,
is linear respect the size of the string to analyse. The space
requirements are bounded by the size of the transducer
and the analized string.
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