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Abstract
Pregnancy and lactation are states known to be accompanied by physiologically-upregulated bone
resorption in response to the calcium demands of the developing fetus and nursing infant. The role
of calcium supplements in altering maternal responses to fetal demand for calcium is not fully
understood. Exposure to the toxicant lead is known to pose a major hazard to fetal neurodevelopment
and growth. Since over 95% of maternal lead is stored in bone, mobilization of cumulative maternal
lead stores into the circulation represents an endogenous source of exposure which may pose a
significant hazard for the fetus and infant. Maternal dietary calcium supplementation has been
associated with reductions in lead levels in both animal and human studies when administered during
pregnancy and lactation. Therefore, supplementation of the maternal diet with calcium may represent
an important secondary prevention strategy aimed not only at reducing circulating levels of lead in
the mother, but also at reducing lead exposure to the developing fetus and nursing infant.
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Introduction
Despite overall declines in population blood lead levels (1,2) exposure to lead remains an
international public health problem for at least three reasons. First, toxic effects are being
identified at lower levels of exposure (3,4) apparently with no threshold (5,6) suggesting that
any exposure may be harmful to the central nervous system. Second, exposed subgroups exist
and some, particularly children living in deteriorated housing (7), workers in several high-risk
occupations (8), those living near hazardous wastes site or active smelters (9), and residents in
countries still using leaded gasoline (10), may be highly exposed. Finally, lead stores previously
thought to be inert are actually mobilized to a marked degree (11–13) and previously-
accumulated bone lead stores may constitute an ongoing endogenous source of exposure
particularly during periods of heightened bone turnover (14,15).
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Calcium Requirements of Pregnancy and Lactation
Calcium requirements are increased substantially during pregnancy and lactation in order to
meet the calcium needs of the developing fetus and nursing infant for skeletal mineralization
and growth (16). Profound changes in calcium metabolism and bone mineral status accompany
pregnancy both during gestation and after delivery. Levels of calcium in plasma are under strict
hormonal control (17)(Figure 1). Calcium homeostasis is maintained by controlling intestinal
calcium absorption, renal calcium excretion, and mobilization of skeletal mineral stores. It is
recommended that pregnant and nursing women adjust their dietary calcium intake to 1,200–
1,500 milligrams per day depending on their age (18). The role of dietary calcium and mineral
adequacy on skeletal changes of pregnancy and lactation is still controversial. The first half of
pregnancy is a time of preparation for the demands of rapid fetal growth that occur in the later
stage when >90% of fetal growth occurs and the calcium demand reaches about 300 mg/day
in the last quarter of gestation (19). During pregnancy approximately 25 to 30 grams of calcium
are transferred to the fetus (20). Lactation also has discernible effects on calcium homeostasis.
Approximately 210 milligrams of calcium per day is utilized for milk production during
lactation (21). Maternal calcium loss during lactation is estimated at 280–400 mg/day and can
reach up to 1,000 mg/day which is approximately three times higher than during pregnancy
(22).

Pregnancy- and Lactation-Associated Bone Loss
Biochemical markers and bone density measurements indicate that bone resorption is increased
during pregnancy and lactation (22). The factors controlling skeletal changes of pregnancy and
lactation are still largely unknown. In a study of bone loss in adolescent and adult pregnant
women, the bone quantitative ultrasound index was 3.6% lower at 6 weeks postpartum than at
entry into prenatal care (23). Nulliparous patients had significantly greater bone loss than
parous subjects. Bone loss observed during pregnancy and lactation appears to be transient
with levels returning to baseline after the return of ovarian function and cessation of nursing
(24). Sowers and colleagues (25), in a prospective study, found that women with lactation
duration of 6 months or longer had mean bone mineral density losses of 5.1% and 4.8% at the
lumbar spine and femoral neck, respectively. However, among women who breast-fed for six
months or longer, there was evidence of return to baseline bone mineral density levels 12
months after parturition. The development of biochemical markers of bone turnover has
increased the methods available to study bone metabolism. Markers of bone resorption (e.g.
pyridinoline, deoxypyridinoline, cross-linked N-telopeptide (NTX)) are all breakdown
products of type I collagen. Using biochemical markers of bone formation and resorption,
Black et al. (26) demonstrated significant increases in bone resorption and decreasing bone
mineral density over the course of pregnancy compared to pre-pregnancy levels. The increase
in all bone resorption markers reached statistical significance by 14 weeks gestation (p<0.02)
and continued to rise at a similar rate until 28 weeks (p<0.01) before a marked increase up to
38 weeks gestation (p<0.001). In a case-crossover trial of calcium supplementation (1200 mg
calcium carbonate at bedtime) during the third trimester of pregnancy, maternal bone
resorption, as reflected by urinary NTX levels, was reduced by an average of 13.6 nM BCE/
mM creatinine (14%) in comparison to placebo (27) suggesting that dietary calcium plays a
role in suppressing maternal bone mobilization.

Prenatal and Early Postnatal Lead Exposure
Mobilization of maternal bone lead stores released into circulation during pregnancy and
lactation constitute a significant potential endogenous source of exposure to the mother,
developing fetus and nursing infant (28)(Figure 2). The decline of environmental sources of
lead highlights the relevance of maternal bone as a continuing source of exposure. Women
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who were chronically exposed to environmental lead during infancy and adolescence may
arrive at reproductive age with a significant bone lead burden. Thus, bone lead represents an
important threat, not only to women with ongoing environmental exposures, but also to women
with reduced environmental exposures who have had elevated exposures in the past (29). This
has serious consequences since lead mobilized from bone goes directly to plasma which is the
most biologically active compartment of lead available to cross cell membranes (30). Little is
known about the direct contribution of endogenous exposures to the toxic effects of lead but,
given the incomplete blood-brain barrier in their developing nervous systems, children may be
more susceptible to insults during the prenatal and early postnatal periods (31,32). Lead freely
crosses placental cell membranes by passive diffusion and fetal blood lead concentration is
highly correlated with maternal blood lead concentration (33). Since approximately 95% of
lead is stored in bone and mineralized tissues (34,35), and bone lead has a half-life of years to
decades (36), women and their infants will continue to be at risk for exposure long after
environmental sources of lead have been abated.

Biokinetics of Lead in Pregnancy and Lactation
Rothenberg et al. (37), attempting to model kinetics over the course of pregnancy, showed a
significant drop in blood lead levels from weeks 12 to 20. This drop is likely to be due in large
part to hemodilution brought on by rapid expansion of the plasma compartment during
pregnancy (rather than a true drop in mobilization of lead from bone). However, from 20 weeks
to delivery they identified a significant increasing linear trend confirming the rise in blood lead
levels in the later part of pregnancy. By examining the lead isotopic ratio in a small number of
pregnant women who were recent immigrants to Australia (and pregnant Australian controls),
Gulson and colleagues (38) were able to show that the changes in skeletal contribution to blood
lead increased over pregnancy. In addition, the mobilization of lead from bone continued in
the postpartum period for up to six months during lactation at levels higher than during
pregnancy (11).

Hertz-Picciotto et al. (39) followed 195 women over the course of pregnancy and found a U-
shaped pattern of maternal blood lead concentration across pregnancy. The late pregnancy
increases were steeper among women with low dietary calcium intake in both the low and high
age groups. In another study in a smelter area with stable or decreasing environmental
exposures, increases in blood lead levels along with decreases in maternal calcium serum
calcium levels during pregnancy were observed (40). Therefore, lead’s effects may be more
pronounced among those in calcium-deficient states.

Impact of Dietary Calcium on Lead Absorption and Distribution
Dietary factors concurrent to the time of exposure are known to have an impact on lead
dynamics, particularly with respect to the absorption of lead from the gastrointestinal tract
(41,42) where nutrients may interact with lead by several potential mechanisms. Dietary
nutrients potentially interact with lead by: binding lead in the gut, competing with lead for
absorption, altering intestinal cell avidity for lead, or by altering affinity of target tissues for
lead (43).

The potential role of nutritional status in altering susceptibility to lead exposure and toxicity
has long been recognized (41,44). There is increasing evidence that suggests several nutrients
may interact with lead absorption, deposition, and excretion of lead from the body. This may
be particularly true at times, such as pregnancy and lactation, when nutrient requirements are
increased in comparison to other periods of life. These relationships are of particular interest
due to the concern for fetal and infant exposure to circulating maternal lead.
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Calcium deficiency has been shown to increase lead absorption (45) and lead retention (46).
There is also evidence supporting low dietary calcium and vitamin D as risk factors for elevated
bone lead levels (47). Higher milk intake during pregnancy has been associated with lower
maternal and umbilical cord lead levels in postpartum women in Mexico (48), suggesting that
calcium status may be an important factor in the maternal-fetal transfer of lead across the
placenta. Calcium, phosphorus, magnesium, fluoride, and vitamins D and K are known to be
essential to bone health, but the effect of diet on the mobilization of previously-accumulated
bone lead stores between osseous and non-osseous tissues has not been fully investigated.
Among postpartum women in Mexico City, lower levels of bone lead were associated with
higher intakes of calcium, vitamin D, phosphorus, magnesium iron, zinc, and vitamin C, though
these relationships showed inconsistent trends (49).

Lead Effects on Calcium and Bone Metabolism
Lead may also modify the metabolism of nutrients. Lead competes with calcium at calcium-
binding sites and may subsequently alter protein function and calcium homeostatis (50). There
is also evidence that lead, like other divalent metal toxins, is an oxidative toxin that can both
directly and indirectly cause cell damage (51). Lead also impacts on a wide variety of biological
activities at different intracellular levels at the voltage-gated channels and on the first, second
and third messengers (52). Lead can substitute for calcium (Ca2+) and zinc (Zn2+) as a second
messenger in ion-dependent events. In addition to being an important endogenous source of
lead exposure, bone may also be a target for the toxic effects of lead (29,53). Lead-induced
changes in calcium-mediated cellular processes may affect skeletal development and
regulation of skeletal mass (54). Over 99 percent of total body calcium is found in teeth and
bones, primarily in the form of hydroxyapatite (Ca10(PO4)6(OH)2). Lead directly and indirectly
alters many aspects of bone cell formation (54). Lead is sequestered by the skeleton, being
incorporated into the hydroxyapatite matrix, where it remains until bone is remodeled. One
study showed that calcium supplementation (~ 1 g/day) influenced the flux of lead released
from bone during late pregnancy and postpartum (55).

Effect of Calcium Supplementation on Lead Levels
In a randomized, double-blind, placebo-control trial, Hernández-Avila et al. (56) showed that
supplementation with calcium carbonate (1200 mg of elemental calcium daily) among lactating
women reduced maternal blood lead levels 15–20% over the course of lactation. Compared
with women who received the placebo, those who took supplements had a modest decrease of
−0.12 μg/dL in their blood lead levels over the study period at 3 months (95% CI = −0.71 to
0.46 μg/dL) and −0.22 μg/dL at 6 months (95% CI = −0.77 to 0.34 μg/dL). The effect was
more apparent among women who were compliant with supplement use and had high bone
lead levels (patella bone lead ≥5 μg/gm bone). Calcium supplementation was also associated
with 5–10% lower breast milk lead levels among lactating women over the course of lactation
(57).

During the 2nd and 3rd trimesters of pregnancy, calcium supplementation was associated with
an average reduction of 19% in blood lead concentration in relation to placebo (p<0.001)
(Téllez-Rojo, et al. Submitted)(58). Also, bone resorption was reduced by 13% in the
supplement group in comparison to placebo (p=0.002). Controlling for bone resorption rate
(concentrations of NTx), the reduction of the blood lead concentration related to the effect of
the supplement was 15% (p=0.01), in relation to placebo. This indicates that the effect of
calcium may be exerted partially, although not entirely, by decreasing bone resorption, and
may also be working by decreasing intestinal absorption or increasing excretion of lead from
circulation (Figure 3).
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Lead and the Vitamin D Receptor Gene
Lead absorption is inversely related to calcium stores. Therefore, a genetic polymorphism that
modifies calcium absorption would be a reasonable candidate gene to modify lead absorption
and distribution. Since lead is accumulated in bone, another reasonable expectation is that a
candidate gene would influence bone formation and resorption. One recent study suggests that
the VDR BsmI genotype may modify levels of lead in bone, with subjects homozygous for the
“B” allele (indicating absence of the restriction site) having increased tibia bone lead levels
(59). If this hypothesis is correct, then a population with physiologically-upregulated calcium
absorption, such as pregnant and lactating women, may have higher blood lead levels and
overall body burden if they carry the VDR BsmI BB genotype (Figure 4). Since calcium
absorption is increased during pregnancy (and lactation), the activity/expression of vitamin D
receptors is likely increased relative to other periods in life. These associations may be more
pronounced among pregnant subjects, particularly in those with low dietary calcium intake.
Previous work by our research group has demonstrated that maternal bone lead is a major
determinant of umbilical cord lead level (60) which is an important biomarker of fetal exposure.
Thus VDR polymorphisms may also, ultimately, modify the association between maternal
bone lead and umbilical cord lead (Ettinger, et al. Submitted)

Conclusions
Calcium supplementation has been associated with modest reductions in blood lead levels both
when administered during lactation and during pregnancy. This may effect is likely related
both to the suppression of maternal bone resorption (and consequent mobilization of lead stored
in maternal bone) as well as suppression of the absorption of lead in dietary sources. Baseline
dietary intake and levels of calcium supplementation in recent studies have been relatively low.
It is possible that high levels of calcium are needed to counterbalance the nutritional needs of
the developing fetus (61). Other genetic, hormonal, or lifestyle factors may also be responsible.

Dietary supplementation may constitute an important secondary prevention effort aimed not
only at reducing circulating levels of lead in the mother, but also at reducing lead exposure to
the developing fetus and nursing infant. Better understanding of the potential for perinatal
exposure, including lead kinetics and susceptibility in the pregnant and lactating mother, fetus,
and breast-feeding newborn, is needed for the risk assessment and policy development. Since
over 95% of lead is accumulates in long-lived bone stores, nutritional interventions may be an
important strategy for preventing trans-generational exposures from lead-exposed women
during the reproductive years.
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Figure 1. Hormonal Control of Plasma Calcium
Note: PTH=parathyroid hormone; CT=calcitonin; 1,25(OH)2D3=vitamin D (Adapted from:
Kovacs & Kronenberg, 1997)

Ettinger et al. Page 9

J Nutr Biochem. Author manuscript; available in PMC 2008 October 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Lead Exposure Pathway from Mother to Infant (using Mexico as an example; adapted from
Chuang et al., 2001).

Ettinger et al. Page 10

J Nutr Biochem. Author manuscript; available in PMC 2008 October 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Potential Mechanism of Calcium Effects
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Figure 4. Hypothesized Effects of Lead on Calcium and Vitamin D Metabolism
Note: PTH=parathyroid hormone; CT=calcitonin; 1,25(OH)2D3=1,25-
dihydroxycholecalciferol (calcitriol) hormonally-active form of vitamin D; 25(OH)
D3=circulating form of vitamin D
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