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ABSTRACT

The recent introduction of massively parallel pyro-
sequencers allows rapid, inexpensive analysis of
microbial community composition using 16S ribo-
somal RNA (rBRNA) sequences. However, a major
challenge is to design a workflow so that taxonomic
information can be accurately and rapidly assigned
to each read, so that the composition of each
community can be linked back to likely ecological
roles played by members of each species, genus,
family or phylum. Here, we use three large 16S
rRNA datasets to test whether taxonomic informa-
tion based on the full-length sequences can be
recaptured by short reads that simulate the pyro-
sequencer outputs. We find that different taxonomic
assignment methods vary radically in their ability to
recapture the taxonomic information in full-length
16S rRNA sequences: most methods are sensitive
to the region of the 16S rRNA gene that is targeted
for sequencing, but many combinations of methods
and rRNA regions produce consistent and accurate
results. To process large datasets of partial 16S
rRNA sequences obtained from surveys of various
microbial communities, including those from
human body habitats, we recommend the use of
Greengenes or RDP classifier with fragments of at
least 250 bases, starting from one of the primers
R357, R534, R798, F343 or F517.

INTRODUCTION

Pyrosequencing (1) has the potential to revolutionize our
ability to understand the microbial world. Because the
vast majority of microbes have not been cultured, and
perhaps cannot be cultured using existing techniques (2),
culture-independent techniques that analyze small subunit

ribosomal RNA sequences (16S rRNA in the case of
bacteria and archaea), amplified by PCR directly from
environmental samples, are critical for understanding the
composition and dynamics of complex microbial commu-
nities (3). Pyrosequencing greatly increases the rate at
which we can characterize microbial communities for sev-
eral reasons. Because pyrosequencing is a single-molecule
technique, the heterogeneous 16S rDNA PCR products
can be characterized directly without cloning, thus
saving an immense amount of labor. The cost is also
much less than with traditional methods such as capillary
(Sanger) sequencing. Finally, linking a unique sequence
barcode to a 16S rDNA-directed PCR primers allows
dozens to hundreds of uniquely tagged samples (4), e.g.
16S rRNA samples from different microbial communities
(5,6), to be analyzed in a single run (multiplex barcoded
pyrosequencing).

One limitation of pyrosequencing is the short read
lengths: ~100 bases for the original GS 20 instrument,
~250 bases for the current GS FLX platform and an
anticipated ~400 bases for the next-generation GS XLR
instrument. We previously demonstrated that these short
read lengths could be used for phylogenetic-based com-
parisons of communities based on UniFrac (a metric
based on the extent of branch length that any two com-
munities share on a phylogenetic tree constructed from
all reads from all communities that are being analyzed)
(7-10). However, these analyses rely solely on phylogenies,
which are necessarily approximate on datasets of this
scale, and taxonomic information is lost. Taxonomic
information 1is critical for relating findings about each
community to what is known about the lifestyles of
each kind of microbe at varying levels of resolution. For
example, at the species level, Bacillus anthracis is a patho-
gen, whereas B. cereus is not; at the phylum level, cyano-
bacteria tend to be photosynthetic primary producers
whereas bacteroidetes are heterotrophs, and an increased
firmicute:bacteroidetes ratio is associated with obesity
(11-13). Consequently, testing whether the short read
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lengths that are produced by pyrosequencing could be
used for taxonomic assignment is an important task.

Several different methods for taxonomic assignment
have been proposed. The vast datasets produced by pyro-
sequencing prevent the application of standard phyloge-
netic techniques such as likelihood- or parsimony-based
tree reconstruction because there are too many sequences
and too many possible trees to search, and thus fast but
approximate techniques are required. Similarity search-
ing (e.g. BLAST) can be used to find the closest matches
to each sequence. The speed of this technique can be
improved by examining reduced representations of the
sequence (such as the abundance of each subsequence of
a defined length), albeit with some cost in accuracy. Tree-
based methods, in which a tree of reference sequences is
constructed, and internal nodes are assigned to taxa based
on known tip taxon assignments, might be expected to
give more accurate assignments (14,15). In this study,
we compare several methods: BLAST (16), the online
Greengenes (17) and RDP (18) classifiers, and two tree-
based methods. For each of the tree-based methods, we
used several algorithms to assign the sequences using the
tree, thereby allowing us to compare a broad range of
taxonomic assignment methods against one another. The
results have implications for designing, executing and
interpreting large-scale surveys, such as those that will
emanate from the recently launched International
Human Microbiome Project (19).

MATERIALS AND METHODS
Datasets

The reference taxonomy and sequences were taken from
Bergey’s manual release 7.8 from RDP. These sequences
were used for ‘leave-one-out’ evaluation of each method,
in which each sequence is excluded from the dataset and
classification is performed using the remaining sequences.
The three bacterial 16S rRNA datasets (only near full-
length sequences) used for the analysis of unclassified
sequences from community samples were the same as
those used in ref. (7) and included: (i) sequences from
the distal gut (ceca) of 19 C57BI/6J lean and obese
(ob/ob) mice (total of 3732 sequences, 3453 unique, with
an average length of 1161 bases) (11); (ii)) 16S rRNA
sequences from microbial communities occupying five
locations along the length of the colon, plus stool, from
three healthy, unrelated adult humans (total of 11864
sequences, 7761 unique, with an average length of 1349
bases) (20) and (iii) sequences obtained from commu-
nities positioned at 10 different depths (0-60 mm) in the
hypersaline Guerrero Negro microbial mat (11738
sequences, 11 164 unique, with an average length of 1233
bases; Harris,J.K., Walker,J.J. and Pace,N.R., unpub-
lished data; see ref. (21) for details about this mat located
in Baja, Mexico).

Clipping

Unique near full-length 16S rRNA sequences were
aligned using the NAST web tools (22) and the
Greengenes Core Set (17) (12 January 2008 release).
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Parameters used were: minimum identity, 75%; minimum
length, 50% of the length of the sequence (either full
length or clipped). Clipped sequences were generated by
extending forward from each primer (relative to the orien-
tation of the primer) 100, 250 or 400 bases on the original,
ungapped sequences. Primers used in this study were the
same as those described in ref. (7). Sequences that had
unknown bases at the primer starting point or were not
long enough to clip to the desired size were excluded from
the analysis. Sequences that were unique as full-length
sequences but identical when clipped were consolidated
into a single record, associated with the number of times
they corresponded to full-length sequences.

Calculating lineage recovery and coverage

Each taxonomy assignment method produces lineage
assignments at the levels of domain, phylum, class,
order, family and genus, both for the original sequences
and for the clipped sequences. Because the true taxonomy
is unknown for most environmental samples, taxonomy
assignments for the clipped sequences were compared to
those obtained using the same method for the original
near full-length sequences in order to assess accuracy.
The procedure thus tests reproducibility of each method
on the clipped sequences. If five different full-length
sequences all produced the same clipped sequence, and
that sequence was incorrectly assigned at the family
level, we would count this as five incorrectly assigned
sequences rather than one.

For each taxonomy rank, coverage was defined as the
number of taxa assigned to both the original and clipped
sequences, divided by the number of taxa assigned to the
original sequences (in some cases, taxa at a given level
were assigned to clipped but not full-length versions of
the same sequence). Recovery was defined as the fraction
of the covered clipped sequences assigned to the same
taxon as the corresponding full-length sequences.

Assigning lineages to sequences

We used five different methods to assign taxonomy to each
sequence (Figure 1). The first three of these were tree
independent; the remaining two were ‘trec-aware’. Each
method provided for each sequence a single putative tax-
onomy assignment at some level of resolution, although
the level often differed among the methods for a given
sequence. For example, one method might give a genus-
level assignment, whereas another might give only a
phylum-level assignment for the same sequence.

All five methods required a tree representing the taxon-
omy in order to map an original linecage assignment to the
levels of Domain, Phylum, Class, Order, Family and
Genus. To build this taxonomic tree, we obtained ranks
from Bergey’s Manual release 7.8. In the tree, taxa at each
level of the taxonomy were considered to branch from the
level above as a polytomy; e.g. all the classes within the
firmicutes, such as the bacilli and the clostridia, branched
from the firmicutes. The taxonomic tree contained only
the levels described above; intermediate levels such as
suborder were excluded.
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Figure 1. Overview of different methods for taxonomy assignment
(see text for details).

Method 1—BLAST. In this procedure, we used BLAST
(NCBI’s blastall version 2.2.15) (16) to search each
sequence against the set of sequences in version 7.8 of
Bergey’s manual as downloaded from RDP (note that
this list only includes cultured microbes). First, we
built a BLAST database from all the original full-length
sequences. Then we BLASTed each clipped or full-length
sequence against the database (using an E-value of le-50
for ‘leave-one-out’ evaluation, in which we excluded one
sequence from the dataset and asked how well it could be
classified based on the remaining data, and 1e-20 for
real data). From the BLAST results, we determined the
‘nearest neighbors’ by highest bit score: ‘more neighbors’
were determined using a maximum permitted difference of
10% from the maximum bit score. The query sequence
itself was excluded from the hit list for leave-one-out
evaluation. Finally, from the selected hits, we identified
the relevant lineages, and chose the ‘common lineage’ by
starting at the highest level classification and working
down until the classifications disagreed. Alternatively, we
chose the ‘major lineage’ where two-thirds of the classifi-
cations agreed.

Method 2—online RDP classifier. In this procedure, we
submitted the query sequences to the online RDP classifier
at http://rdp.cme.msu.edu/classifier/classifier.jsp (18). We
parsed the detailed classification results, using only taxon
assignments with >50% bootstrap support: allowing less
bootstrap support than this resulted in very poor recovery
(data not shown). We then converted each assignment to
the standard levels in the taxonomic tree.

Method 3—online Greengenes classifier based on NAST
alignment. In this procedure, we submitted a NAST
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alignment of the query sequences to the online
Greengenes classifier at http://greengenes.lbl.gov/Classify
(17). At the time we performed the comparison, the last
database update was 1 December 2008, and the database
contained 188073 aligned 16S rRNA records of at least
1250 bases. We parsed the taxonomy assignments in the
Greengenes output using the RDP taxonomy, and con-
verted each assignment to domain, phylum, class, order,
family and genus using the taxonomic tree and the thresh-
olds suggested in ref. (23).

Method 4—phylogenetic tree-based method. building tree
from the NAST alignment followed by a tree-based
algorithm. In this procedure, we aligned the query
sequences using NAST (75% identity over >50% of
the sequence length). We then applied the mask Lane
MaskPH (24) to the alignment, and used Clearcut 1.0.7’s
relaxed neighbor joining method (25) to build the tree.
Taxonomy was assigned using the nearest ancestral node
in the tree that had a defined taxonomy assignment. We
also performed a test of this procedure using the ARB
parsimony insertion procedure (26) to build the phylo-
geny, which is a method traditionally used when perform-
ing these analyses manually. For this test, we inserted the
fragments into the Greengenes core set tree (2006 release),
mapped the sequences back to ancestral nodes in the
Hugenholtz taxonomy, and converted the names to the
RDP taxonomy for comparison. Because ARB cannot
be ecasily automated, we focused on Clearcut for large-
scale comparisons.

Method 5—multimer clustering tree-based method: build-
ing trees from multimer counts followed by a tree-based
algorithm. Multimer clustering has been widely used
for taxonomic assignment of metagenomic sequences: its
great attraction is that it does not require a multiple
sequence alignment, so can potentially avoid the computa-
tional cost of the alignment step (27,28). In this procedure,
we first calculated the frequencies of each of the over-
lapping multimers (in this case, 5-mers) for all sequences.
Any multimer containing an ‘N’ or other ambiguous base
was excluded from the analysis. We then built a Bray—
Curtis distance matrix (where distance is defined as the
sum of the k-mer frequency differences divided by the
sum of all k-mer frequencies) from the matrix of multimer
counts. We then built a relaxed neighbor joining (NJ) tree
from the distance matrix using Clearcut, and assigned the
taxonomy based on the nearest ancestral node in the tree
that had a defined taxonomy assignment. The tree-building
algorithm was adapted from that described in ref. (27).

Three algorithms for inferring the lineage from
the tree topology

For each of the tree-aware methods, we evaluated three
algorithms for inferring the lineage using the tree. The
input to each algorithm consisted of (i) a tree (either a
phylogenetic tree built from the alignment using Clearcut
or a UPGMA clustering of a distance matrix based
on multimer counts) containing both the query sequences
and the database sequences, (ii) a taxonomic tree
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containing all the taxon names as nodes and (iii) a mapping
of each database sequence to a node in the taxonomic tree.

Algorithm 1—Ilast common ancestor. In this method, we
first assigned taxonomic information to each tip in the
tree that represented a sequence in Bergey’s taxonomic
database. We then performed a postorder tree traversal
(i.e. visiting each node after visiting all the nodes descend-
ing from that node), and assigned the taxonomic informa-
tion for each internal node to the node in the taxonomic
tree that was the last common ancestor (LCA) of all tax-
onomic tips that descend from that internal node. For
instance, an internal node that had descendants from the
taxonomic database from both the classes Bacilli and
Clostridia within the phylum firmicutes would be assigned
only to the phylum level (firmicutes), since that would be
the LCA of these two sequences in the taxonomic tree. For
each query sequence with unassigned taxonomy, we traced
back to the nearest ancestor with a valid node assignment
in the taxonomic tree (assigned from at least two children
with taxonomic nodes assigned). We then assigned the
lineage from this taxonomic node.

Algorithm 2—Fitch parsimony. We performed a postor-
der traversal of the phylogenetic tree, calculating the
states of internal nodes using the Fitch parsimony algo-
rithm (29). To assign states to query sequences, which
were stored as leaves in the tree without assigned taxon-
omies, we traced back to the nearest ancestor that had a
valid taxonomy assignment (assigned from at least two
children). We then assigned taxonomic categories from
phylum to genus, stopping at the level of detail at which
the category became ambiguous.

Algorithm 3—Fitch parsimony with back-propagation. The
approach was the same as Fitch above, except that after
the postorder Fitch assignment, we performed a preorder
traversal to set ambiguous status (if the parent state was
unambiguous, and the state of one of the children is the
same as the parent, we assigned the unambiguous status to
the current node). When ties occurred (i.e. two assign-
ments were equally good), we chose one of the assign-
ments at random. This method allowed more nodes to
be assigned unambiguously at the expense of some inac-
curate assignments.
Analyses were
toolkit (30).

implemented using the PyCogent

RESULTS

The overall strategy of our analysis was as follows. First,
we performed leave-one-out analysis using full-length
sequences where the taxonomy is known to ask how well
each method predicts the taxonomy of one sequence from
the remaining sequences in the database. Second, we used
large, empirical datasets to check the internal consistency
of each method in assigning taxonomy to full-length and
clipped sequences. Third, we examined the ability of each
method to consistently determine the proportion of taxa
of each type in a given sample using clipped sequences (i.e.
to check whether the errors in assignment cancel out, so
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that the number of sequences of a given type is correct
even when there are errors in which sequence is placed
in which class). Finally, we collected information about
the relative speed of the methods. In general, different
regions of the 16S rRNA gene differed greatly in their
ability to recapture the taxonomic information inferred
from full-length gene sequences. Moreover, different meth-
ods varied greatly in stability and reliability. Because gold-
standard taxonomic information is difficult to obtain, we
primarily relied on internal consistency of the methods
between clipped and full-length sequences.

Figure 2 shows the ‘leave-one-out’ evaluation. In this
analysis, we withheld one full-length sequence from the
database, and asked how effectively each of the methods
is able to place that sequence. We use only sequences
classified according to version 7.8 of Bergey’s Manual.
The points on each line in this figure are, from left
to right, genus, family, order, class, phylum and domain
(marked a spectrum of colors from red to blue). As
expected, classification at the domain level is excellent
(essentially 100% coverage and recovery for all methods,
top-right cluster of dark blue points), whereas classifica-
tion at the genus level is both much more variable and
much less accurate (red points scattered at bottom and
left). One important point is that excluding sequences
that are the only representatives of their genera from the
analysis has a large impact on the results (the gray arrows
in Figure 2 show examples of the effects of excluding
single-sequence genera from the analysis). For example,
at the family level, accuracy increases from 96.0% to
97.8% using the BLAST method and the ‘major lineage
from more neighbors’ criterion, and from 97.7% to 98.5%
using the multimer clustering tree-based method with
S-mer fragments (see Methods section for descriptions
of these approaches). Although these may seem like rela-
tively small differences, because most of the methods
perform well in leave-one-out analysis, they represent up
to a doubling of the error rate and can change the conclu-
sions about the relative accuracy of different methods.

Of the BLAST-based approaches, the ‘common lineage
from nearest neighbors’ (blue line) approach always
returned a result, but was always less accurate (lower
recovery rate) than the other methods. The ‘common line-
age from more neighbors’ (black line) approach always
had a higher accuracy, but lower coverage (at all levels)
than the ‘major lineage from more neighbors’ (green line)
approach (see Methods section for descriptions of
these algorithms). However, none of the BLAST-based
approaches performed as well as the tree-based approaches
(i.e. the black line on the right panel). The error rates of
these methods are comparable to those previously reported
for the RDP classifier, suggesting that the RDP classifier
does not perform uniquely well. In the following analyses,
single-sequence genera were always included.

Figure 3 shows the effects of different regions of the
sequence on the ‘leave-one-out’ analysis using the different
methods. Recovery (defined as the fraction of sequences
given their correct assignment) and coverage (the fraction
of sequences for which an assignment could be made)
at the genus level are shown. Of the three algorithms
used to assign taxonomy from a phylogenetic tree,
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text for ‘nearest neighbors’, ‘more neighbors’, ‘common lineage’ and ‘major lineage’. (b) Tree-based methods followed by Fitch parsimony assign-
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the relaxed NJ tree from a Bray—Curtis distance matrix obtained from the multimer (3-mer or 5-mer) count matrix.
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using Fitch parsimony algorithm (the same with ‘S-mer’ in Figure 2).

the Fitch parsimony with back-propagation algorithm
essentially always produced a result, but the recovery
was invariably worse; the last common ancestor algorithm
is more conservative, increasing recovery rate at the

expense of poor coverage; while the Fitch parsimony
algorithm behaves in the middle. The BLAST method
had consistently low coverage using 100-base sequences
(19% of sequences classified on average). However,
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coverage increased markedly using 250- and 400-base
sequences (average of 49% of sequences classified, essen-
tially no difference between 250- and 400-base reads).
Compared with the phylogenetic tree-based method with
the tree built from the NAST alignment, the multimer
clustering method using trees built using similarities in
the counts of five-base oligomers had better coverage
(average 63% for 250 bases), and averaged 91% recovery
(250 bases) using the same assignment algorithm (Fitch
parsimony). However, the multimer clustering tree-based
approaches performed very poorly on real datasets (data
not shown). Therefore, the NAST alignment-based tree
methods were used in the following analyses. One impor-
tant point is that most methods are sensitive to the region
of the 16S rRNA gene being sequenced. For example, for
the 250-base sequences, the R357 primer (which when
used together with the 8F primer encompasses the V2
and V3 regions of the gene) is the best primer across all
the methods.

Recovery and coverage of six methods is shown using
three different datasets at the genus level (Figure 4a and b)
and at the phylum level (Figure 4c and d). In each case,
recovery and coverage were measured relative to the
results of the full-length sequence, as the true classifica-
tions of these sequences are unknown. However, based on
the misclassification rates presented in Figure 2 from the
leave-one-out evaluation, we expect these classifications
to be at least 95% accurate (meaning that 95% of the
sequences should be placed in the correct phylum). In
general, the region of the 16S rRNA gene targeted for
sequencing had a larger effect on the taxonomic assign-
ment than the method used for taxonomic classification,
and regions that performed poorly often did so with dif-
ferent length reads. For 100-base reads, F517, R534 and
R798 performed especially well at the genus level, with the
best of the methods (>90% recovery and coverage). For
250-base reads and above, these regions were joined by
R357 and F343. Interestingly, the V6 region as described
in ref. (31) performs poorly relative to the other regions,
as do the regions that overlap V6 such as R1114 (with
250-base reads) and F1099, reaching recovery levels
below 10% on the gut datasets. Results at the phylum
level mirrored results at the genus level, although the
errors were not quite so pronounced.

The phylogenetic tree-based methods (‘Fitch’,
‘FitchAndBack’ and ‘LCA’), which are based on trees
built from NAST alignments and represented by the
black lines in Figure 4, are much more sensitive to the
region sequenced than other methods. In general, they per-
formed poorly on the gut datasets (especially the mouse
gut) but were among the best methods on the Guerrero
Negro dataset (see, for example, the Fitch parsimony
results with F517-100 and F343-250). The Greengenes
classifier outperformed the other methods both in terms
of coverage and accuracy under almost all conditions,
and BLAST and the RDP classifier performed about
equally well (although for specific regions and datasets,
one of these methods could greatly outperform the
other: e.g. with R534 and 250 base clips, the RDP classi-
fier had an error rate of ~20% on the mouse data-
set, whereas BLAST’s accuracy was essentially 100%).
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One encouraging result is that with a good choice of
primer, taxonomy assignment can be recovered as well
by a short sequence as by a long sequence (for example,
100-base reads from F517).

Thus far, we have discussed the consistency of tax-
onomic assignments for full-length versus clipped
sequences. An equally important question is how consis-
tent the overall proportion of each phylogenetic group
is after applying each of the procedures. Figure 5 shows
the phylum-level compositions produced by the differ-
ent methods on the same three datasets. As we would
expect from previous analyses of full-length 16S rRNA
sequences, the human and mouse gut datasets are domi-
nated by the firmicutes and bacteroidetes phyla, whereas
the Guerrero Negro dataset is more diverse and has more
unclassified phyla [not in the present taxonomy as they
were newly discovered in that environment (14)]. The
Greengenes classifier produces essentially perfectly consis-
tent ratios of the members of the different phyla no matter
which sequence fragment is used, suggesting that the
misclassifications seen in Figure 4 tend to cancel out.
The RDP classifier similarly performs extremely consis-
tently in the gut (a community that is characterized by a
high level of species- and strain-level diversity), accuracy is
somewhat diminished in regions that overlap V6. BLAST
generally produces far more unclassified sequences, espe-
cially in the mouse gut sample, and is more sensitive to the
details of the 100-base reads (however, it stabilizes with
reads of 250 bases and above).

In contrast, the three tree-based approaches are
much more sensitive to the region of sequence examined.
Extra caution is necessary when these methods were used
for taxonomy assignment. For example, with one of the
worst regions, reading forward 250 bases from F1099, the
reported frequency of euryarcheota can be up to 39% (con-
siderably more than is reasonable from current estimates
of the representation of this group). However, certain
regions, such as F343 and R357 with 250-base reads, recap-
ture the results of the more stable methods almost exactly.

One common procedure, often manually applied, is to
import the alignments into ARB (20), put the sequences
into a standard tree using ARB parsimony insertion and
then use either the group names in the standard tree
(based on the Hugenholtz taxonomy) or the Fitch parsi-
mony status from known tip taxa to infer the taxonomy.
Figure 6 shows the results of performing this procedure
using 100-base fragments (because the procedure is extre-
mely time-consuming on datasets of this size, we did not
repeat the procedure for the other fragment lengths).
Coverage and accuracy are within the range of the meth-
ods shown in Figure 4, ~100% at the phylum level on the
combined dataset and somewhat lower at the family/class
level. Again, the regions close to V6 (e.g. R1114, 100
bases) perform exceptionally poorly. Another important
conclusion is that the ‘group name’ algorithm (see
Methods section) performs no better than the Fitch parsi-
mony algorithm, so the latter can be used to perform
equivalent analyses in a fully automated way.

Finally, we compared the speed of the different
methods: all methods were run locally on the same
hardware except RDP, NAST alignment and
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relative to the results of the full-length sequence. Missing data points are for reads that extend past the length of the near full-length amplicons used

for this study. Recovery and coverage are defined as in Figure 2.
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which is the fraction of full-length sequences with an assignment at a certain rank
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Figure 4. Recoveries and coverage at the genus level (a and b) and phylum level (¢ and d) for each of the three datasets: the Guerrero Negro
‘ORI _se

microbial mat, the mouse gut and the human gut. The legend for the series in the first panel applies to all panels. Each line represents the

performance (recovery or coverage) of one method on one dataset. The x-axis represents primer name and sequence lengths.
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Figure 5. Compositions at the phylum level for each of the three datasets: (a) Guerrero Negro mat, (b) Human gut and (¢) Mouse gut, using a range
of different methods (separate subpanels within each group). The x-axis of each graph shows region sequenced. The y-axis shows abundance as a
fraction of the total number of sequences in the community. The legend shows colors for phyla (consistent across graphs).

Greengenes, which were run at the respective websites.
Figure 7 shows the results. The RDP method is by far
the fastest (~80s for 1000 full-length sequences), and
Greengenes the slowest (~3000s for 1000 sequences): the
other methods performed at intermediate speeds. The
BLAST methods can be accelerated by running multiple
tasks in parallel. In general, parsing the files and/or post-
processing the trees took negligible time compared to
building trees and/or performing the classification task.

In general, performance was affected substantially by the
lengths of the sequences, but as expected, scaled approxi-
mately linearly with the number of sequences.

DISCUSSION

Overall, our analyses show that taxonomic assignment
is highly sensitive to the region of the 16S rRNA
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Figure 6. Comparison of recoveries and coverage using ARB and either the group name or Fitch parsimony criteria for grouping sequences. The
x-axis of each graph shows the region of the gene encompassed by the sequence (all 100-base clipped sequences). The y-axis plots either coverage or
recovery, defined as in Figure 2. Results are shown for (a) family, (b) class and (¢) phylum. (d) Compositions at the phylum level obtained using the
Group Name method for the combined dataset (i.e. Guerrero Negro mat, mouse gut and human gut).

gene sequenced, to the assignment method used, and in
some cases, to the length of the region sequenced.
However, the results are encouraging: most regions, no
matter how short, provide stable estimates of the abun-
dance of each phylum in the dataset, which is all that is
reported in many 16S rRNA sequence-based analyses.
Thus, even results collected using earlier generation

pyrosequencers (GS20 with average read lengths of
80-100 bases) should be stable to future re-analyses pro-
vided that the Greengenes or RDP classifiers are used.
Similarly, many regions of the 16S rRNA gene, e.g.
100-base reads forward from positions 343, 517, 784,
or backwards from positions 357, 534, 798 or 926 relative
to the Escherichia coli sequence, allow excellent coverage
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and recovery even at the genus level with relatively short
reads. Moreover, reads produced by the current GS FLX
apparatus (average of 250 bases) will for the most part hold
up to re-sequencing using the newer XLR instrument,
which produces longer reads. In general, the Greengenes
and RDP classifiers produce highly stable and accurate
results even on very disparate datasets, so we can consider
taxonomy assignment tools mature in that sense.

One important cautionary note about the leave-one-out
results using Bergey’s manual is that different groups of
bacteria have been studied at different levels of effort (e.g.
human-associated commensals and pathogens, and their
close relatives, have been far more extensively studied than
other taxa), and only organisms that can be cultured are
included. Both of these factors substantially bias the phy-
logenetic representation, and thus Bergey’s provides an
extremely biased test set. As Figure 2 shows, exclusion
of single-sequence genera can have large effects both on
coverage and recovery, e.g. increasing the apparent error
rate of family-level assignments by 50-100% depending
on the method. All analyses we performed, except those
indicated in Figure 2, included the single-sequence genera.

Our analysis suggests that the V6 region is not optimal
for pyrosequencing analyses that are directed at taxonomic
assignment, as opposed to measuring levels of diversity.
These results are consistent with our previous analysis
of pyrosequencing and community clustering (7), which
showed that regions overlapping V6 (R1114, 100 bases)

were much less suitable for community clustering than
other regions, such as R357. Therefore, we recommend
using primers R357 and F8 to generate 250-base reads
starting at R357: this region which spans V2 and V3 per-
forms well for both community clustering and taxonomic
assignments in a wide range of datasets (e.g. the mouse
and human gut, and the Guerrero Negro microbial mat).

Automated methods that can be incorporated into high-
throughput workflows perform at least as well as manual
analyses with ARB, suggesting that these manual analyses
are no longer required except perhaps for independent
confirmation of suspect taxa. We therefore suggest that
the Greengenes and/or RDP classifications be treated as
sufficient evidence to support taxonomic classifications:
although they are not perfect, they achieve high accuracy
under a wide range of conditions. However, we recom-
mend that future development should focus on improving
the run-time performance, especially of the Greengenes
classifier.

Finally, one important consideration with this and all
other taxonomic analyses is that the taxonomy assignment
for each read is only as good as the underlying taxonomy
and the phylogeny on which it is based. New taxa by
definition cannot be identified using these types of tech-
niques, although sequences that remain unclassified are
often fertile grounds for new lineage discovery. De novo
tree-building is still required for identifying new lineages,
and thus support for improvement of taxonomies and
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iterative tree-building approaches are essential for maxi-
mizing the utility of rapid classification methods for pyr-
osequencer datasets—datasets that will undoubtedly grow
in number and size given the impending explosion in com-
parative metagenomic surveys of human body as well as
terrestrial and oceanic habitats.
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