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Abstract

Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most
important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated
possible algorithms of control for the performance of the majority function, in which participants searched for and identified
one of two alternative categories (left or right pointing arrows) as composing the majority in each stimulus set. We
manipulated the amount (set size of 1, 3, and 5) and content (ratio of left and right pointing arrows within a set) of the
inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based
on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to
alternative algorithms (i.e., exhaustive or self-terminating search). The grouping search algorithm involves sampling and
resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the
implications of voluntary control via algorithms of mental operations.
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Introduction

The human body transmits 11 million bits of information per

second (bps) to the brain, but our conscious mind can only process

up to 50 bps (Information Theory, Britannica Online) [1]. For

example, visual attention can select only 30 to 60 bits of

information for processing with each glimpse [2]. Voluntary

control [3] of information processing is therefore crucial to allocate

resources and prioritize the processes so that those most relevant

under a given situation can reach the level of focused

consciousness. Although much of the reduction/selection (e.g.,

perceptual grouping [4]) has already occurred elsewhere and may

be hard coded/wired, input information outside the current focus

of attention cannot and should not be fully excluded because they

may have survival value. Therefore, there is a need for dynamic

and flexible control. Such control is also most needed when a great

deal of computation is required prior to response generation, for

example, during information processing in the presence of salient

task-irrelevant distracters.

The mechanisms of voluntary control, however, are not well

understood. Although studies on the neural correlates of voluntary

control routinely employ tasks that manipulate control in a

qualitative manner, e.g., the Erickson flanker task [5] or the color-

word Stroop task [6], they have gathered important findings. Brain

structures involved in selective sensory processing of relevant visual

targets have also been studied using a cued spatial-attention task

[7]. Further advance in our understanding of the specific roles of

these structures, however, will come from a more quantitative

investigation of the relationship between behavioral/neural

responses and voluntary control. This requires parametrically

examining the algorithms that instantiate the mental operations of

voluntary control.

Searching for and identifying majority constituents of a group

(e.g., if there are five children on a playground, three girls and two

boys, then girls comprise the majority) is an important and

common function of our daily lives. However, a hardwired circuit

for the majority gate-based logic is inefficient to implement [8].

This may also apply to the human brain. Therefore, dynamic

algorithms have to be employed for more flexible computations. In

this study, we designed a majority function task to systematically

manipulate the amount and content of input to examine the

algorithms for the interplay of voluntary control with input. In this

task, a set of 1, 3, or 5 horizontal arrows were presented

simultaneously at 8 possible locations arranged as an octagon

centered on a fixation cross. The ratio of left and right pointing

arrows within a set was also manipulated. Participants were asked

to determine the direction (left or right) in which the majority of

arrows pointed, and to indicate their response via button press.

One way to quantify information is to measure its entropy.

According to Shannon’s information theory [9], the information

uncertainty in bits (entropy) depends on the amount/content of the

input and the efficiency of encoding. Therefore, we define

computational load as entropy, which is determined by the

information amount/content of the input and the algorithms of

mental operations used to encode and process the input. Examination

of changes in reaction time (RT) with respect to computational load
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allowed us to test competing hypotheses of the algorithms of mental

operations that may be adopted by participants to control

information processing to reach a majority decision.

Methods

Participants
Thirty adult volunteers participated in this study. After

excluding six participants with a accuracy lower than 75% under

the most difficult task condition, the final sample size included in

this report is 24 (13 females and 11 males; mean age, 25.9 years;

range, 22–38 years). Written informed consent was obtained from

each participant following the procedure approved by the

institutional review board of the Mount Sinai School of Medicine.

All participants had normal or corrected-to-normal vision.

Apparatus and procedures
The task was compiled and run on a PC with a 17 inch LCD

monitor, using E-PrimeTM software (Psychology Software Tools,

Pittsburgh, PA). The task was first explained using a paperboard

illustrating each condition. Participants then performed a practice

session on a PC with 6 blocks of trials with 12 trials in each block

and 72 trials in total, using the same timing parameters as the

actual test. The practice was continued until participants

demonstrated at least 90% accuracy overall. Participants then

performed the actual test.

The majority function task (MFT)
In this task, groups of arrows with set sizes of 1, 3, and 5 are

randomly presented at 8 possible locations arranged as an octagon

centered on a fixation cross. The arrows point either left or right, and

are presented simultaneously (see Figure 1). The configuration of the

8 positions is similar to that used in previous studies on covert

attention [10,11]. On a computer screen, the length of the arrow is

6 mm, the radius from the fixation cross to the center of any arrow is

2 cm, and the viewing distance is 50 cm. The radius from the fixation

cross to the center of an arrow subtends approximately 2.3u of visual

angle. Participants’ task is to indicate the direction in which the

majority of the arrows point. To encourage speed without sacrificing

accuracy, participants are instructed to make responses as rapidly as

possible while maintaining a low error rate. In each trial, an arrow set

is presented for 2500 ms, followed by a variable fixation period of

2000 to 3000 ms. Each trial lasts 5 s on average. Responses within

the 2500 ms window terminate the display of the stimulus. There are

three runs in this task. In each run, there are two blocks for each set

size, six blocks in total. Each block has 12 trials. Within a block for a

certain set size, arrows under different stimulus conditions are

displayed in a random order, with each stimulus condition appearing

an equal number of times. The order of the blocks is counterbalanced

by a Latin square with reversed repetition within each run. The order

is 135-531, 513-315, and 351-153 for the first, second, and third run,

respectively. Here the number represents the set size. The total

number of trials in each run is 72. Before and after each block there is

a 5 s fixation period. There are also five 5 s fixation periods between

blocks in each run. Each run lasts 395 s. The total trial number in this

task is 216 and the task takes about 20 minutes.

Although the amount and content of input to be processed is

varied in the majority function task, the response is only one bit

because there are only two alternatives. Therefore, the variable

related to the stages of response selection and execution, after

stimulus preprocessing and categorization [12], is constant across

all set sizes and stimulus conditions. In addition, the pattern

presented in a current trial is independent of its preceding trial, in

contrast to the serial-choice RT tasks.

Results

Behavioral results
Table 1 shows the experimental results including mean RT

and accuracy under each condition. Although it is possible to infer

the computational load of each condition from the accuracy of the

responses [13], here we used RT as the main dependent variable.

The mean RTs (520 ms, 884 ms, 1200 ms) for the three set sizes

were significantly different, F(1, 23) = 792.18, p,0.01 (linear), and

F(1, 23) = 2.69, ns (quadratic). In set size 3, the RTs under the two

conditions were significantly different, F(1, 23) = 608.19, p,0.01.

In set size 5, the RTs under the three conditions were significantly

different, F(1, 23) = 813.95, p,0.01 (linear), and F(1, 23) = 25.09,

p,0.01 (quadratic). The mean accuracy (99.5%, 98.7%, 94.6%) of

the three set sizes were significantly different, F (1, 23) = 96.22,

p,0.01 (linear), and F(1, 23) = 21.39, p,0.01 (quadratic). In set

size 3, the accuracy under the two conditions were significantly

different, F(1, 23) = 10.12, p,0.01. In set size 5, the accuracy

under the three conditions were significantly different, F(1,

23) = 109.07, p,0.01 (linear), and F(1, 23) = 69.23, p,0.01

(quadratic). The positive change in RT, mean standard deviation,

and error rate across conditions may represent the differences in

the computational load.

Analysis of algorithms of mental operations
The behavioral results suggest a relationship between RT and

amount/content of inputs that goes beyond a simple linear or

loglinear function, suggesting an interaction between uncertainty

of inputs and mental operations in overall performance. We

Figure 1. Illustration of representative stimulus configurations
of the majority function task. In this task, arrows with set sizes of 1,
3, or 5 are randomly presented at 8 possible locations arranged as an
octagon centered on a fixation cross. The arrows point either left or
right, and are presented simultaneously. Participants’ task is to indicate
the direction in which the majority of arrows point. For example, if three
arrows are presented, and two point to the left and one to the right (see
the ‘‘2:1’’ panel in the ‘‘Set size 3’’ column), the correct response should
be ‘‘left’’. The eight circles are for illustration of the locations and are not
displayed during the experiment. The label for each condition is the
ratio of the numbers in each category.
doi:10.1371/journal.pone.0003522.g001

Searching for the Majority

PLoS ONE | www.plosone.org 2 October 2008 | Volume 3 | Issue 10 | e3522



calculated computational load as a function of input information

to be processed and the algorithms adopted by the human brain.

Therefore, potential algorithms have to be compared and

contrasted in order to find the most plausible one. Methods

used in the analysis of short-term memory scan (e.g., [14]) can be

used to analyze the algorithm of mental operations. Here we

analyzed and compared the results using three plausible

algorithms: exhaustive search, self-terminating search, and

grouping search.

Exhaustive search. If we follow the equation to find the

majority (the majority function), which takes all inputs and then

returns the value which is most common among them, we would

expect that, for all stimulus conditions within the same set size,

computational load and RT would not be affected by the number

of arrows pointing in a common direction. That is, the processing

time for this algorithm is only affected by the amount, and not by

content, of input. For example, for a set size of 5 arrows, RT

would be the same for conditions in which 5, 4, and 3 arrows are

pointing in the same direction. The data indicated that this was

not the case.

Self-terminating search. Given that arrows are presented in

random patterns and locations, assuming that human participants

scan the arrows sequentially and terminate the scan when the

majority of the arrows can be determined, we can compute the

computational load in terms of bits under different input

conditions. Let 0 and 1 represent left and right pointing

directions, respectively. For set size 1, there are only two

possible outcomes: 0 or 1. For set size 3, there are four

combinations: 000, 001, 011, 111 (disregarding the order of the

digits in each combination). For the set size 5, there are six

combinations: 00000, 00001, 00011, 00111, 01111, and 11111.

For set size 1, only one arrow with two alternatives has to be

scanned. Therefore the computational load in bits is 1. For set size

3, if three arrows point in the same direction (000, or 111), only

two arrows need to be scanned. Therefore, the computational load

in bits is 2. However, if only two arrows point in the same

direction, corresponding to the three patterns of 001, 010, and 100

(considering the order), there will be 2, 3, or 3 arrows that need to

be scanned sequentially starting from the left and moving to the

right. The same number of bits applies to the combinations of

stimulus condition 011. On average 2 2/3 arrows need to be

scanned. Therefore, the average computational load in bits is 2 2/

3, with the best-case of 2 and worst-case of 3. Similarly, for set size

5, having 5, 4, or 3 arrows pointing in the same direction, the

average the computational load in bits is 3, 3 3/5, and 4 1/2, with

the best-case being 3 for all three conditions, and worst-case being

3, 4, and 5 for each of the three conditions, respectively (see

Table 2).

Figure 2A shows a plot of the mean RT as a function of

computational load in terms of bits assuming the self-terminating

search algorithm was used. The regression analysis with RT as the

dependent variable and computational load in bits as the

independent variable was conducted. For the average case,

RT = 110+312 ? bits, R2 = 0.82, F(1, 4) = 17.73, p,0.05, indicat-

ing a good fit. Linear mixed-effects model analysis with

computational load as the fixed effect and subject as the random

effect showed that Akaike’s information criterion (AIC) was

1945.06; the intercept was significant, F(1, 131) = 4.88, p,0.05;

and the computational load was significant, F(1, 119) = 423.33,

p,0.01. However, the RT of the incongruent condition of set size

3 (2:1 condition, with a computational load of 2 2/3 bits) was

significantly longer than the congruent condition of set size 5 (5:0

condition, with a computational load of 3 bits), 1121 vs. 724,

t(23) = 6.08, p,0.001. Given that the self-terminating algorithm

predicts less computational load in the former condition than the

latter, this evidence is against the self-terminating search and

suggests that participants may have adopted strategies beyond the

self-terminating search to perform the task.

Grouping search. The algorithm implemented in the human

brain may not be as simple as the above-mentioned self-

terminating search. When human participants analyze patterns

Table 1. RT (ms) and accuracy (%) under all stimulus
conditions (n = 24).

Set
size

Stimulus
condition Ratio RT Accuracy

Mean SD
Mean
SDa Mean SD

1 0,1 1:0 520 77 107 99.5 0.9

3 000, 111 3:0 647 110 142 100.0 0.0

001, 011 2:1 1121 153 309 97.5 3.9

5 00000, 11111 5:0 724 130 174 99.8 0.9

00001, 01111 4:1 1261 192 349 98.6 2.4

00011, 00111 3:2 1615 203 392 85.2 6.7

Note: a Mean of SDs across participants.
doi:10.1371/journal.pone.0003522.t001

Table 2. Experimental conditions and estimates of input information and computational load under self-terminating and
grouping search algorithms.

Set
size Stimulus condition Ratio

Input
digits Self-terminating search Grouping search

Best Worst Average Group a Group size Scan digits log2

1 0,1 1:0 1 1 1 1 1 1 1 0.00

3 000, 111 3:0 3 2 2 2 1 2 2 1.00

001, 011 2:1 3 2 3 2 2/3 3 2 6 2.58

5 00000, 11111 5:0 5 3 3 3 1 3 3 1.58

00001, 01111 4:1 5 3 4 3 3/5 2.5 3 7.5 2.91

00011, 00111 3:2 5 3 5 4 1/2 10 3 30 4.91

Note: a Number of grouping attempts on average required to obtain a congruent sample.
doi:10.1371/journal.pone.0003522.t002
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in order to make a response, they may adopt a strategy in which

they attempt to group and sample arrows with a majority size (over

half of the total set size) based on their directions in order to

achieve a high efficiency. For example, for a set size of 3,

intuitively, a Boolean circuit of (a1 XNOR a2) OR (a1 XNOR a3)

OR (a2 XNOR a3) makes sense. Here the exclusive nor (XNOR)

returns ‘‘true’’ if input a1 and a2 are identical, and returns ‘‘false’’ if

they are different. If the grouping of (a1 XNOR a2) returns true,

the search can stop. However, this grouping (or sampling) process

may have to be performed several times independently or

recursively before a solution is reached based on a congruent

sample. Therefore, more computation would be required under

near-tie high uncertainty conditions within a certain set size than

what would have been predicted based only on the self-

terminating search algorithm. It is noteworthy to indicate that

the maximum grouping size of 3 arrows should be within the

capacity limit of the locations that can be selected at once [15].

Let us assume that participants adopt such a grouping

(sampling) strategy and search for a congruent sample with a

majority grouping size. For set size 1, only 1 arrow needs to be

scanned. For set size 3, for the condition in which all 3 arrows

point in the same direction, only 1 grouping attempt needs to be

made with 2 arrows being scanned; and for the condition in which

2 arrows point in the same direction, there will be 1 successful

grouping out of an average of 3 attempts. Therefore, 6 arrows, the

product of 3 grouping attempts and group size of 2 arrows, need to

be scanned. Similarly, for set size 5, for the conditions in which 5,

4, or 3 arrows point in the same direction, 1, 2.5, 10 grouping

attempts on average need to be made and 3, 7.5, and 30 arrows

need to be scanned, respectively (see Table 2).

If we use the majority group size (1, 2, and 3 for set sizes of 1, 3,

and 5, respectively) as the information unit, assuming that each

sampled group is equivalent to one unit of information, the

information to be processed (i.e., the computational load) is logg (s),

where the base g represents the group size and s is the number of

arrows to be scanned. To convert this measure to bits (i.e., from

base g to base 2), it is multiplied by log2 (g) [9]. Therefore, the

computational load is log2 (g) N logg (s), which is equivalent to log2

(s). Here we converted the information to be processed in each

condition to bits based on the average number of arrows that need to

be sampled. It is worth noting that the calculation of 0 bits for the set

size 1 condition does not mean that 0 bits of information need to be

processed. The decision making step of the majority direction needs

1 bit. We can add 1 bit to all conditions, but this should not affect the

general predictions of the grouping search algorithm.

Figure 2B depicts RT as a function of computational load

assuming the grouping search algorithm was adopted. The

regression analysis with RT as a function of computational load

of the grouping algorithm was also conducted on the group data.

With the log2 (scan arrows) (i.e., computational load in bits) as the

independent variable, RT = 458+242 ? bits, R2 = 0.96, F(1,

4) = 105.48, p,0.001. Linear mixed-effects model analysis with

computational load as the fixed effect and subject as the random

effect showed that AIC was 1823.29; the intercept was significant,

F(1, 38) = 246.36, p,0.01; and the computational load was

significant, F(1, 119) = 1398.48, p,0.01. Compared to the self-

terminating search model, the grouping search model fits the data

better because the AIC value of the linear mixed-effects model for

the grouping search was lower than for the self-terminating search.

Self-report of the strategy adopted by

participants. Participants were queried regarding the strategy

that they each employed during the task at the end of the study. Of

24 subjects, 17 reported that they scanned the stimulus display

until they found either 2 arrows pointing in the same direction (for

set size 3) or found 3 arrows pointing in the same direction (for set

size 5). Eight of these subjects spontaneously mentioned that they

found the task to be the easiest when 2 or 3 arrows pointing in the

same direction were grouped together, and the remainder agreed

that the task was the easiest when this occurred when prompted by

the experimenter. Six participants spontaneously described use of

a grouping strategy. For example, one participant reported, for a

set size of 5 arrows, first identifying a group of three arrows. If all

arrows in the group pointed in the same direction, the participant

made the appropriate response. If only two of the three did, the

participant scanned the rest of the display for a third arrow

pointing in the same direction. If grouping was not possible, e.g.

the arrows were evenly distributed about the crosshair, then a

serial scanning strategy was adopted.

Figure 2. Reaction time (RT) as a function of computational load which is determined by processed information in bits, on average,
assuming that the self-terminating search algorithm was adopted (A), and that the grouping search algorithm was adopted (B). The
grouping search algorithm better predicts the linear relationship between the RTs and computational load relative to the self-terminating search
algorithm.
doi:10.1371/journal.pone.0003522.g002
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Discussion

Other than exhaustive search, self-terminating search, which

incorporates an additional stopping rule in which the participant

scans the arrows one by one until the majority threshold is reached

(e.g., 2 arrows pointing in the same direction within a set size of 3

arrows), is clearly the second most straightforward algorithm.

Consistent with this algorithm, Figure 2A reveals that RT

increases with the computational load in two cases: (a) across the

three congruent conditions, in which all arrow(s) in each set point

in the same direction, as indicated by the dashed line; and (b)

within the two conditions of set size 3 and within the three

conditions of set size 5, as indicated by the solid lines. However,

the opposite prediction for the 2:1 and 5:0 conditions based on

self-terminating search stands as evidence against the possibility

that subjects adopted this algorithm.

The fact that human visual attention can be directed towards

more than one item simultaneously allows for the possibility of a

grouping search algorithm, in which participants first select a

sample of arrows with a size equal to the majority threshold and

then process the sample. This is similar to perceptual grouping [4].

If all arrows in the sample happen to point in the same direction

(congruent), then a response can be quickly generated. If not, a re-

sampling kicks in until a congruent sample is found and a response

is generated. We estimate the computational load for the grouping

search as a logarithmic function of the product of the grouping size

and the expected number of groups that need to be sampled in

order to obtain one that is congruent. It is clear that RT increases

monotonically as a function of the computational load and that

this relationship is well approximated by a linear function

(Figure 2B). The linear relationship between RTs and the

computational load based on the grouping search strategy may

suggest a tree-like structure representing the arrows to be sampled

and a dichotomizing test.

These results support the idea that RT is determined not only

by the amount and content of the input but also by the algorithms

of mental operations that people adopt in the face of information

uncertainty. Situations in the real world are often more complex

than laboratory choice-RT tasks and require more voluntary

control. The majority function task is interesting in that it requires

greater voluntary control of computation than tasks used for

testing the conflict effect (e.g., [5]), although it also uses conflicting

information to manipulate information uncertainty. With this task

we highlight the role of voluntary control during information

processing and provide a more general framework to account for

the conflict effect. For example, in a variation of the flanker task

[16] in which people were asked to detect the direction of the

target arrow and ignore the distracters, we observed a typical

conflict effect–the RT difference between the incongruent and

congruent conditions–of about 50–150 ms. This can be accounted

for by the computational load framework because the computa-

tional load for the congruent condition is 1 bit for the two

alternative responses, whereas it is less than or equal to 2 bit for the

incongruent condition because of incongruent flankers.

In addition, performance in the majority function task cannot

be fully predicted by a conflict effect account. For example,

comparing two conflicting conditions in which the distribution of

arrows are 2:1 and 4:1 in set sizes 3 and 5 respectively, the RT of

the latter condition is significantly longer (1121 vs. 1261,

t(23) = 4.55, p,0.001) , which is opposite of what the conflict

effect account predicts, since the non-target to target ratio is larger

in the former. Similar to other categorization tasks [12], the goal of

computation is to identify the majority based on the input. Because

any arrow could potentially belong to the majority subset if the set

size is equal to or greater than 3, more than one arrow needs to be

processed, either scanned one-by-one or randomly sampled and

grouped as we tested above. However, the degree of uncertainty

caused by conflicting information predicts RT within a given set

size if the grouping search is adopted. For example, for the set size

5, the most uncertain condition with the distribution of arrows of

3:2 requires 10 grouping attempts to be made on average before a

solution is reached based on the grouping search algorithm. This

may explain why its RT is much longer (1615 ms) compared to

another less uncertain but also conflicting condition with the

distribution of arrows of 4:1 (1261 ms), which requires only 2.5

attempts on average to obtain a congruent sample.

The majority function task reported in this paper has features of

conflict, grouping, and input variation that are often elements of

many separate tasks in the literature. The methods to compute the

computational load in this task may be used to account for

discrepancy between findings of previous studies on conflict effect

using different tasks. This majority function task is similar to the

visual motion task used in studies of perceptual decision making

(e.g., [17]), but here we examine and model decision making on a

system level by considering the algorithms potentially adopted by

the brain to process discrete information. We cannot exclude other

possible factors that might contribute to the current results such as

the Gestalt effect based on the holistic perception of all congruent

arrows, information reduction [18], or perceptual grouping [4].

This may account for overall faster responses and the relatively flat

slope for the congruent conditions. Although certain common

mechanisms might be involved in voluntary control, the

underlying algorithms will vary and be task specific in different

situations depending on different computational goals [19]. For

example, under the high input information condition, which is

beyond the grouping capacity limit (e.g., more than 5 arrows),

other algorithms, such as those suggested for perceptual decision

making regarding motion coherence, might be adopted by humans

to find the majority.

We argue that voluntary control is implemented by algorithms

of mental operations, which are in turn implemented by brain

networks. This study demonstrates that it is important and

plausible to analyze the underlying algorithms for voluntary

control by examining the relationship between the amount and

content of input and RT. RT is a basic and central measure of

mental operations in almost all cognitive tasks [20]. Early studies

based on information theory [9] have found that choice RT is

determined by the amount of information in bits that has to be

processed to generate a correct response (e.g., [18,21,22]), though

the causality in this relationship has been challenged [23,24].

Some elegant models for the central mechanisms of choice RT

have been proposed, and changes in RT as a function of

information processing have been studied in the context of

perceptual decision making (e.g., the sequential-sampling models,

for a review, see ref. [25]), mental addition (subtraction) [26],

visual search [27], and categorization [28]. In this study, we

explicitly considered the underlying algorithms for voluntary

control of information processing.
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