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The topology of metabolic networks may provide important in-
sights not only into the metabolic capacity of species, but also into
the habitats in which they evolved. Here we introduce the concept
of a metabolic network’s ‘‘seed set’’—the set of compounds that,
based on the network topology, are exogenously acquired—and
provide a methodological framework to computationally infer the
seed set of a given network. Such seed sets form ecological
‘‘interfaces’’ between metabolic networks and their surroundings,
approximating the effective biochemical environment of each
species. Analyzing the metabolic networks of 478 species and
identifying the seed set of each species, we present a comprehen-
sive large-scale reconstruction of such predicted metabolic envi-
ronments. The seed sets’ composition significantly correlates with
several basic properties characterizing the species’ environments
and agrees with biological observations concerning major adap-
tations. Species whose environments are highly predictable (e.g.,
obligate parasites) tend to have smaller seed sets than species
living in variable environments. Phylogenetic analysis of the seed
sets reveals the complex dynamics governing gain and loss of seeds
across the phylogenetic tree and the process of transition between
seed and non-seed compounds. Our findings suggest that the seed
state is transient and that seeds tend either to be dropped com-
pletely from the network or to become non-seed compounds
relatively fast. The seed sets also permit a successful reconstruction
of a phylogenetic tree of life. The ‘‘reverse ecology’’ approach
presented lays the foundations for studying the evolutionary
interplay between organisms and their habitats on a large scale.

growth environments � metabolic networks � seed compounds �
reverse ecology

Numerous biological systems can be represented as networks,
encapsulating many of their essential properties (1). The

structure and topology of these biological networks are not merely
abstract descriptions of the complex interactions in a given system,
but are also major determinants of the system’s function and
dynamics. In particular, a wide range of analytical approaches has
been used to study topological characteristics of metabolic networks
and their bearings on various metabolic functional properties,
including scaling (2), regulation (3), universality (4), and robustness
to metabolic gene knockouts (5, 6). Furthermore, as metabolic
networks function within the context of biochemical environments
and interact with these environments by taking up or secreting
various organic and inorganic compounds, previous studies have
also addressed the effect that these environmental interactions have
on the metabolic process, as manifested in, for example, the
distribution of metabolic fluxes within the network (7) or the
organism’s growth rate (8).

However, as the interactions with the environment must them-
selves be reflected in the structure of the evolved metabolic
networks, these networks can be used not only to infer metabolic
function but also to obtain insights into the growth environments in
which the species evolved. Specifically, by analyzing the topology of
a given metabolic network, we show that the set of compounds that
are acquired exogenously (termed ‘‘seed set’’; see also refs. 9 and
10) can be identified. Assuming that the environment of a species

determines the metabolites it extracts from its surroundings to a
considerable extent, the seed set can serve as a good proxy for its
environment. This ‘‘reverse ecology’’ approach thus goes beyond
previous research on the evolution of metabolic networks (11, 12)
and metabolic scope analysis (9, 10, 13, 14) in enabling the
evolutionary history of both metabolic networks and metabolic
growth environments to be traced.

In view of this approach, in this article we first introduce the
concept of metabolic networks’ seed sets and provide a formal
methodology to computationally infer the seed set of a given
network. We next integrate this methodology with large-scale
metabolic data to compile a comprehensive large-scale dataset
describing the seed sets of hundreds of species. The predicted seed
sets are shown to accord with biological observations across com-
pounds and across species, validating the potential and relevance of
our computational framework and compiled dataset. This dataset
is then analyzed to obtain novel insights into the evolutionary
dynamics of metabolic networks and the determinants that affect
their interfaces with the environment.

Results
We represent the metabolic network of a given species as a directed
graph whose nodes represent compounds and whose edges repre-
sent reactions linking substrates to products [Materials and Methods
and supporting information (SI) Materials and Methods]. This
graph-based representation of metabolic reactions is a common
tool in analyzing and studying metabolic networks (1, 2) and can be
obtained from large-scale, cross-species databases [e.g., KEGG
(15)]. It should be noted, however, that such directed graphs are
simplifications of the actual underlying metabolic networks, ignor-
ing, for example, reaction stoichiometry (see Discussion). Com-
pounds that appear in the network are referred to as occurring
compounds. Formally, we define the seed set of the network (9, 10)
as the minimal subset of the occurring compounds that cannot be
synthesized from other compounds in the network (and hence are
exogenously acquired) and whose existence permits the production
of all other compounds in the network (Fig. 1A).

Our definition of seed compounds differs from that of essential
compounds in that we require the production of all compounds in
the network (and the potential activation of all of the metabolic
pathways), regardless of their actual dynamic activation in a given
environmental condition. In practice, organisms can survive in a
wide range of environmental conditions and in each environment
may activate only a subset of the pathways in the network, using a
different set of exogenously acquired compounds (7, 16). Accord-
ingly, the seed set can be conceived as the union of the essential sets
required in all of these environments. Assuming that various
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alternative pathways have evolved and are retained because of their
adaptive value in some environment (17), the seed set represents
the overall, static metabolic ‘‘interface’’ (or metabolic ‘‘potential’’;
see also ref. 18) of each organism (and may serve as a characterizing
proxy for its effective biochemical habitat).

We developed a graph-based algorithm to detect the seed set of
a given network (see Materials and Methods and Fig. 1B for more
details). This algorithm is based on a fast method for strongly
connected components (SCC) decomposition (19) and can there-
fore easily scale up and be applied to large-scale network data. Next
we constructed the metabolic networks of 478 species (Table S1)
using data from a large-scale metabolic reactions database (Mate-
rials and Methods) and applied the seed set detection algorithm to
identify the seed compounds in each network (Dataset S1). This
compilation results in a comprehensive large-scale dataset of pre-
dicted biochemical environments of hundreds of species and facil-
itates a cross-species comparison of such seed sets.

Clearly, large-scale metabolic data are usually based on genome
annotation, largely from automated, comparison-based methods
(15), and as such are bound to be incomplete and inaccurate (20).
This can potentially have a marked effect on the composition of the
inferred seed sets. However, examining the effect of missing or
erroneous data (SI Text and Fig. S1), we find that the identified seed
sets are fairly robust to perturbations of the raw metabolic data.
Still, considering the inherent noise and incompleteness associated
with these data, we focus here mostly on the identification of
significant large-scale statistical signals and phylogenetic patterns
characterizing the seed set composition across the tree of life.

To exemplify the composition of a seed set obtained by our
analysis and its alignment with known findings concerning the
organism’s environment, we focus first on a single species whose
habitat is simple and well characterized. The obligate endocellular
symbiont Buchnera aphidicola has lost many biosynthetic genes and
demonstrates extremely successful symbiosis with its aphid host; it
provides the host with amino acids that are essential for aphids (i.e.,
that aphids cannot synthesize) and relies on the host for nutrients
it cannot synthesize (such as certain amino acids that are nones-
sential for aphids) (21–23). Buchnera has retained substrate-specific
transporters only for glucose and mannitol (21) and is responsible
for sulfate assimilation, a capability not possessed by the aphid (24).
Finally, it lacks all of the TCA cycle genes except for those coding

for the 2-oxoglutarate dehydrogenase complex (21). The compo-
sition of the B. aphidicola seed set obtained by our analysis (Fig. 1C
and Table S2) is in clear agreement with the above observations. It
contains the most abundant nonessential amino acids for aphids,
glutamate and glutamine [which Buchnera uses as a substrate for the
synthesis of other, essential amino acids (23)], and is devoid of all
of the host essential amino acids. The seed set also includes glucose
and mannitol (as the only carbon sources), 2-oxoglutarate, and
sulfate, as well as thiamine (vitamin B1) and spermine (an essential
growth factor).

To further confirm that the composition of the seed sets obtained
by our analysis is consistent with known large-scale biological
observations concerning the compounds that various species extract
from their environments, we consider several key compounds and
examine their presence and absence pattern in the occurring
compound sets (phyletic occurrence pattern) and seed sets (phyletic
seed pattern) across all of the species in our analysis (SI Materials
and Methods and Fig. S2). For example, while many species can
synthesize all of the amino acids they require, animals have lost their
ability to make some amino acids (referred to as essential amino
acids) and acquire them through their diet. Conversely, some
obligate intracellular parasites have lost the ability to produce the
nonessential amino acids and rely on their host for exogenous
provision of these amino acids (21, 25). Comparing the resulting
phyletic pattern for phenylalanine (an essential amino acid) with
that obtained for glutamate (a nonessential amino acid), we find
these patterns to be in complete accordance with the above
observations (Fig. S3). Another example is biotin (vitamin B7), an
essential cofactor in carboxylation reactions. Of the 42 species that
were reported in a recent comparative genomics study (26) to
synthesize biotin (and hence do not require biotin uptake from the
environment), indeed, 40 have biotin as an occurring compound but
not as a seed compound. Of the 24 species that were reported as
lacking this capacity, 20 do have biotin as a seed. Interestingly, the
four species that seem to lack the capacity to synthesize biotin and
do not have biotin in their seed sets all have as a seed the same biotin
biosynthetic precursor, dethiobiotin, which has been shown to allow
various biotin auxotrophic bacteria to grow in the absence of biotin
(27). Additional examples and details are presented in SI Text and
SI Materials and Methods. Identified seeds are also correlated with

C

BAFig. 1. Identifying seed compounds in metabolic
networks. (A) A schematic representation of the inter-
action of a metabolic network with its environment.
Seed compounds must be externally acquired from the
environment and are highlighted in red. (B) The pro-
cedure for identifying seed compounds is illustrated in
a simple synthetic network. The network is decom-
posed into its SCC (illustrated as contour lines sur-
rounding sets of nodes) using Kosaraju’s algorithm
(19). SCC decomposition reduces the seed detection
problem to the simpler problem of detecting source
components (i.e., components with no incoming
edges) in a directed acyclic graph, where each source
component forms a collection of candidate seed com-
pounds. The source components are highlighted in
red. The color saturation of the original nodes denotes
the seed’s confidence level, C (Materials and Methods),
with a darker red indicating a higher confidence level.
Although some of the seed compounds are easily iden-
tified (e.g., those forming the first step of an isolated
and directed metabolic pathway), in a complex net-
work the full set of seed compounds cannot easily be
found without such a graph-theory algorithm. (C) The
metabolic network of Buchnera with the seed com-
pounds highlighted in red as in B. The seed set in this
organism (which possesses a metabolic network of 314
occurring compounds) is composed of 61 chemicals (of
these, only 38 have a confidence level C � 1). See also Table S2.
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global topological features and are enriched in certain metabolic
pathways (SI Text).

Further validation, spanning both multiple species and multiple
compounds, builds on data concerning the biosynthetic capacity of
several agents of human ehrlichiosis (an emerging infectious dis-
ease, primarily transmitted by ticks or trematodes). These intracel-
lular vector-borne pathogens are of particular interest in the context
of our work, because their life cycle involves both vertebrate and
invertebrate hosts and thus requires metabolic adaptation to very
different environments (see also ref. 28). A recent comparative
genomics study explored the ability of these newly sequenced
Anaplasmataceae (as well as that of other species from the Rick-
ettsias order and other insect symbionts) to synthesize amino acids
and major vitamins and cofactors (ref. 29 and table 5 therein).
Comparing our identified seed sets with these data (spanning nine
species and 30 compounds; Table S3), we examined whether
compounds reported in ref. 29 not to be synthesized in a specific
species (and therefore to be exogenously acquired) are correctly
classified by our algorithm as seeds, and whether compounds that
can be synthesized are correctly classified as non-seeds (SI Materials
and Methods). We find an overall strong agreement between the
two datasets, with a classification accuracy of 79% [P � 10�6; and
accuracy of 93% (P � 10�5) for the 10 cofactors alone; SI Materials
and Methods]. Moreover, focusing only on our ability to correctly
predict exogenously acquired seed compounds, we reach 95%
precision (percent of correctly identified seeds out of all predicted
seeds; SI Materials and Methods) and 67% recall (percent of
correctly identified seeds of all exogenously acquired compounds).
Considering the inherent noise in the underlying metabolic data
(see SI Text), these scores attest to the ability of our method to
successfully identify exogenously acquired compounds.

Having demonstrated that the obtained seed set data agree with
various biological observations both across compounds and across
species, we now turn to identify large-scale relations between the
size and composition of the identified seed sets and the species’
environments. Here we limit our analysis only to the prokaryotic
species, for which large-scale environmental data can be obtained
(Materials and Methods). Furthermore, prokaryotes facilitate a
comparison between different habitats without the complications
associated with tissue-specific metabolism or varying trophic levels.
We find that organisms that live in extreme and narrowly defined
habitats (e.g., Archaea) tend to have smaller networks and smaller
seed sets (see also ref. 13 and Fig. S4). This strong correlation
between the organism’s environment and the network’s structure
and organization is particularly apparent for the bacterial phyla; the
phyla with the smallest metabolic networks and smallest seed sets
are Rickettsias, Mollicutes, Spirochete, and Chlamydia, which are
mostly obligate intracellular parasites, inhabiting well defined and
predictable environments (Fig. 2A). Moreover, specialized species
living in a highly predictable environment (e.g., marine thermal
vents) not only tend to have fewer occurring compounds in their
networks than those living in multiple habitats, but also require a
smaller fraction of these compounds as seeds (P � 3 � 10�4 and P �
0.03, respectively; Wilcoxon rank sum test). The positive correlation
between variable environments and larger seed sets is further
confirmed by a marked statistical correlation between the fraction
of the occurring compounds included in the seed set (a normalized
measure of seed sets’ size, controlling for network size variation)
and an index of environmental variability (0.27, P � 0.004; Spear-
man rank correlation; Materials and Methods). Moreover, we also
find a high correlation between the fraction of the compounds in
the seed set and the ratio between the number of transcription
factors and genome size (0.4, P � 2 � 10�7; Spearman rank
correlation; Materials and Methods and Fig. 2B), the latter of which
is known to correlate with habitat variability (30). These results
suggest that although species that rely on a highly predictable
environment can take up from it many compounds (rather than
synthesizing them), overall they still extract significantly fewer

compounds than those organisms that have to survive in a wide
range of environmental niches. These findings also support our
intuition above; the seed set is a union of the various essential sets
that correspond to the different environmental conditions in which
the species can survive.

Using a covariation correlation assay (Materials and Methods) we
further confirm that the growth environment of the various pro-
karyotic species correlates not only with the size of the seed sets but
also with their composition. Data concerning the growth environ-
ment of each species are represented as a vector of four attributes
(salinity, oxygen requirements, temperature range, and habitat)
using discrete categories to describe each attribute (Materials and
Methods, SI Materials and Methods, and SI Text). Considering the
446 bacterial and archaeal taxa for which environmental data can
be obtained, a significant correlation of 0.25 (Pearson correlation
test, P � 10�3; Materials and Methods) is found between the
environmental ‘‘signature’’ and the seed composition of a species.
This correlation is in fact higher than that found between the
environmental signature and the occurring compounds composi-
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Fig. 2. The size of seed sets across different phyla. (A) The average number of
reactions and seed compounds across different bacterial taxonomic phyla. The
number of seed compounds is estimated by the number of source components.
Evidently, phyla that include mostly obligate intracellular parasites have, on
average, the smallest metabolic networks and smallest seed sets. (B) The fraction
of the occurring compounds included in the seed set as a function of the ratio
between the number of transcription factors and the genome size, across pro-
karyotic phyla. Again, phyla of intracellular parasites (e.g., Rickettsias, Mollicutes,
Spirochete, and Chlamydia) inhabiting well defined and predictable environ-
ments have small seed sets (even when normalized by the number of compounds
in the network) and a small number of transcription factors. The solid line
represents a linear regression. The strong correlation attests to the alignment
between the size of the seed set and habitat variability.
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tion (0.21, Pearson correlation test, P � 10�3) despite the fact that
occurring sets are markedly bigger than seed sets and potentially
carry more information. For certain environmental attributes,
species that share the same attribute value also tend to have similar
seed sets. Specifically, species with microaerophilic, facultative, and
aerobic oxygen requirements, multiple habitat, and mesophilic
temperature range have significantly more similar seed sets than
expected by chance (P � 0.05 after multiple testing correction;
Materials and Methods).

Next, we characterize the evolutionary dynamics governing the
gain and loss of seed and non-seed occurring compounds across a
phylogenetic tree of life and the transitions between seed and
non-seed states. To this end we analyzed the seed and occurring sets
using methods borrowed from molecular evolution analysis (31, 32)
and gene conservation analysis (33) and applying several phyloge-
netic analysis approaches (including both maximum parsimony
algorithms and maximum likelihood models; Materials and Meth-
ods). Specifically, we considered a reference sequence-based tree
and estimated the rate at which various compounds are integrated
into (and lost from) evolving metabolic networks, and the rates at
which seed compounds become non-seed occurring compounds
and vice versa (Materials and Methods; Table 1). These estimates
control for phylogenetic relations and can separate speciation
dynamics from transition events.

Our findings suggest that novel compounds are integrated into
metabolic networks as either seed or non-seed compounds, where
integration events of non-seeds are �1.5–2 times more frequent
than integration of seeds (Table 1). Yet seed compounds have a
higher tendency than non-seed compounds to be dropped com-
pletely from the network. Moreover, the rate of transition of a seed
compound into a non-seed occurring compound is higher than that
of the reverse process (Table 1). These findings suggest that, in
general, the seed status is a transient phase in the ‘‘life’’ of a
compound and that seed compounds tend to either be completely
dropped from the network or change into non-seed compounds
relatively fast. We further calculate several conservation measures
(Materials and Methods) to estimate the expected evolutionary
‘‘lifespan’’ of the seed and non-seed states. We find that the seed
state is significantly less conserved than the non-seed state (loss
rates of 0.0523 and 0.0378, respectively; P � 10�12, Wilcoxon rank
sum test), confirming again the transient nature of the seed status.

Finally, the seed content of the various species included in our
analysis was used to reconstruct a phylogenetic tree de novo (SI
Materials and Methods) in a manner analogous to gene content-
based phylogenies. Remarkably, this tree of life not only success-
fully clusters most of the taxonomic groups (Fig. 3) but is just as
accurate (measured by its distance from a reference sequence-
based tree; SI Materials and Methods) as a tree based on the entire
set of occurring compounds (Table 2), despite being based on a

significantly smaller number of compounds (seed compounds ac-
count, on average, for only 10.8% of the occurring compounds).
This accurate reconstruction of a phylogenetic tree is not expected
by chance for such small subsets of the occurring compounds, as
demonstrated by the markedly less accurate trees obtained with
random compound sets (Table 2), suggesting that the identified
seed sets are a significant and fundamental characteristic of each
species and its evolutionary history. A principal component analysis
further demonstrates that the composition of the seed sets can be
used to partition the major taxonomic groups (SI Text).

Discussion
This study introduces a large-scale reconstruction of metabolic
environments using a cross-species analysis of 478 metabolic net-
works (and �2,200 metabolic compounds) to infer the set of
compounds that each species extracts from its environment. Our

Table 1. The relative frequencies of transitions across the
phylogenetic tree between the various states of a compound

New state

Original state Absent Non-seed Seed

Absent — 10.2058 7.2822
Non-seed 20.5747 — 8.0365
Seed 31.9681 21.9327 —

These frequencies describe the expected number of transitions from one
state to the other among 100 transition events in a random set of compounds
with an equal number in each state. The values presented are based on
ancestral network reconstruction (Materials and Methods, second assay). The
transition rates that were obtained based on the compounds’ phyletic pat-
terns (first assay) and on maximum likelihood estimates (third assay) demon-
strate qualitatively similar trends and can be found in Tables S4 and S5. Note
that this measure controls for the different frequencies of the various states
in the data and hence is not biased by the smaller number of seed states.
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Fig. 3. Phylogenetic tree based on seed compounds content. �Bac�, Bacteria
(orange squares); �Arc�, Archaea (cyan triangles); �Pla�, plants (light green
circles); �Ani�, animals (blue circles); �Fun�, fungi (dark green circles); �Pro�,
protists (purple circles).

Table 2. The distances of phylogenetic trees based on seed
compounds sets, occurring compounds sets, and random
compound sets from a sequence-based reference tree

Reconstruction
method

Distance
measure

Seed
sets

Occurring
sets

Random
sets

NJ BSD 3.22 3.23 5.61 (0.01)
NJ SD 224 214 341.2 (4.2)
FM BSD 3.23 3.25 5.64 (0.01)
FM SD 216 228 339.8 (4.6)

Random compound sets are of the same size as the real seed sets. Results for
the random sets show average value and standard deviation. Trees are recon-
structed and compared by using various common algorithms (SI Materials and
Methods). NJ, neighbor-joining; FM, Fitch–Margoliash; BSD, branch score
distance; SD, symmetric difference.
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analysis is based on network topology alone and ignores many other
properties of metabolic reactions such as stoichiometry (the quan-
titative relationships between the reactants and the products of
each reaction), rate, and dynamics. The network representation
also weighs all pathways equally, ignoring the important distinction
between catabolic and anabolic pathways. Incorporating these
properties into the metabolic network model and applying a more
involved analysis (such as constraint-based stoichiometric model-
ing) can potentially yield more accurate results (34) (see also SI Text
on the potential effect of topology-based analysis on seed identi-
fication in autocatalytic cycles). The seed sets obtained with our
simplified network model may thus suggest large-scale patterns in
the metabolic data rather than reflect accurate stoichiometric
constraints. Yet, despite these shortcomings, topological analysis
has several important advantages: Most importantly and essential
to the kind of analysis presented here, metabolic network topolo-
gies can readily be obtained for hundreds of species (unlike
stoichiometric and kinetic models that are available only for a very
small number of species), allowing a phylogenetic, large-scale
analysis (30). Topology-based models also lend themselves to
methods and algorithms (mostly borrowed from graph theory or
complex network analysis), facilitating analyses that may not be
tractable in other, more complicated models. Specifically, seed set
identification—for which we have introduced a fast and relatively
simple algorithm in the graph representation—is an extremely
challenging task in stoichiometric networks, demanding complex
optimization schemes (such as mixed-integer programming) that do
not scale up to real-life size networks. Lastly, the identified seed
compounds dataset was shown to agree with biological observations
across species and across compounds and facilitated the character-
ization of various environmental factors that affect the seed sets and
the dynamics by which metabolic networks evolve.

Seed sets’ size was shown to correlate strongly with environmen-
tal variability, and their composition was shown to covary with
several environmental features. The estimated transition rates
between seeds and non-seeds and the gain and loss rate of com-
pounds provide a detailed characterization of the overall patterns
governing network evolution and suggest a complex dynamic
process. The seed status of a compound appears to be relatively
transient, whereas such compounds tend to be rapidly lost or
convert to non-seed compounds (probably as adaptation occurs and
the synthesis of these compounds from new seeds evolves). These
dynamics echo those revealed in studies of horizontal gene transfer
that have shown that such transfer is more likely to occur in
peripheral reactions involved in nutrient uptake or first metabolic
steps (11). The transition rate of seeds to non-seeds, which was
found to be higher than the transition rate of the reverse process,
is also in agreement with the retrograde model of network evolution
(35) (positing a substrate-driven process where metabolic pathways
are assembled ‘‘backwards’’ in an opposite direction to the flow of
the metabolic pathway). However, the higher overall rate of non-
seed compounds’ integration and the still relatively high rate of
transition of non-seeds into seeds (representing the evolution of
strategies for externally acquiring previously produced compounds)
suggest that other processes [e.g., the patchwork model (36)] may
play an important role in the evolution of metabolic networks and
that these processes are not mutually exclusive (see also ref. 37). The
remarkable capacity for adaptation to a wide range of environ-
mental niches is further exemplified by the successful reconstruc-
tion of a seed-based tree of life. The seed set analysis presented in
this paper and the above findings illustrate the enormous potential
of the ‘‘reverse ecology’’ approach (30) and facilitate further
large-scale, cross-species studies concerning the evolutionary forces
that shape the interplay between living organisms and their
habitats.

Materials and Methods
Metabolic Networks and Relevant Data. Metabolic networks data were down-
loaded from the KEGG database (15), version 41.1 (February 2007). In total, the
metabolic networks of 558 species (Table S1), covering all taxonomic groups,
were reconstructed (SI Materials and Methods). Draft genomes and EST contigs
(KEGG organism codes with prefix ‘‘d’’ or ‘‘e’’) were excluded from the analysis.
We also discarded species that have �100 reactions, leaving a total of 478 species.
An additional network, composed of the union of the reaction lists of all species,
was also reconstructed and is referred to as the global network. Data concerning
bacterial and archaeal environments were obtained from the prokaryotic at-
tributes table of the NCBI Genome Project (www.ncbi.nlm.nih.gov/genomes/
lproks.cgi). Each species is represented as a vector of four attributes denoting its
salinityrequirements (nonhalophilic,mesophilic,moderatehalophile,orextreme
halophile), its oxygen requirements (aerobic, microaerophilic, facultative, or
anaerobic), its temperature range (cryophilic, psychrophilic, mesophilic, thermo-
philic, or hyperthermophilic), and its habitats (host-associated, aquatic, terres-
trial, specialized, or multiple). See SI Materials and Methods for a detailed
description. Further environmental data, based on a manually curated version of
the above table and ranking the environmental variability of 117 bacterial
species, were obtained from ref. 30. We also obtained data concerning the
number of transcription factors and genome sizes of 159 bacterial species from
ref. 38 and used the ratio of these two values as an additional, quantitative
measure of environmental variability (30).

Identifying Seed Compounds. Each network was decomposed into its strongly
connected components using Kosaraju’s algorithm (19) (SI Materials and Meth-
ods and Fig. S5). A strongly connected component is a maximal set of nodes such
that for every pair of nodes u and v there is a path from u to v and a path from
v to u. The strongly connected components form a directed acyclic graph whose
nodes are the components and whose edges are the original edges in the graph
that connect nodes in two different components. In this graph, each component
without incoming edges and at least one outgoing edge is defined as a source
component. Each source component in the SCC decomposition forms a collection
of candidate seed compounds. The set of seed compounds must include exactly
one compound from each source component and should not include any other
compound. In the following, we briefly provide the intuition (based on a graph-
based representation of the network; see also the discussion above concerning
reaction stoichiometry): First, it should be noted that every strongly connected
component is an equivalence class; if one of the compounds in the component
can be produced then all others can be produced as well. Second, because source
components do not have any incoming edges, if none of the compounds in a
source component is present in the seed set, none of the compounds in this
component can be produced. Finally, if at least one compound from each source
component is included in the seed set, a path from a seed compound to any
other compound in the network can be found and hence all compounds in the
network can be produced. Because all of the compounds in a source component
are equally likely to be included in the seed set, each of these compounds was
assigned a confidence level, C � 1/(component size), denoting the compound’s
probability of being a seed. We used a threshold of C � 0.2 to determine whether
a compound should be regarded as a seed or not (including all compounds that
are part of source components of size 5 or less). With this threshold value we
discarded on average only 3.3% of the seeds. Using other threshold values
(specifically, C � 0.1 or C � 0.01) did not significantly change any of our results.
Dataset S1 describes the composition of the seed set in each species (with the
associated C values). See also Fig. S6, illustrating the metabolic network of yeast
with the seed compounds highlighted.

Covariation Correlation Assay. To examine the correlation between seed set
composition and environmental attributes across all bacterial species, we applied
an assay similar to the one used in ref. 39. Given N species, two N � N distance
matrices, Ss and Sh, were constructed. Ss represents the pairwise Jaccard distance
(40) between the seed sets of the various species. Sh represents the pairwise
Hamming distance between the vectors of attributes describing the environ-
ments of these species. The Pearson correlation between the (n2 � n)/2 entries
forming the lower triangle of Ss and Sh was calculated. Statistical significance of
the resulting correlation was computed by shuffling the species’ labels 1,000
timesandcalculatingtheprobability toachieveanequalorhigherabsolutevalue
correlation score by chance. An additional assay examines the similarity among
seed sets of various species with a certain environmental attribute value. The
average pairwise distance between the seed sets of all species with that specific
attribute value was calculated and compared with the average distances ob-
tained for 100,000 random collections of species (of the same size) to determine
its statistical significance. The resulting P values were corrected for multiple
testing via the false discovery rate procedure (41).
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Phylogenetic Analysis, Transition Rates, and Conservation. We consider a well
established, sequence similarity-based tree as a reference phylogeny (42). This
tree is based on 31 orthologs and includes a relatively large number of species,
covering most of the taxonomic groups for which metabolic data are available.
Our phylogenetic-based analyses were restricted to the species that could be
matchedtothose included inthereferencetree, resulting inatotalof178species.
A given compound in each species (extant or ancestral) can take one of three
distinct states: absent (completely absent from the occurring compounds set),
non-seed (an occurring compound that is not part of the seed set), or seed (an
occurring compound that is part of the seed set). Our seed set analysis determines
the state of each compound in the extant species. To calculate the evolutionary
transition rate between the different states across the phylogenetic tree, we
applied three assays analogous to those used in nucleotide substitution analysis
(see also SI Materials and Methods). In the first assay, the compounds’ states in
each internal node of the phylogenetic tree (representing ancestral species) were
predicted,usingFitch’s smallparsimonyalgorithm(43).Fitch’salgorithmfindsthe
most parsimonious state assignment for all of the internal nodes of a phyloge-
netic tree, given a phyletic pattern that assigns states to the terminal, current
species nodes. We then calculate the relative frequencies of the substitution
between the different states following the Tamura and Nei approach (31), a
commonly applied method for substitution rate estimation (SI Materials and
Methods). In the second assay, the state of each compound in the internal nodes
of the tree is estimated, but this time based on the reconstruction of the meta-
bolic network in each ancestral species, following Kreimer et al. (28). The seed set
detection algorithm is then applied to each ancestral network to obtain the set
of occurring and seed compounds in the internal nodes. Tamura and Nei’s
method is used again to estimate the relative transition rates. In the third assay,

a maximum likelihood approach is applied to the phyletic patterns of all of
the compounds in our analysis to obtain a maximum likelihood estimate of the
substitution rates. This is computed with the PAML package (32) using the
UNREST model. Two additional conservation measures, propensity for gene loss
(PGL; a maximum parsimony measure) (44) and gene loss rate (GLR; a maximum
likelihood measure) (33), were also applied to the phyletic patterns of the various
compounds to compute the tendency of a compound to lose its state as a seed
compound(or its stateasanon-seedcompound)duringtheevolutionaryprocess.
With these measures we do not distinguish between cases where the compound
was completely dropped from the network and cases where its state converted to
another state, but rather aim to characterize the level of conservation of each
state. These conservation measures can therefore be conceived as representing
the average ‘‘lifespan’’ of the state. The results obtained for the PGL measure
were qualitatively similar to those obtained with the GLR measure and are not
presented.
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