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Plant RNA silencing machinery enlists four primary classes of
proteins to achieve sequence-specific regulation of gene expres-
sion and mount an antiviral defense. These include Dicer-like
ribonucleases (DCLs), Argonaute proteins (AGOs), dsRNA-binding
proteins (DRBs), and RNA-dependent RNA polymerases (RDRs).
Although at least four distinct endogenous RNA silencing path-
ways have been thoroughly characterized, a detailed understand-
ing of the antiviral RNA silencing pathway is just emerging. In this
report, we have examined the role of four DCLs, two AGOs, one
DRB, and one RDR in controlling viral RNA accumulation in infected
Arabidopsis plants by using a mutant virus lacking its silencing
suppressor. Our results show that all four DCLs contribute to
antiviral RNA silencing. We confirm previous reports implicating
both DCL4 and DCL2 in this process and establish a minor role for
DCL3. Surprisingly, we found that DCL1 represses antiviral RNA
silencing through negatively regulating the expression of DCL4
and DCL3. We also implicate DRB4 in antiviral RNA silencing.
Finally, we show that both AGO1 and AGO7 function to ensure
efficient clearance of viral RNAs and establish that AGO1 is capable
of targeting viral RNAs with more compact structures, whereas
AGO7 and RDR6 favor less structured RNA targets. Our results
resolve several key steps in the antiviral RNA silencing pathway
and provide a basis for further in-depth analysis.

interpathway regulation � plant antiviral defense

RNA silencing is a cellular mechanism that uses small RNA
molecules (21–30 nt in length) as sequence-specific media-

tors to regulate the expression of a diverse array of genes at the
transcriptional, posttranscriptional, or translational levels (1). In
plants, these very small RNA species are termed small interfer-
ing RNAs (siRNAs) or micro RNAs (miRNAs) depending on
the source of their precursors. They are generated by a family of
double-stranded RNA (dsRNA)-specific RNases called Dicer-
like ribonucleases (DCLs) (2). Once produced, the siRNAs and
miRNAs are recruited by Argonaute proteins (AGOs) into
RNA-induced silencing complexes (RISCs) to direct the cleav-
age or translational repression of homologous mRNAs or to
remodel the homologous chromosomal DNA to achieve tran-
scriptional silencing (3). Another family of dsRNA-binding
proteins (DRBs) has been found to modulate the function of
DCLs (4). Plants also encode RNA-dependent RNA poly-
merases (RDRs) to produce some of the dsRNA precursors that
serve as templates for DCLs (2). In Arabidopsis, 4 DCLs, 10
AGOs, 5 DRBs, and up to 6 RDRs have been identified. They
participate in at least four different endogenous RNA silencing
pathways to achieve spatial and temporal regulation of gene
expression throughout the plant life cycle and to condition the
plant response to biotic and abiotic stresses (5).

Although the plant RNA silencing mechanism was first re-
vealed through studies aimed to unravel the complexity of plant
antiviral defense strategies, the details of plant antiviral RNA
silencing pathway(s) are far from resolved. Recent studies have
established a primary role for DCL4 and DCL2 in processing
dsRNA of virus origin into siRNAs (6–10), although it is not

known how activities of these DCLs are regulated. There are also
conflicting reports as to which AGOs are necessary for antiviral
silencing (11, 12). It also remains to be determined whether any
of the DRBs play a role in antiviral silencing. One factor that
hinders the dissection of the antiviral RNA silencing machinery
is that almost all plant viruses encode suppressors of RNA
silencing that, depending on the growth conditions of the plants,
could partially or completely disable virus-targeted RNA silenc-
ing by the plant host (6, 13–15).

In this report, we implicate several more components of the
plant RNA silencing machinery in antiviral defense by using
mutant viruses devoid of their silencing suppressors. Specifically,
we removed the silencing suppressor from our model virus,
turnip crinkle virus (TCV) and used the resulting mutant viral
RNAs to infect an array of Arabidopsis plants containing mu-
tations in key silencing pathway genes. A similar approach was
first used by Deleris et al. (6) to discover the critical antiviral role
of DCL4 and DCL2. Our studies build on their discoveries and
clearly demonstrate that DCL1 counteracts the antiviral role of
DCL4. We further report that DRB4 contributes significantly to
antiviral silencing. Finally, we demonstrate that two AGOs,
AGO1 and AGO7, participate in the silencing of viral RNAs.
Our results point to a regulatory relationship between compo-
nents of the silencing pathways.

Results and Discussion
Removal of the TCV Silencing Suppressor Leads to Faster Clearance of
Viral RNA in dcl1 Plants. We initially attempted to determine the
antiviral function of silencing pathway genes of Arabidopsis by
infecting the corresponding mutant plants with a wild-type (WT)
TCV transcript (Fig. 1A), and analyzing both inoculated and
systemic leaves (IL and SL) of infected mutants for viral RNA
accumulation. To minimize experimental variations, all leaf
samples examined throughout this report consisted of pools of
six leaves collected from six inoculated plants; all experiments
were repeated at least three times with consistent results.

When infected with wtTCV, none of the Arabidopsis mutants
tested showed appreciable difference in susceptibility as mea-
sured by viral RNA accumulation levels [see supporting infor-
mation (SI) Fig. S1 for the result with the four dcl mutants].
Similar results have been reported previously for plant as well as
animal virus-infected tissues, suggesting that strong suppressors
encoded by WT viruses effectively mask the antiviral role of
silencing pathway genes of their hosts (6, 16, 17).

It has been shown previously that wtTCV-specific siRNAs
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accumulated in SL are of a single 22-nt size class (6, 7). Here we
show that three distinct size classes of 22, 21, and 20 nt
accumulated in the IL (Fig. S1, siRNA blot). We attribute the
biogenesis of 22- and 21-nt siRNAs to the function of DCL2 and
DCL4, respectively, judging from the fact that the former are
absent in dcl2 plants and the latter absent in dcl4 plants (lanes
4 and 6). The 20-nt siRNAs likely resulted from partial degra-
dation of the 21-nt siRNAs, as they are also undetectable in dcl4
plants. These data are generally consistent with the findings of
Deleris et al. (6). Therefore, even though TCV viral RNA levels
were similar in different dcl mutants, the viral siRNA pattern
unique to IL confirmed the antiviral role of DCL4 and DCL2.
The critical importance of analyzing IL has also been docu-
mented by Diaz-Pendon et al. (10).

We next examined the same set of dcl mutants for their
response to TCV-�CP (�CP), a TCV mutant with its silencing
suppressor removed (Fig. 1 A) (18). We were then able to detect
substantially increased accumulation of genomic (g) as well as
subgenomic (sg) RNAs of �CP in IL of infected dcl2 and dcl4
plants (Fig. 1B, compare lanes 2, 4, and 6). dcl4 plants showed
the highest viral RNA levels, leading to systemic spread of the
mutant virus. These results further corroborate previous reports
implicating both DCL4 and DCL2 in the antiviral defense (6–8,
10, 17). dcl3 plants also showed a less substantial but consistently
reproducible increase in viral RNA levels (lane 5), suggesting
that DCL3, in addition to DCL4 and DCL2, functions in some
capacity to defend plants against viral infections.

The most unexpected results were observed in dcl1–7 plants,
in which �CP RNA accumulated to even lower levels than in
Col-0 plants (lane 3). Similar results were also obtained with a
different dcl1 mutant (dcl1–9) in a different parental back-
ground (Ler-0) (Fig. 2, compare lanes 2 with 4, 5 with 7, and 8
with 10). The reduced accumulation of viral RNA in dcl1–7
plants was even more evident when TCV CP was replaced by
P19, a silencing suppressor encoded by tomato bushy stunt virus
(TBSV). The resulting viral mutant, TCV-P19, accumulated to
similar levels in IL of Col-0, dcl2, dcl3, and dcl4 (Fig. 1C, lanes
2 and 4–6). The presence of P19 also enabled viral systemic
movement, which was enhanced in dcl4 plants (SL blot, lanes 2
and 4–6). However, the accumulation of TCV-P19 in dcl1–7 IL
was much lower, and it failed to move systemically (Fig. 1C, lane
3). No such difference was detectable with wtTCV (Fig. S1,
compare lanes 2 and 3), suggesting that DCL1 does not influence
TCV replication (19). It has been established that P19 suppresses
silencing by binding to siRNAs and inhibiting the formation of
RISC complex (20, 21). TCV CP, however, functions to prevent
DCL4-mediated processing of viral dsRNA, a process thought to
not only feed RISC with siRNAs, but also destroy the viral RNA
itself (6, 22). The fact that TCV-P19, but not wtTCV, is
associated with a decrease in viral RNA levels in infected dcl1–7

plants strongly suggests that it is because of enhanced processing
of viral RNA by other DCLs, thus implying that disrupting DCL1
function up-regulates the antiviral activity of other DCLs.

The profile of �CP-specific siRNAs is generally consistent
with previous reports (6, 9, 17). Their size was predominantly 21
nt in all but the dcl4 plants, where the DCL2-generated 22-nt
siRNA predominates (Fig. 1B, siRNA blot). Note that the
relative concentration of siRNAs in these plants is roughly in
proportion to the level of viral RNA, accounting for why

Fig. 1. Roles of different DCLs in RNA silencing-
mediated antiviral defense. (A) Schematic representa-
tion of the TCV-derived constructs used in this work. (B
and C) RNA blot hybridizations showing accumulation
levels of �CP (B) and TCV-P19 (C) in different dcl mu-
tant plants. Lane 6* of the siRNA blot in B contained a
reduced quantity of RNA (one-fifth of that in lane 6) to
better resolve siRNA sizes. Ethidium bromide (EB)-
stained rRNA served as the loading control. Also note
TCV-P19 RNA accumulation in dcl4 SL is apparent even
in EB-stained gel (* in C).

Fig. 2. RNA blot hybridizations showing accumulation levels of viral RNAs
and siRNAs in ago1–11 and dcl1–9 plants infected with �CP, TCV-pG (pG), and
TCV-irG (irG). The relative gRNA levels were calculated based on the intensity
of respective hybridization signals (see SI Materials and Methods for detailed
methods). The same set of siRNA membranes were stripped and hybridized
with different probes sequentially to detect siRNAs of different origins and
polarities.

Qu et al. PNAS � September 23, 2008 � vol. 105 � no. 38 � 14733

PL
A

N
T

BI
O

LO
G

Y

http://www.pnas.org/cgi/data/0805760105/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0805760105/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0805760105/DCSupplemental/Supplemental_PDF#nameddest=STXT


dcl1–7-infected plants contained the least siRNA and dcl4
contained the most. This result indicates that in single dcl
mutants, the siRNA levels most likely reflect the ongoing siRNA
production from viral RNAs rather than the difference in
functionality of various DCLs. Together, the above experiments
strongly suggest that DCL1 negatively regulates the antiviral
activity of other DCLs.

DCL1 Negatively Regulates the Expression of DCL4 and DCL3. Next we
wanted to determine which DCL is primarily responsible for
enhanced antiviral silencing in dcl1–7 plants. To accomplish this
goal, we first addressed the possibility that the mutated DCL1
itself caused the accelerated degradation of viral RNA, because
it has been reported that the DCL1 mRNA level in dcl1–7 plants
is actually higher than in Col-0 plants (23). The reason DCL1
mRNA is higher is because the DCL1 mRNA itself is the target
of a miRNA (miR162), and the dcl1–7 mutation, an amino acid
substitution within the helicase domain of DCL1, drastically
reduces the cellular level of miRNAs (23). Because the complete
loss-of-function mutant of DCL1 is embryo lethal, we decided to
use a virus-induced gene silencing (VIGS) approach to down-
regulate the expression level of DCL1. We reasoned that because
DCL4 rather than DCL1 is the primary dicer of TCV RNA, a
TCV construct containing a portion of DCL1 sequence would be
processed efficiently to produce DCL1-targeting siRNAs, which
would then result in lower DCL1 expression. The effect of the
VIGS-mediated DCL1 down-regulation could then be evaluated
by directly examining the RNA accumulation level of the VIGS
construct.

To test this, we made the construct TCV-DCL1, in which a
555-bp fragment of DCL1 cDNA (nucleotides 867–1,422) was
used to replace the 5� half of the CP coding region (Fig. 1 A).
TCV-DCL1, together with a control construct containing the
GFP cDNA in the same region (TCV-GFP), was used to infect
Col-0 as well as dcl2, dcl3, and dcl4 plants. As shown in Fig. 3A,
TCV-DCL1 accumulated to a lower level than TCV-GFP in
Col-0 plants (4 dpi blot, lanes 1 and 2), suggesting that DCL1

down-regulation by VIGS released its repression on other
DCL(s), which in turn accelerated the degradation of TCV-
DCL1. We hence conclude that the lower level of viral RNA
accumulation in dcl1–7 plants is caused by the release of
DCL1-mediated repression rather than higher DCL1 activity.

The results from infections of dcl mutants with both TCV-
GFP and TCV-DCL1 provided strong evidence for enhanced
DCL4 activity upon DCL1 down-regulation. In dcl2 plants, both
TCV-GFP and TCV-DCL1 RNA levels were appreciably higher
than in Col-0 plants (Fig. 3A, lanes 3 and 4 versus lanes 1 and 2).
However, the TCV-GFP level remained higher than TCV-
DCL1. This result suggests that DCL2 did not contribute sig-
nificantly to the accelerated viral RNA degradation caused by
DCL1 down-regulation. In contrast, both dcl3 and dcl4 plants
enabled higher accumulation of TCV-DCL1 relative to TCV-
GFP (Fig. 3A, lanes 5, 6, and 9–12), which is opposite to the
results observed with both Col-0 and dcl2 plants, suggesting that
both DCL4 and DCL3 contribute to enhanced antiviral silencing
in response to DCL1 disruption. However, the contribution of
DCL4 is predominant because the accumulation levels of both
TCV-GFP and TCV-DCL1 in dcl4 plants were at least 10-fold
higher than in dcl3 plants (note that the exposure time for lanes
9* and 10* was only 1/16 as long to produce comparable signals
with lanes 5 and 6). Finally, the higher levels of TCV-DCL1 than
TCV-GFP in dcl3 and dcl4 plants suggests that the former is
likely more replication competent, which strengthens the argu-
ment that its lower accumulation in WT plants is caused by
DCL1 down-regulation.

To further investigate the mechanism of DCL1-mediated
suppression of DCL4 and DCL3, we compared their mRNA
levels in Col-0 and dcl1–7 plants by using a semiquantitative (sq)
RT-PCR procedure. RNA samples extracted from mock-
inoculated Col-0 and dcl1–7 leaves (4 dpi) were used as tem-
plates. As shown in Fig. 3B, the control actin 3 RT-PCR product
(318 bp) was at the same intensity for both Col-0 and dcl1–7
samples (Fig. 3B, lanes 9 and 10). However, the DCL4-specific
fragment (550 bp) was readily detectable in dcl1–7 plants under
conditions (45 PCR cycles) insufficient for its detection in Col-0
plants (lanes 1 and 2). This result demonstrates that there is a
significantly higher level of DCL4 mRNA in dcl1–7 plants.
Similarly, the DCL3 fragment (613 bp) was also more intense in
dcl1–7 plants, although the difference was much less evident
(lanes 5 and 6). All of the RT� (without reverse transcriptase)
controls were negative, indicating that the PCR products were
mRNA-dependent. We conclude from these results that disrup-
tion of DCL1 function leads to higher expression of DCL4 and
DCL3 in Arabidopsis leaves. These findings could also account
for the reduced susceptibility of dcl1–9 plants to red clover
necrotic mosaic virus reported by Takeda et al. (19).

Similarly, VIGS-mediated down-regulation of DCL1 also led
to elevated levels of DCL4 and DCL3 mRNA. We were unable
to detect any reduction of DCL1 mRNA levels in TCV-DCL1-
infected leaves, likely because of limited spread of TCV-DCL1.
We thus created TCV-P19-GFP and TCV-P19-DCL1, in which
TBSV P19 is included to enhance the spread of the VIGS
constructs (Fig. S2 A). In addition, we chose a different region of
DCL1 cDNA (nucleotides 1,912–2,210) as the insert for TCV-
P19-DCL1, aiming to independently verify the results with
TCV-DCL1. As expected, TCV-P19-DCL1 accumulated to
modestly lower levels than TCV-P19-GFP (Fig. S2B), although
both accumulated �100-fold more than the comparable con-
structs lacking the silencing suppressor (data not shown). At 6
dpi, when a reduction of the DCL1 mRNA level was detectable
in TCV-P19-DCL1-inoculated leaves (Fig. S2C, compare lanes 5
and 6; DCL1 product highlighted by *), we witnessed a concur-
rent elevation of DCL4 mRNA level (lanes 9 and 10). The DCL3
mRNA level is also slightly elevated (lanes 13 and 14).

In summary, our results with two different dcl1 mutants and

Fig. 3. DCL1 down-regulates the expression of DCL4 and DCL3. (A) RNA blot
hybridization showing accumulation levels of TCV-GFP (T-G) and TCV-DCL1
(T-D) in Col-0, dcl2, dcl3, and dcl4 mutants. Lanes 7 and 8 were purposefully not
loaded. Blots covering sample nos. 1–10 were first exposed for 32 h to reveal
viral RNA signals in lanes 1 and 2. They were then exposed for 2 h (lanes 9* and
10*) to reduce the over-exposure in lanes 9 and 10. The arrows denote the
position of deletion products. (B) sqRT-PCR illustrating the relative levels of
DCL4 and DCL3 mRNA in Col-0 and dcl1–7 plants. RT-PCR of actin 3 mRNA was
used as the control. Cycle numbers are shown beneath the respective lanes.

14734 � www.pnas.org�cgi�doi�10.1073�pnas.0805760105 Qu et al.

http://www.pnas.org/cgi/data/0805760105/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0805760105/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0805760105/DCSupplemental/Supplemental_PDF#nameddest=SF2


two different VIGS constructs established that disruption of
DCL1 function led to enhanced antiviral defense, which we
attribute to increased expression of DCL4 and, to a lesser extent,
DCL3. Exactly how DCL1 down-regulates the expression of
DCL4 and DCL3 awaits further investigation. A simple expla-
nation would be that both DCLs are targeted by miRNAs or
other DCL1-dependent endogenous siRNAs (24). In support of
this, we found that the DCL4 mRNA level is elevated in ago1–11
mutants as well (Fig. S3). However, no miRNA targeting either
DCL4 or DCL3 has been identified. A single DCL4-related small
RNA (no.194424) was identified by searching the Arabidopsis
Small RNA Project database (http://asrp.cgrb.oregonstate.edu/
db/). It is originated from the 18th intron of the DCL4 gene, of
messenger sense orientation, and thus not expected to target
DCL4 mRNA for degradation. No DCL3-related small RNAs
have been identified. Another possibility is that DCL4 (and
potentially other silencing pathway genes) could be regulated by
one of many transcription factors that are targeted by miRNAs.

DRB4 Is Required for Efficient Antiviral RNA Silencing. DRB4 has
been shown to assist DCL4 in the biogenesis of at least one
transacting siRNA and more recently has been found to be
targeted by the silencing suppressor encoded by caulif lower
mosaic virus (CaMV), a DNA virus (25, 26). In light of these
reports, we were interested in learning whether DRB4 also
contributes to antiviral defense against RNA viruses. We there-
fore subjected drb4–1 mutant plants to infections with �CP. The
dcl4 mutant was included in this experiment for comparison. As
shown in Fig. S4, a significant increase of �CP RNA level was
consistently observed in drb4 plants at both 4 and 8 dpi (compare
lanes 2 and 4 in both blots). However, this increase was visibly
less than in the dcl4 plants (compare lanes 3 and 4). Compared
with Col-0 plants, the drb4 plants showed a slight decrease in the
level of 21 siRNAs, despite the significant increase in viral RNA
levels (Fig. S4, compare lanes 2 and 4 of the siRNA blot). This
result suggests that DRB4 may not be directly involved in siRNA
production. Rather, it could stabilize the 21-nt viral siRNAs and
deliver them to the RISC complex, a role assigned to its
homologs in Drosophila and C. elegans (15, 27).

Both AGO1 and AGO7 Contribute Viral RNA Clearance. Previous
studies concerning the role of AGO proteins in antiviral silenc-
ing have been inconclusive (11, 12, 28). To determine which
AGO is responsible for the slicing of viral RNAs, we first infected
ago1–11 mutant plants with �CP transcripts. The ago1–11 plants
contain a point mutation within AGO1 gene that leads to partial
loss of AGO1 function (29). �CP RNA accumulated to much
higher levels in ago1–11 plants than in their WT counterparts
(Ler-0) (Fig. S5A, lanes 4–6). This enhanced susceptibility in IL
also frequently resulted in systemic movement of �CP (data not
shown). These results unequivocally demonstrated that AGO1
plays a major role in controlling the RNA levels of �CP and
possibly other viruses (12). However, ago1–11 plants were not
more susceptible to wtTCV, again highlighting the critical con-
tribution of viral silencing suppressors to the survival of plant
viruses (data not shown). In contrast to dcl mutants, increased
viral RNA accumulation in ago1–11 plants was accompanied by
significantly decreased siRNA levels (Fig. S5A, siRNA blot,
compare lanes 5 and 6), strongly suggesting that viral siRNAs are
stabilized by their incorporation into the AGO1-based RISC
complex.

Surprisingly, the elevated viral RNA levels, although easily
detectable in ago1–11 plants infected with �CP, were not seen
in the same mutants infected with TCV-GFP (Fig. S5A, lanes 11
and 12). TCV-GFP RNA was as quickly degraded in ago1–11 as
in Ler-0 plants. A direct comparison with dcl4 mutants showed
that, although in dcl4 plants TCV-GFP also accumulated to
lower levels than �CP (Fig. S5A, compare lanes 9 with 3), the

difference between mutant and WT plants was still very signif-
icant (compare lanes 9 with 8). ago1–11 plants, however, per-
mitted higher viral RNA titer only when �CP was the inoculum.
These results suggest that factors other than AGO1 contribute
to the preferential clearance of TCV-GFP viral RNA in ago1–11
plants.

To identify these additional host factors, we searched for
alternative AGO(s) capable of slicing TCV-GFP in ago1–11
plants. We hypothesize that AGO7 might contribute to this
process because AGO7 is known to function together with DRB4
(25), and we have shown that DRB4 participates in defense
against viruses (see Fig. S4). As an additional control, we
included an rdr6 mutant (rdr6–11) (30) in this analysis because
previous studies have shown that RDR6 plays a critical role in
antiviral defense against several viruses including TCV (15, 31,
32). As shown in Fig. S5B, both �CP and TCV-GFP RNAs
accumulated to modestly higher levels in rdr6–11 and ago7
plants, although the overall level of TCV-GFP RNA was much
lower than �CP in all infected plants. These results suggest that,
although AGO1 is more efficient at slicing RNAs of viral origin,
AGO7 appears to act on both viral and nonviral RNA with
similar efficiency, likely serving as a surrogate slicer in the
absence of AGO1.

Viral RNAs with Nonviral Inserts are Preferentially Targeted in
ago1–11 Plants. To understand how two different AGOs differ-
entiate the two kinds of target RNAs, we entertained the idea
that, because viral RNAs tend to have more extensive secondary
structures than nonviral RNA, AGO1 might be more capable of
tolerating these secondary structures than AGO7. To test this
hypothesis, we made two additional TCV-based constructs con-
taining nonviral inserts of the same length (289 nt) but with
varying degrees of secondary structure. The first one, TCV-pG,
contained a portion of the cycle 3 GFP cDNA (33), whereas the
second one, TCV-irG, contained the first 157 nucleotides of
the pG insert and a 132-nt homologous fragment derived
from the synthetic GFP cDNA (34) fused in the opposite
orientation. The two inserted fragments in TCV-irG are 71%
complementary so that the whole insert would form an incom-
plete hairpin with a 25-nt end loop. Both TCV-pG and TCV-irG,
together with �CP, were then used to infect ago1–11 and ago7
plants.

Several interesting outcomes emerged from analyzing the
infected ago1–11 plants (Fig. 2). First, at the early stage of
infection, TCV-pG RNA accumulated to approximately one-
third the level of TCV-irG, in both Ler-0 and ago1–11 plants (4
dpi viral RNA blot, compare lanes 5 and 6 with lanes 8 and 9;
note the relative gRNA levels). This result clearly demonstrates
that the more structured nonviral insert was more resistant to
degradation. Secondly, whereas �CP gRNA levels were in-
creased 1.6-fold in the absence of functional AGO1 (compare
lanes 3 with 2), the gRNAs of both TCV-pG and TCV-irG were
at similar levels in ago1–11 and Ler-0 plants (compare lanes 6
with 5 and 9 with 8). Furthermore, sgRNAs of TCV-pG and
TCV-irG were decreased in ago1–11 plants. This trend was more
evident in 8 dpi samples, where even the gRNAs of these two
constructs were three- to fourfold less abundant in ago1–11
plants than in Ler-0 plants (Fig. 2, 8 dpi viral RNA blot, compare
lanes 6 with 5 and 9 with 8). In addition, although sgRNAs of
�CP generally accumulated to higher levels than its gRNA, the
sgRNAs of both TCV-pG and TCV-irG were far lower than their
gRNAs. Collectively, these data suggest that the nonviral inserts
in the sgRNAs of TCV-pG and TCV-irG are the primary targets
of an RNA clearance pathway to which viral RNAs are more
resistant. More importantly, this particular pathway is not only
independent of AGO1 function, but is more robust when AGO1
is debilitated. However, as shown in the siRNA blots of Fig. 2,
siRNA levels of viral as well as insert origins in all infected
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ago1–11 plants were decreased, suggesting that additional
AGO(s) did not fully compensate for the loss of AGO1. There-
fore, other non-AGO components of the silencing pathway may
also have contributed to the enhanced degradation of TCV-pG
and TCV-irG in ago1–11 plants. In agreement with this assertion,
we found that the DCL4 as well as DCL3 mRNA levels are
elevated in ago1–11 plants, which could enhance the dicing of
TCV-pG and TCV-irG (Fig. S3). These results may also partially
explain the inconsistencies in previous reports concerning the
antiviral role of AGO1 (11, 28).

AGO7 and RDR6 Contribute Favorably to the Silencing of TCV Mutants
Containing Nonviral Inserts. To further investigate the role of
AGO7 as well as RDR6 in silencing TCV mutants, with or
without nonviral inserts, we next infected ago7–1 and rdr6–11
plants with �CP, TCV-pG, and TCV-irG. Unexpectedly, we
witnessed far more significant reduction of both TCV-pG and
TCV-irG RNAs in the Col-0 than in the Ler-0 plants (compare
lanes 2, 5, and 8 in Fig. 4 with their counterparts in Fig. 2).
Exactly why the two ecotypes of Arabidopsis plants responded to
insert-containing TCV mutants so differently was not investi-
gated further.

Nevertheless, we were still able to discern a role for both
AGO7 and RDR6 in the silencing of all three TCV mutants, each
of which accumulated to higher levels in ago7 (two-, three-, and
fourfold increases, respectively) and rdr6–11 plants (three-,
three-, and eightfold increases, respectively) (Fig. 4, 8 dpi viral
RNA blot). Contrary to our expectation, �CP and TCV-irG,
which are expected to be more structured, were actually more
responsive to RDR6 disruption (the rdr6–11 plants) than TCV-
pG, which is predicted to be less structured (Fig. 4, 8 dpi viral
RNA blot, compare lanes 4 with 2, 10 with 8, and 7 with 5).
Although we currently do not have an explanation for this

observation, we speculate that other RDRs and/or AGOs could
access the pG insert more readily and thus compensate for the
loss of RDR6.

Examination of viral siRNAs further implicated RDR6 in the
silencing of all three TCV mutants. First, for �CP and TCV-irG
infections, the TCV-specific, genome sense (TCV�) siRNA
levels were almost the same in rdr6–11 and Col-0 plants, whereas
the (TCV�) siRNAs were visibly lower (Fig. 4, siRNA blots,
compare lanes 4 with 2 and 10 with 8). These results suggest that
whereas the production of (TCV�) siRNAs relies more on
RDR6, the (TCV�) siRNAs are largely independent of RDR6.
In contrast, the TCV-pG infections of rdr6–11 plants were
characterized by lower levels of both (TCV�) and (TCV�)
siRNAs (Fig. 4, compare lanes 7 with 5 of the siRNA blots). This
result suggests to us that the presence of the pG insert in the
construct rendered the viral genome more accessible to RDR6,
which we interpret to mean that RDR6 is able to proceed along
the TCV genome once anchored on the pG portion of the RNA,
whereas the hairpin insert in TCV-irG may cause more frequent
pauses, partially explaining why TCV-irG is more stable than
TCV-pG.

Unlike TCV-specific siRNAs, GFP-specific siRNAs of both
polarities showed visible decline in rdr6–11 plants infected with
both insert-containing constructs [Fig. 4, siRNA (GFP�) and
(GFP�) blots, compare lanes 7 with 5 and 10 with 8]. These
results suggest that, whereas TCV gRNAs are diced by DCLs
with little help from RDR6, neither pG nor irG inserts are
recognized as efficiently by DCLs despite the long, incomplete
hairpin of irG. Instead, at least a portion of these inserts have to
be converted to dsRNA form by RDR6 before being diced. We
conclude from these analyses that the nonviral inserts are more
readily targeted by RDR6 than viral RNAs. Taken together, our
siRNA data further confirm that viral RNAs, the less structured
regions in particular, are subjected to RDR6-mediated antiviral
silencing.

Finally, all of the infected ago7 samples accumulated generally
lower levels of siRNAs, regardless of the origins and polarities.
However, lower siRNA levels were always more pronounced in
TCV-pG- and TCV-irG-infected samples than in �CP-infected
samples, suggesting that AGO7 is more preferentially associated
with siRNAs derived from nonviral inserts (Fig. 4, siRNA blots,
compare ago7–1 lanes with Col-0 lanes). On the other hand, the
majority of TCV-�CP-derived siRNAs likely associate with
AGO1 because they are still mostly stable in the absence of
AGO7 (Fig. 4, siRNA blots, compare lanes 3 and 2).

To summarize, we found that both RDR6 and AGO7 partic-
ipate in silencing-based defense targeting RNA viruses. Fur-
thermore, both are more preferably associated with nonviral
inserts, with a slight bias toward less structured inserts. These
observations, together with the finding that �CP RNA levels
increased drastically in response to AGO1 disruption, led us to
hypothesize that AGO1 and AGO7 may differ in their ability to
recruit ds siRNAs with varying degrees of mismatch. We argue
that, because AGO1 is associated with miRNAs, which are
known to have mismatches, it may better tolerate the viral
siRNAs derived from highly structured (�) sense viral RNAs,
whereas AGO7 likely recruits only fully paired siRNAs (25). We
want to stress that this hypothesis does not imply that AGO1 is
incapable of recruiting completely paired ds siRNAs as AGO1
is known to be involved in sense trangene-mediated silencing,
which is expected to generate fully paired ds siRNAs (28).
Rather, AGO1 may tolerate more mismatches than AGO7.
Preferential siRNA recruitment has been demonstrated bio-
chemically for two Drosophila AGO proteins; hence, we think it
is likely that similar sorting mechanisms exist in Arabidopsis (35).
In addition, the functional preference of AGOs could also occur
at the slicing step as AGO1 could tolerate more mismatches
between siRNAs and their targets, as in the case of miRNA-

Fig. 4. RNA blot hybridizations showing accumulation levels of viral RNAs
and siRNAs in ago7–1 and rdr6–11 plants infected with �CP, TCV-pG (pG), and
TCV-irG (irG).
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mediated cleavage. Finally, the siRNAs derived from nonviral
inserts could possess different 5� terminal nucleotides than viral
siRNAs and thus be selectively recruited by different AGOs, as
revealed by two recent reports (36, 37).

This model predicts that varying genetic requirements for
silencing different viruses may in part be caused by the tendency
of different viral RNAs to form secondary structures. Viruses
with long, relatively unstructured areas in their RNA genomes
would be more susceptible to RDR6-AGO7-mediated RNA
silencing. On the other hand, viruses with extensive secondary
structures would be more frequently targeted by AGO1. This
model further predicts that the ds replicative form of RNA
viruses likely does not contribute significantly to siRNA pro-
duction (38).

Conclusion
We have examined the genetic requirements of RNA silencing-
based antiviral defense by using TCV mutants devoid of the
silencing suppressor to infect Arabidopsis plants with defects in
silencing pathway genes. We focused our investigation on the
four DCLs, two AGOs, DRB4, and RDR6 that were shown
previously to have defined roles in one or more endogenous
RNA silencing pathways (5). We found that all four DCLs
participate in the antiviral silencing. Whereas DCL2, 3, 4
contribute positively to viral RNA clearance, DCL1 negatively
regulates antiviral silencing through down-regulation of DCL4

and DCL3 expression. This observation is in contrast to a report
by Moissiard and Voinnet (39), in which DCL1 was found to have
a facilitative role in processing the 35S RNA leader of CaMV.
The difference may well be because of the fact that CaMV is a
DNA virus replicating in the nucleus. In addition, we also
established an important role for DRB4 in antiviral silencing.
Finally, we revealed that two AGOs, AGO1 and AGO7, function
coordinately to ensure efficient clearance of viral RNAs with
different degrees of secondary structure. These findings are
expected to be conducive to further in-depth investigations.

Materials and Methods
A complete description of the materials and methods used in this study is
provided in SI Materials and Methods. Briefly, the Arabidopisis mutant plants
containing mutations in several DCL, AGO, DRB, or RDR genes were acquired
from various sources and reared in growth chambers under standard condi-
tions. They were infected with in vitro transcripts of TCV cDNA or its deriva-
tives and subjected to RNA blot analyses to determine the accumulation of
viral RNA and siRNAs. The mRNA levels of key host genes were evaluated by
using sqRT-PCR.
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