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ABSTRACT
The set of possible postselection genotype frequencies in an infinite, randomly mating population is
found. Geometric mean heterozygote frequency divided by geometric mean homozygote frequency
equals two times the geometric mean heterozygote fitness divided by geometric mean homozygote fitness.
The ratio of genotype frequencies provides a measure of genetic variation that is independent of allele
frequencies. When this ratio does not equal two, either selection or population structure is present.
Within-population HapMap data show population-specific patterns, while pooled data show an excess of

homozygotes.

AT patterns of genetic variation are possible within
a population, and how does natural selection affect
these patterns? R. A. Fisher remarked “it is often conve-
nient to consider a natural population not so much as an
aggregate of living individuals but as an aggregate of gene
ratios” (FISHER 1953, p. 515). This mathematical abstrac-
tion allows key questions in evolutionary genetics to be
addressed. A population of diploid individuals can be
characterized by a set of genotype frequencies (Pys, Pap,
Pgp, etc.). This population genetic state is represented by a
pointin genotype frequency space, where each dimension
corresponds to the frequency of a particular genotype. As
genotype frequencies change over time, evolving popula-
tions explore genotype frequency space (Rice 2004).
However, not every possibility can be realized. Pop-
ulations are constrained to a restricted set of genotype
frequencies. Trivially, genotype frequencies must sum to
one. Mendelian segregation and patterns of mating
further restrict the set of possible genotype frequencies.
For example, in a randomly mating population it is
unlikely that every individual will be the same heterozy-
gous genotype. Natural selection also influences pat-
terns of genetic variation, as high-fitness genotypes are
found at higher frequencies than neutral expectations.
What genotype frequencies can one expect to find, and
how does genotype-specific fitness influence this? Any
equation summarizing the set of all possible population
genetic states must contain frequency and fitness terms
for every genotype. Subsequently, genotype frequency
data can be used to infer a ratio of genotypic fitnesses.
While mathematical descriptions exist for loci with two
segregating alleles (CANNINGS and Epwarps 1968),
such formulations are lacking for arbitrary numbers of
segregating alleles. Here, a general equation describing
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the set of possible postselection genotype frequencies is
derived. Much like how the Hardy—Weinberg principle
describes population genetic states in the absence of
selection, this novel equation describes population genetic
states in the presence of selection. In the context of
genotype-frequency space, this is a multidimensional
surface, the curvature of which is influenced by natural
selection (Figure 1). Evolution involves adaptive walks
toward regions of high mean fitness on this surface
(WR1GHT 1932; EwENs 1989; EDwWARDS 2000). The set of
possible genotype frequencies is analogous to the ecolo-
gical concept of a fundamental niche (HUTCHINSON
1957) and the Ramachandran diagrams of biochem-
istry (RAMACHANDRAN et al. 1963). The former describes
the full range of environmental conditions under which
an organism can exist, while the latter describes the
possible conformations of dihedral angles for a poly-
peptide. In each case, valid regions of parameter space
are described.

MODEL

A standard single-locus model of theoretical popula-
tion genetics is considered (diploidy, autosomal inher-
itance, random mating, and infinite population size).
Fitnesses are assumed to be constant and frequency
independent. If there are nsegregating alleles ata single
locus, n(n+1)/2 different genotypes are possible, of
which n are homozygous and n(n — 1)/2 are heterozy-
gous. Thus, genotype-frequency space spans n(n + 1)/2
dimensions. Under random mating, each pointin allele-
frequency space maps to a single point in genotype-
frequency space. Consequently, the surface of possible
genotype frequencies is n — 1 dimensional. The recur-
sion equations of classical population genetics give
genotype frequency in the present generation (Pj) as a
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function of genotype fitness (w;) and allele frequencies
in the past generation (p;).

Derivation of genotypic ratio: Subsequent to mating,
but prior to selection, genotype frequencies are found
in Hardy-Weinberg proportions. Postselection homo-
zygote frequencies are equal to P; = pPw;/w while
postselection heterozygote frequencies are equal to
P; = 2p;piw;/w (RIcE 2004). Mean fitness (w) equals
the weighted sum of all genotype fitnesses. It is useful to
algebraically manipulate these recursion equations so
that a ratio of genotype frequency to genotype fitness is
on the left-hand side and a ratio of allele frequencies to
mean fitness is on the right-hand side. Subsequently,
terms for multiple genotypes can be multiplied.

A natural division of genotypes involves homozygotes
and heterozygotes. Every allele has a corresponding
homozygous genotype, and the product of all homozy-
gote ratios is

n
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Since all terms in the above equation are positive, each
side of Equation 1 can be raised to the (n(n — 1)/2)th
power:
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Every allele also can be found in heterozygous geno-
types, and the product of all heterozygote ratios is
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Moving the constant term to the left-hand side and
raising every term of Equation 3 to the nth power,
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AB FIGure 1.—De Finetti diagrams
describing the set of possible geno-
type frequencies for two segregating
alleles. The solid line represents ge-
notype frequencies that satisfy the
equation Pw,; = 2P w,. Sta-
ble equilibria are solid circles, and
unstable equilibria are open circles.
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(® < 2). (D) Directional selection
of a dominant advantageous allele
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of a recessive advantageous allele
(P <2).
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Note that the right-hand sides of Equations 2 and 4 are
identical. Further algebraic manipulation and the
transitive property of equality (where A= Band B= C
imply A = C) allow a single equation containing every
genotypic term to be derived:

M (n(n(n—1)/2)) (H:L:17]'>i w;j)"
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Since every term in the above equation is positive, Equa-
tion 5 can be simplified by taking the n(n(n —1)/2)th
root of both sides of the equation. This root is the prod-
uct of the number of homozygote and heterozygote

states:
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Note that the geometric mean of » numbers is the nth
root of their product. In the absence of assortative mating,
patterns of genetic variation reduce to a surprisingly
elementary equation. The geometric mean heterozy-
gote frequency divided by the geometric mean homo-
zygote frequency equals two times the geometric mean
heterozygote fitness divided by the geometric mean
homozygote fitness. Denoting geometric means with
asterisks,
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Description of the genotypic ratio: The above geno-
typic ratio equation is marked by multiple axes of
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TABLE 1
MATLAB simulations confirm analytic theory

Selection Alleles Population size Expected @ Observed ® Observed f
Overdominant 2 100,000 2.2 2.1981 (2.1 X 107*) —0.0472 (1.1 X 107°)
Underdominant 2 100,000 1.8 1.8011 (1.5 X 10°%) 0.0508 (2.1 X 10°°)
Neutral 2 100,000 2 2.0005 (1.4 X 107*) —0.0001 (8.9 X 107°%)
Stochastic fitness 2 100,000 >2 2.0318 (6.9 X 10°?) —0.0037 (4.3 X 10°%)
Stochastic fitness 3 100,000 >2 2.0010 (2.8 X 10°?) 0.0013 (7.8 X 107%)
Stochastic fitness 4 100,000 <2 1.9898 (1.5 X 107?%) 0.0016 (3.0 X 10™")
Directional 2 1,000 2.0976 2.1639 (6.8 X 10°?) —0.0195 (8.9 X 10
Directional 2 10,000 2.0976 2.0989 (6.3 X 10°?) —0.0149 (1.3 X 10%)
Directional 2 100,000 2.0976 2.1013 (6.2 X 10°*) —0.0156 (2.7 X 107?)
Directional 3 100,000 2.0646 2.0681 (1.3 X 107?) —0.0115 (1.2 X 107°)
Directional 4 100,000 2.0482 2.0467 (2.6 X 10°?) —0.0097 (9.4 X 10°°)

Simulations were run for 100 generations and mean and variance of ® were computed (with variance in observed ® within pa-
rentheses). All alleles were equally frequent at the start of each simulation run. Fitnesses are as follows: overdominant selection (w;; =
1.1, w;; = 1.0), underdominant selection (w;; = 0.9, w; = 1.0), stochastic fitness (fitnesses for each genotype were generated each
generation from a Gaussian distribution with a mean of 1.0 and a standard deviation of 0.1), and directional selection (homozygotes
and heterozygotes containing a favored dominant allele have a fitness of 1.1, while all other genotypes have a fitness of 1.0).

symmetry: frequencies are on the left-hand side while
fitnesses are on the right-hand side, and heterozygous
terms are found in numerators while homozygous terms
are found in denominators. Genotype frequencies satisfy
the above equation after a single generation of random
mating and viability selection. As expected, postselection
genotype frequencies show increased heterozygosity
when heterozygote fitnesses are large relative to homo-
zygote fitnesses. The right-hand side of Equation 7 involves
a ratio of fitnesses, indicating that relative, rather than
absolute, fitnesses determine genotype frequencies.
Under conditions of neutrality Equation 7 reduces
to Hardy-Weinberg proportions. However, these pro-
portions also arise when fitnesses are multiplicative
(LEwoNTIN and CockERHAM 1959). By extension, one
can expect to find the same ratio of genotypic frequen-
cies as Hardy—Weinberg when the assumptions of this
model are met and w; = w;,. Regardless of selection
coefficients, heterozygote frequencies are maximized at
intermediate allele frequencies. The constant 2 on the
righthand side of Equation 7 is due to diploidy and
equivalence between ¢j and ji heterozygotes. Singulari-
ties in the above equation are nonproblematic, as any
genotype with zero fitness must also have a postselection
frequency of zero. Equation 7 holds for both equilib-
rium and nonequilibrium populations. Genotype fre-
quencies of natural populations are much easier to
obtain than genotype-specific fitnesses. Consequently,
Equation 7 allows one to infer the ratio of genotype
fitnesses from genotype-frequency data (so long as
population size is large and mating is random).

Fitness dominance influences the relative propor-
tions of heterozygotes and homozygotes. The ratio of
geometric mean heterozygote frequency to geometric
mean homozygote frequency (i.e., the left-hand side of
Equation 7) is denoted by ®:

O=-1. (8)

® < 2 indicates an excess of homozygotes relative to
neutral expectations, and ® > 2 indicates an excess of
heterozygotes. When fitnesses are multiplicative (i.e.,
fitness dominance is absent), ® = 2. Geometric means
are always less than or equal to the arithmetic mean.
Therefore, additive fitnesses (i.e., the fitnesses of heter-
ozygotes are equal to the mean of the relevant homo-
zygotes) result in @ > 2. Concave fitness functions
(where fitnesses of heterozygotes are greater than the
arithmetic mean of the relevant homozygote fitnesses)
yield ® > 2. Depending on heterozygote fitnesses,
convex fitness functions yield ® < 2, ® =2, or & > 2.
Note that enzyme kinetics of metabolic pathways are
associated with concave fitness functions (HARTL et al.
1985; GiLLESPIE 1991), and overdominance and under-
dominance are exaggerated forms of concave and
convex fitness functions, respectively. MATLAB simula-
tions (MATHWORKS 2005) verify the effects of fitness
dominance and also show that @ is independent of
allele frequency (see Table 1).

The genotypic ratio equation (Equation 7) also holds
for subsets of alleles. In principle, this allows genotype-
specific fitness effects to be detected. The ratio of
geometric mean heterozygote frequency to geometric
mean homozygote frequency for a subset of alleles is
denoted @, ;, . (i.e, for the alleles A, B, and C the
genotypic frequency ratio is equal to @ ,p¢). For exam-
ple, if there are three segregating alleles and the
genotype AA is deleterious relative to all other geno-
types, one would expect @45, P4c, and P 4p¢ to be >2
and ®pe to be 2. This application can identify non-
neutral genotypes of highly polymorphic loci, such as
microsatellites or genes encoding blood group anti-
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gens. A similar approach has been developed that uses
genotype-specific fixation indexes (ALvarez 2008).
Note, however, that the absolute magnitude of selec-
tion-induced departures from Hardy—Weinberg propor-
tions is expected to be small for most sets of genotypic
fitnesses (PEREIRA and ROGATKO 1984; HERNANDEZ
and WEIR 1989). Consequently, sample sizes needed
to detect selection would need to be quite large (WEIR
1996).

If the assumption of constant genotypic fitness is
relaxed, the magnitude of the genotype-frequency ratio
depends on the number of segregating alleles. Consider
a stochastic fitness scenario where genotype-specific
fitnesses vary from generation to generation and are
drawn from the same arbitrary distribution (i.e., no
genotype is more fit “on average” than any other geno-
type). When there is temporal variation in fitness, the
geometric mean fitness of genotypes applies (HALDANE
and JAYAKAR 1963). The stochastic fitness expectation
of @ is greater than the constant fitness expectation when
a small number of alleles are segregating and less than
the constant fitness expectation when a large number
of alleles are segregating. The geometric mean of a
number of independent random variables decreases as
the number of variables increases (F. J. ROHLF, personal
communication). This is because the geometric mean is
sensitive to low values, and each random variable has a
chance of resulting in a low value. Random variables in
this case refer to genotypic fitnesses. Consequently, the
magnitude of ® is contingent on the relative numbers of
heterozygous and homozygous genotypes (which are a
function of the number of segregating alleles). Stochastic
fitness also influences the genotype-frequency ratio in-
dependent of the number of segregating alleles. This is
because @ in a stochastic fitness scenario involves the ratio
of two random variables. The geometric mean of a ratio of
two identical random variables has an expectation of one.
Due to the arithmetic mean—geometric mean inequality,

c Heterozygote and homozygote,
no shared alleles

F1GURE 2.—Two-dimensional slices through ge-
notype frequency space. Solid regions indicate
possible genotype frequencies for n=2 and
w;, = w;;. (A) Two homozygotes sharing zero al-
leles (e.g., AA and BB). (B) One homozygote
and one heterozygote sharing one allele (e.g,
AA and AB). (C) One homozygote and one het-
erozygote sharing zero alleles (e.g., AA and BC).
(D) Two heterozygotes sharing one allele (e.g.,
AB and AC). (E) Two heterozygotes sharing zero
alleles (e.g., AB and CD).

the arithmetic mean of a stochastic fitness ratio is greater
than or equal to one, resulting in @ > 2. Allele-dependent
and independent effects of stochastic fitness combine in a
complex manner, and MATLAB simulations indicate that
when three or fewer alleles are segregating, ® > 2 (see
Table 1).

Visualization of genotype frequencies: The high
dimensionality of genotype-frequency space makes
visualization difficult. However, it is possible to take two-
dimensional slices through genotype-frequency space
and view possible frequencies for pairs of genotypes
(Figure 2). Five different curves are possible, depending
on the number of shared alleles and whether the geno-
types in question are homozygous or heterozygous. For
example, if one genotype in question involves a homo-
zygote (ii) and the other genotype involves a heterozy-
gote that shares zero alleles with the homozygote (jk),
then Figure 2C applies. Given the assumptions of this
model, populations can exist only within the solid
regions of Figure 2. Areas and shapes of solid regions
are contingent on the ratio of the geometric mean het-
erozygote fitness to the geometric mean homozygote
fitness. The exact position of a population genetic state
depends on allele frequencies. For example, one will
not find AA homozygotes and AB heterozygotes at high
frequencies if a third allele, C, happens to be common.
Note that heterozygote advantage in a multiallelic
system is unlikely to result in the maintenance of many
segregating alleles (LEWONTIN et al. 1978), although
spatial heterogeneity in selection pressures relaxes
these constraints (STAR et al. 2007).

Comparison of heterozygosity and ®: Heterozygosity
and the genotypic ratio, @, are complementary meas-
ures of genetic variation. Both measures exhibit an
excess of heterozygotes when there is overdominance
and an excess of homozygotes when there is underdom-
inance. However, heterozygosity is maximized at in-
termediate allele frequencies, while ® is independent of



Genotypic Ratio 1091

TABLE 2

Population-specific patterns of ® emerge from HapMap data

Population CEU CHB JPT YRI Pooled
No. of individuals 60 45 45 60 210

No. of SNPs 400 400 400 400 400

Median ® 2.0389 2.0207 2.0000 1.9158 1.6500
Mean ¢ 2.1543 2.2099 2.0975 1.9782 1.6871
SD 0.7686 0.8909 0.8243 0.6685 0.3561
SE ¢ 0.0019 0.0022 0.0021 0.0017 0.0009
Pvalue (mean @ # 2) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Mean f —0.0034 —0.0039 0.0103 0.0277 0.0895
SD f 0.1289 0.1557 0.1463 0.1278 0.1002

fis Wright’s inbreeding coefficient. P-values were computed using a one-sample #test with 399 d.f.

allele frequency. This is because both homozygous and
heterozygous genotypes containing rare alleles will be
found at low frequencies (canceling out in Equation 7).
Heterozygosity varies as allele frequencies change due
to selection. By contrast, the genotypic ratio does not
change during an adaptive walk. In addition, expected
heterozygosity is greater when more alleles are segre-
gating, while ® is independent of the number of
segregating alleles. Equilibrium heterozygosity of neu-
tral loci depends on population size and mutation rate,
while ® = 2 for neutral loci regardless of population size
and mutation rate. Both measures of variation decrease
over time when there is inbreeding. Positive assortative
mating results in an excess of homozygotes, and nega-
tive assortative mating results in an excess of hetero-
zygotes. Population structure also affects both measures
of variation. When subpopulations differ in allele
frequencies, the frequencies of homozygotes in a
pooled population are larger than the mean homozy-
gote frequency of unmixed subpopulations (HEDRICK
2005). This reduction in heterozygosity due to popula-
tion structure is known as the Wahlund effect. The
above properties of heterozygosity and ® hint at the
ability to distinguish between alternative evolutionary
hypotheses. For example, genotypic ratio data can be
combined with other information (such as linkage
disequilibrium, allele frequency spectra, and reduced
heterozygosity) to provide integrated evidence of
selection.

One common measure of genetic variation is Wright’s
inbreeding coefficient, f This is equal to one minus
observed heterozygosity over expected heterozygosity,
f=1—(Hobs/Hexp). An f greater than zero corre-
sponds to an excess of homozygotes and an fless than
zero corresponds to an excess of heterozygotes. While
this measure is directly related to the concept of
heterozygosity, its relationship to selection coefficients
is more convoluted. This is because the magnitude of f
depends on allele frequencies and does not significantly
differ from zero when one allele is rare (see supple-
mental information). Consider a recessive deleterious
allele in mutation—selection balance (w4 = 0.9, wyz=1.0,

wgp = 1.0, ﬁA = 0.0032). This scenario results in f=
—0.0003 and ® = 2.1082. Each measure of genetic
variation is sensitive to a different range of genotype
frequencies. If values from different generations and/
or loci are averaged, it is possible to have an excess
of heterozygotes from one measure and an excess of
homozygotes from the other measure. When genotype-
frequency data are condensed into a single summary
statistic like f or ®, information is unavoidably lost.
Thus, a more complete picture of genetic variation arises
when both fand ® are calculated (see Tables 1 and 2).
Genomic analysis of ®: The signature of selection
tends to be local within the genome, while population
structure often results in genomewide patterns. Ideally,
one could calculate ® across all loci and look for outliers
(with the reasoning that large departures from ® =2 are
indicative of selection). A Bayesian formulation of @
exists for two segregating alleles (PEREIRA and ROGATKO
1984), allowing the estimation of type I and type II error
rates. In practice, however, sample sizes are rarely large
enough to detect significant departures from Hardy-
Weinberg proportions. This is confounded when geno-
mic data are used because multiple-testing issues arise.
An alternative is to calculate the genomewide mean of ®
for different populations. This allows departures from
random mating to be detected, as putatively neutral
markers are expected to have a mean ® = 2. Data from
the International HapMap Project are well suited for
this type of analysis and were used here (INTERNATIONAL
HapMar ConsortiuMm 2003). Here, 60 individuals from
northern and western Europe (CEU), 45 Han Chinese
individuals from Beijing (CHB), 45 Japanese individuals
from Tokyo (JPT), and 60 Yoruban individuals from
Ibadan, Nigeria (YRI) were sequenced at ~800,000 SNP
markers. HapMap Data Release 23a was used (phase II,
March 2008, NCBI B36 assembly). ® was calculated for
400 randomly selected SNPs covering the short arm of
the third chromosome (see supplemental information
for a list of SNPs and genotype frequencies). Linkage
disequilibrium in human populations decays substan-
tially over 200 kb (KE et al. 2004). To ensure indepen-
dence of data points SNPs were chosen that were at
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JPT (Japanese)
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F1GURE 3.—De Finetti diagrams
of HapMap genotype frequencies.
Each data point corresponds to
one of 400 independent SNPs.
The reference allele is denoted
A, and the nonreference allele is

AA BB

D YRI (Yoruba, Nigeria) E
AB

Pooled data
AB

AA BB

least 200 kb apart. SNPs were required to be poly-
morphic in all four populations, and an additional
criterion was that heterozygote and both homozygote
genotypes were observed. Results are summarized in
Figure 3 and Table 2. European and Chinese popula-
tions exhibited an excess of heterozygotes while the
Yoruban population exhibited an excess of homozy-
gotes. There is a large spread in values of ®, owing to
the relatively small number of individuals in each
sample population. When population data are pooled,
mean ® < 2 (P < 0.0001, one-sample #test with 399
d.f)). This is indicative of a Wahlund effect. For each
population mean P significantly differed from 2 (P <
0.0001, one-sample ttest with 399 d.f.).

Numerous selective and demographic causes can
explain these patterns. An excess of heterozygotes is
consistent with overdominance, associative overdomi-
nance, stochastic fitness of diallelic loci, negative selec-
tion against deleterious recessive alleles, and positive
selection of dominant advantageous alleles. Conversely,
an excess of homozygotes is consistent with under-
dominance, negative selection against deleterious dom-
inant alleles, and positive selection of advantageous
recessive alleles. However, values of ® seen in the
HapMap data set would require very large selection
coefficients (on the order of 10%). Also, it is unlikely
that all loci in question are under selection (KiMUra
1983, but see Haux 2008), and there are no a prior
reasons why the four HapMap populations would have
such different signatures of selection. In contrast to the
local footprint of selection, demography yields genome-
wide patterns. Negative assortative mating, where indi-
viduals preferentially mate with individuals with different
genotypes, results in an excess of heterozygotes over

denoted B. Solid curved lines sig-
nify ® = 2. (A) Sixty individuals
from northern Europe. (B)
Forty-five individuals from Bei-
jing. (C) Forty-five individuals
from Tokyo. (D) Sixty Yoruban in-
dividuals from Ibadan, Nigeria.
(E) Pooled data from all four
HapMap populations.

panmictic expectations. Inbreeding avoidance also re-
sults in ® > 2 (Pusey and WoLr 1996). Both positive
assortative mating and the pooling of subdivided pop-
ulations result in an excess of homozygotes. Each of the
four HapMap populations has a different demographic
history, potentially explaining why they differ in mean ®.
Alternatively, ascertainment bias could be responsible
for the differences between populations. Individuals
were selected via different methods for each popula-
tion, particularly with respect to the presence of couples
(INTERNATIONAL HaPMmaP CoNsorTIUM 2003). In addi-
tion, criteria for ethnic identity ranged from self-identi-
fication (Japanese) to all four grandparents sharing the
same culture (Yoruban). While itis possible for the effects
of selection and population structure to cancel out
(resulting in ® = 2), this is unlikely to occur on a geno-
mic scale. At present, the above causes cannot be
distinguished by genotypic ratio data. Indeed, they are
not mutually exclusive and pluralistic explanations are
possible.

CONCLUSION

The ratio of geometric mean heterozygote fre-
quency to geometric mean homozygote frequency is
coupled to the effects of natural selection. It provides a
measure of genetic variation that is complementary to
heterozygosity and can be used to detect the signature of
evolutionary processes. As larger numbers of individuals
are sequenced (as in MACDONALD ¢t al. 2005), the utility
of the genotypic ratio will increase. Genotype frequen-
cies bear the footprint of differential fitnesses, and
elegant mathematical patterns arise from the natural
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phenomena of Mendelian segregation and Darwinian
selection.
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