
Copyright � 2008 by the Genetics Society of America
DOI: 10.1534/genetics.107.085753

A Two-Stage Pruning Algorithm for Likelihood Computation for a
Population Tree

Arindam RoyChoudhury,*,1 Joseph Felsenstein† and Elizabeth A. Thompson‡

*Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 and †Department of
Genome Sciences and ‡Department of Statistics, University of Washington, Seattle, Washington 98195

Manuscript received December 11, 2007
Accepted for publication August 8, 2008

ABSTRACT

We have developed a pruning algorithm for likelihood estimation of a tree of populations. This
algorithm enables us to compute the likelihood for large trees. Thus, it gives an efficient way of obtaining
the maximum-likelihood estimate (MLE) for a given tree topology. Our method utilizes the differences
accumulated by random genetic drift in allele count data from single-nucleotide polymorphisms (SNPs),
ignoring the effect of mutation after divergence from the common ancestral population. The
computation of the maximum-likelihood tree involves both maximizing likelihood over branch lengths
of a given topology and comparing the maximum-likelihood across topologies. Here our focus is the
maximization of likelihood over branch lengths of a given topology. The pruning algorithm computes
arrays of probabilities at the root of the tree from the data at the tips of the tree; at the root, the arrays
determine the likelihood. The arrays consist of probabilities related to the number of coalescences and
allele counts for the partially coalesced lineages. Computing these probabilities requires an unusual two-
stage algorithm. Our computation is exact and avoids time-consuming Monte Carlo methods. We can also
correct for ascertainment bias.

ALLELE-COUNT data, the number of occurrences
of each allele, are often used by researchers to

estimate the evolutionary tree. Likelihood estimation of
the evolutionary tree from allele-count data was
introduced by Edwards and Cavalli-Sforza (1964)
and Cavalli-Sforza and Edwards (1967), followed
by D. Gomberg (unpublished results). They used a
Brownian-motion approximation for genetic drift.

Felsenstein (1968, 1973a,b) introduced the ‘‘prun-
ing’’ algorithm, for the Brownian-motion approximation
leading to an efficient calculation. Thompson (1975)
also used a form of pruning algorithm for likelihood
estimation of branch lengths of an evolutionary tree. The
idea of pruning (or ‘‘peeling,’’ as it is commonly known in
studies of pedigrees in statistical genetics) also appears in
the work of Hilden (1970). Elston and Stewart (1971)
introduced peeling upward in a pedigree. Heuch and Li

(1972) introduced peeling upward and downward alter-
nately for an unlooped pedigree.

Nielsen et al. (1998) and Nielsen and Slatkin

(2000) introduced an exact likelihood-based method
of estimating the evolutionary tree using the coalescent.
They devised a method of computing the likelihood of
trees with specified structures (called topologies) and
specified branch lengths. The branch lengths are time

in generations, scaled by effective population size. They
computed the likelihood for a given combination of
numbers of coalescent events in each branch and then
summed over all possible combinations of these num-
bers. They ignored the effect of mutation after di-
vergence from the common ancestral population.
They maximized the likelihood first over the branch
lengths within each topology and then over the topol-
ogies. However, their summations over the number of
coalescent events of the branches have a complicated
nested pattern that makes it algebraically intractable for
a tree with five or more populations. The coalescent
model they used to model the process of evolution is not
reversible. Irreversibility of their model makes it possi-
ble to model the direction of time in the tree. As a result
they are able to estimate a rooted tree. In other words,
they were able to estimate the earliest point in the tree,
in addition to the tree.

In this article we put the model of Nielsen et al.
(1998) in a form that takes into account the conditional-
independence structure of the coalescent tree. By doing
so we are able to devise a pruning algorithm for the tree
of populations. Pruning leads to an efficient algorithm
for dealing with the nested summations described in the
previous paragraph. Thus, we are able to compute the
likelihood of a tree with a large (five or more) number
of populations. A similar approach has been developed
by David Bryant and Noah Rosenberg (D. Bryant and
N. Rosenberg, personal communication).

1Corresponding author: Wakeley Lab, 4092-4100 Biological Laboratories,
16 Divinity Ave., Harvard University, Cambridge, MA 02138.
E-mail: aroy@fas.harvard.edu

Genetics 180: 1095–1105 (October 2008)



Our theory is applicable to both diploid and haploid
organisms although our sampling unit is haploid, a set
of chromosomes formed by one chromosome of each
kind. For a haploid organism chromosomes from each
individual form one haploid sampling unit, while for a
diploid organism chromosomes from each individual
form two haploid sampling units.

We developed our method to analyze allele count at a
set of single-nucleotide polymorphism (SNP) loci,
where the allele count for each locus is statistically
independent of that for any other locus. Henceforth we
use the term ‘‘independent loci’’ to refer to such a set of
loci. As in Nielsen et al. (1998), our branch lengths are
time in generations, scaled by effective population size.

The definition of branch length comes from the fact
that the rate of coalescence depends on the time scaled
by effective population size. Note that if we assume a
Moran model for the population, then the time scaled
by population size would be t=2N ; for a Wright–Fisher
model it will be t=N (Moran 1962). Here t is time and N
is the (haploid) population size. This difference arises
due to the fact that a Moran model has twice as much
genetic drift (for the same period of time) as a Wright–
Fisher model with the same population size. Since we
are using the evolutionary model of Nielsen et al.
(1998), we also estimate a rooted tree.

We can also correct for ascertainment. Correcting for
ascertainment is important, as data only from ascer-
tained SNPs are available in practice. Although it is not
the focus of this article, we briefly outline the ascertain-
ment correction process in the implementing an

ascertainment correction section.

A PRUNING ALGORITHM

In this section we address the computation of the
likelihood for given branch lengths in a given topology.
Suppose that we have allele-count data for L indepen-
dent SNP loci, each with two alleles, ‘‘0’’ and ‘‘1.’’ Note
that we do not assume that we know which of the two
alleles is ancestral; we assign the labels 0 and 1
arbitrarily. The likelihood based on all loci would be
the product of likelihoods computed from each of the L
loci, one at a time. It thus suffices to devise a method of
computing the likelihood for one locus.

Suppose we have allele-count data from P different
populations. For a given locus, let s ¼ ðs1; s2; . . . ; sP Þ
denote the vector of allele counts. The quantity si is the
allele count (the count of 1 alleles) in a sample of mi

haploid genotypes from the ith population. The likeli-
hood based on this particular locus would be

LðtÞ ¼ Prðs ¼ ðs1; s2; . . . ; sP Þ j tÞ:

Here t ¼ ðt1; t2; . . . ; tð2P�2ÞÞ is the vector of branch
lengths. As we go back in time along the branches
toward the root, the lineages coalesce with each other.

The straightforward method (Nielsen et al. 1998;
Nielsen and Slatkin 2000) of computing the likeli-
hood involves conditioning on the (random) numbers
of coalescent events at each branch,

Prðs j tÞ
¼
X

k1

X
k2

. . .
X

kð2P�2Þ

Prðs jK1 ¼ k1;K2 ¼ k2; . . . ;Kð2P�2Þ ¼ kð2P�2ÞÞ

3 PrðK1 ¼ k1;K2 ¼ k2; . . . ;Kð2P�2Þ ¼ kð2P�2Þ j tÞ; ð1Þ

where Kx is the number of coalescent events in branch x,
and the sum is over all k1; k2; . . . ; kð2P�2Þ such that they
represent a set of possible values for K1;K2; . . . ;Kð2P�2Þ
given ðm1;m2; . . . ;mP Þ. (The exact set of possible values
depends on the topology.) Note that there are only
finitely many possibilities for ðk1; k2; . . . ; kð2P�2ÞÞ; there-
fore it is theoretically possible to compute the summa-
tion at the right-hand side of Equation 1 exactly.
However, the large number of terms in the summation
makes the likelihood hard to evaluate for a large tree.
Here we present a pruning algorithm as an efficient way
of computing this likelihood.

To use this algorithm, we need to keep track of two
sets of probabilities for each node in the tree. The first
consists of the probabilities of numbers of lineages
ancestral to our samples at each internal node in the
tree. The second set consists of the probabilities of the
samples descended from each node in the tree, condi-
tional on different numbers of lineages ancestral to
each allele at that node. The calculations of these two
different sets of probabilities flow in opposite direc-
tions. In the first set there are the probabilities of some
unobserved quantities from the past, conditional on the
total number of observations at the present. In the
second set there are the probabilities of the observa-
tions, conditional on the value of those unobserved
quantities from the past. These opposite flows of proba-
bilities require the use of a two-stage algorithm. Starting
from the most recent branches, we compute the two
stages one branch at a time. In the first stage we
compute the first set of probabilities for a particular
branch. In the second stage Bayes’ theorem is used to
reverse the direction of the flow of the first set of prob-
abilities and the second set of probabilities is computed
thereby for the branch.

Underlying structure: We discuss the pruning algo-
rithm by reference to Figure 1. In Figure 1, the lower a
location is in the tree, the more recent it is.

At this point, we introduce our notation for the
different random variables used for this article (Table
1 and Figure 1). The random variables of primary
interest are nx, the number of lineages at node x, and
rx, the allele count (of nx lineages) at node x. We
considered also mðbÞx , the total number of haploid
individuals sampled at or below node x, and sðbÞx , all
the allele-count data at or below node x. These are
required as we need to compute the probability of the

1096 A. RoyChoudhury, J. Felsenstein and E. A. Thompson



data observed at or below a particular time point in the
tree, conditioned on the allelic configuration at that
time point. Next we use the term ‘‘a location just below a
node, in the branch coming from the left (or the right)
side of node x,’’ to mean a time-point x9 at the left
branch (or the right branch), such that the time period
between x and x9 is infinitesimally small (and, therefore,
no coalescent event has taken place in that period).

Our pruning algorithm computes arrays of probabil-
ities at each node of a tree. First, the arrays of the
probabilities are computed at each tip from the data at
that tip. Then the arrays of probabilities at a location (a
node or a location just below a node) are computed on
the basis of the location(s) just below that one (see
Figure 1). By repeating this process, we eventually reach
the root of the tree, where the likelihood is computed
from the arrays of probabilities at the root.

At a location (at a node x, or just below a node x, in
one of the two branches) there are two arrays of
probabilities related to the number of coalescence
events and the allele counts among the partially co-
alesced lineages. The first array consists of the proba-
bilities of different numbers of lineages at that location.
The probabilities are computed from the lengths of the
branches between that location and the present. The
second array consists of the conditional probability of
the data observed at or below that location, conditional
on the possible numbers of lineages in that location and
the possible allele counts at those lineages. To be
specific, the first array at a node x is given by

AðxÞ ¼ ðPrðnx ¼ iÞ; i ¼ 1; 2; . . . ;mðbÞx Þ;

so that

AðxÞi ¼ Prðnx ¼ iÞ:

The second array at a node x is two dimensional and is
given by

BðxÞ ¼ ððPrðsðbÞx jnx ¼ i; rx ¼ jÞ; j ¼ 0; 1; 2; . . . ; iÞ;
i ¼ 1; 2; . . . ;mðbÞx Þ;

so that

BðxÞij ¼ PrðsðbÞx jnx ¼ i; rx ¼ jÞ:

Note that the probabilities in the components of A(x)
and B(x) are computed conditional on the topology, the
branch lengths, and the sample sizes in the tips below
node x. However, for notational simplicity we do not
explicitly write them as functions of these. At a point just
below and coming from the left side of node x, the first
array is given by

AðLÞðxÞ ¼ ðPrðnðLÞx ¼ iÞ; i ¼ 1; 2; . . . ;mðb;LÞx Þ;

so that

Figure 1.—Structure of an evolutionary tree.

TABLE 1

Notation (see also Figure 1)

nx No. of lineages at node x: nx $ 1
rx Allele count (the count of ‘‘1’’ alleles) of nx

lineages at node x: 0 # rx # nx

sðbÞx All the data at or below node x
sðaÞx All the data that are not at or below node x
mðbÞx Total no. of haploids sampled at or below node

x : mðbÞx $ nx

mðaÞx Total no. of haploids sampled that are not at or
below node x

nðLÞx No. of lineages just below node x, in the branch
coming from the left side of x : nx $ nðLÞx $ 1

r ðLÞx Allele count (of nðLÞx lineages) just below node x,
in the branch coming from the left side of
x : r ðLÞx # rx

sðb;LÞx All the data at or below the branch coming
from the left side of node x

sða;LÞx All the data that are not at or below the branch
coming from the left side of node x

mðb;LÞx Total no. of haploids sampled at or below the
branch coming from the left side of node
x : mðb;LÞx $ nðLÞx

mða;LÞx Total no. of haploids sampled that are not at or
below the branch coming from the left side
of node x

nðRÞx No. of lineages just below node x, in the branch
coming from the right side of x : nx $ nðRÞx $ 1

r ðRÞx Allele count [of nðRÞx lineages] just below node
x, in the branch coming from the right side
of x : r ðRÞx # rx

sðb;RÞx All the data at or below the branch coming from
the right side of node x

sða;RÞx All the data that are not at or below the branch
coming from the right side of node x

mðb;RÞx Total no. of haploids sampled at or below the
branch coming from the right side of node
x : mðb;RÞx $ nðRÞx

mða;RÞx Total no. of haploids sampled that are not at or
below the branch coming from the right side
of node x

Pruning a Tree of Populations 1097



AðLÞðxÞi ¼ PrðnðLÞx ¼ iÞ;

and the second array is given by

BðLÞðxÞ ¼ ððPrðsðb;LÞx jnðLÞx ¼ i; r ðLÞx ¼ jÞ; j ¼ 0; 1; 2; . . . ; iÞ;
i ¼ 1; 2; . . . ;mðb;LÞx Þ;

so that

BðLÞðxÞij ¼ Prðsðb;LÞx jnðLÞx ¼ i; r ðLÞx ¼ jÞ:

A(R)(x) and B(R)(x) are similarly defined for a point just
below and coming from the right side of node x. Note
that the probabilities in the components of A(L)(x),
B(L)(x), A(R)(x), and B(R)(x) are computed conditional
on the topology, the branch lengths, and the sample
sizes in the tips below node x. As in the cases of A(x) and
B(x), for notational simplicity we do not explicitly write
them as functions of these.

At a tip x the arrays of probabilities can be obtained
using the fact that

Prðnx ¼ iÞ ¼ 1ði¼mxÞ

and that

PrðsðbÞx jnx ¼ i; rx ¼ jÞ ¼ 1ði¼mx ;j¼sx Þ;

where sx is the allele count observed at the tip x, in a
sample of mx haploids. Starting from the tips, the arrays
of probabilities from the tips upward are computed
recursively using two different steps. These steps are
shown in Figure 2. Step 1 computes the arrays of
probabilities at a location just below the top of a branch
from those at the bottom node of the branch. Step 2
combines the two sets of arrays from just below a node
(from the right and from the left), to obtain the arrays of
probabilities at that node. The arrays at the root are
computed by a final use of step 2. Then we compute the
likelihood from the arrays at the root at all loci. In many
standard pruning algorithms probabilities of the obser-
vations seen at or below a point on the tree are
computed conditional on each of the different possible
true states at that point (see, for example, Elston and
Stewart 1971). These are then updated, moving
rootward. Here, the presence of the coalescent, a
stochastic process that moves backward in time, leads
to an unusual bidirectional conditioning.

Step 1: Consider a branch with bottom node y and top
node z. Step 1 computes the arrays of probabilities at the
location in that branch just below z from those at y.
Without loss of generality, let us assume that this branch
comes to z from the left side. Thus, it suffices to have a
method for computing A(L)(z) and B(L)(z) from A(y),
B(y) and from the branch length. We use equations
involving two different quantities to compute the arrays
of probabilities in an upward location of the tree from
the arrays of probabilities at some given location(s) of

the tree. One is PrðnðLÞz ¼ i9 jny ¼ iÞ, computed from
the branch length tjk. This is given by Takahata and
Nei (1985) as

PrðnðLÞz ¼ i9 jny ¼ iÞ

¼
Yi

j¼i911

lj

0
@

1
AXi

j¼i9

e�lj tyzQ
i
j9¼i9;j9 6¼jðlj9 � ljÞ

¼ Qii9; ð2Þ

where lj ¼ jðj � 1Þ=2. The second equation is for

Prðry ¼ j j r ðLÞz ¼ j9; nðLÞz ¼ i9;ny ¼ iÞ;

given by Nielsen et al. (1998) as

Prðry ¼ j j r ðLÞz ¼ j9;nðLÞz ¼ i9;ny ¼ iÞ

¼ bðj ; i � jÞ
bðj9; i9� j9Þ

i � i9

j � j9

� �
; ð3Þ

where b(., .) is the beta function, defined as

bðu; wÞ ¼
ð1

0
tðu�1Þð1� tÞðw�1Þdt;

which equals ðu � 1Þ!ðw � 1Þ!=ðu 1 w � 1Þ! if both u and
w are positive integers. Interestingly, these two equa-
tions have probability flowing in opposite directions.
This makes it difficult to obtain a straightforward
transition probability. So we split the transition into
two stages. At the first stage we compute A(L)(z). The
components of A(L)(z) are computed as

AðLÞðzÞi9 ¼ PrðnðLÞz ¼ i9Þ

¼
XmðbÞy

i¼i9

PrðnðLÞz ¼ i9 jny ¼ iÞPrðny ¼ iÞ

¼
XmðbÞy

i¼i9

Qii9AðyÞi ; ð4Þ

using Equation 2 above. Then at the second stage we
compute B(L)(z). Bayes’ theorem is used to reverse the
direction of conditioning and compute the probabili-

Figure 2.—Steps of the pruning algorithm.

1098 A. RoyChoudhury, J. Felsenstein and E. A. Thompson



ties Prðny ¼ i jnðLÞz ¼ i9Þ, and then these quantities are
used to compute the components of B(L)(z):

Prðny ¼ i jnðLÞz ¼ i9Þ ¼ PrðnðLÞz ¼ i9 jny ¼ iÞPrðny ¼ iÞ
PrðnðLÞz ¼ i9Þ

¼ Qii9AðyÞi
AðLÞðzÞi9

:

(Note that nðLÞz is independent of the sample sizes, given
ny. Thus, Qii9 is free from the sample sizes at the tips.) We
then obtain the components of B(L)(z) as

BðLÞðzÞij ¼ Prðsðb;LÞz jnðLÞz ¼ i; r ðLÞz ¼ jÞ

¼
XmðbÞy

i9¼i

Xi9

j9¼0

PrðsðbÞy jny ¼ i9; ry ¼ j9Þ

3 Prðry ¼ j9 j r ðLÞz ¼ j ;nðLÞz ¼ i; ny ¼ i9Þ
3 Prðny ¼ i9 jnðLÞz ¼ iÞ

¼
XmðbÞy

i9¼i

Xi9

j9¼0

BðyÞi9j9Prðry¼ j9 j r ðLÞz ¼j ;nðLÞz ¼i;ny¼i9Þ

3 Prðny ¼ i jnðLÞz ¼ i9Þ: ð5Þ

Step 2: Step 2 is analogous to step 1. Step 2 combines
the two sets of arrays {A(L)(x), B(L)(x)} and {A(R)(x),
B(R)(x)} just below node x, to obtain the arrays {A(x),
B(x)} at node x. We make use of equations to compute
two different quantities to make the transition at step 2.
One is for Prðnx ¼ i jnðLÞx ¼ i9;nðRÞx ¼ i$Þ. This is an
indicator function for whether (nðLÞx 1 nðRÞx Þ ¼ nx . The
other is for Prðr ðLÞx ¼ j9; r ðRÞx ¼ j$ j rx ¼ j ;nðLÞx ¼ i9;nðRÞx ¼
i$Þ, which is simply the hypergeometric probability

Prðr ðLÞx ¼ j9; r ðRÞx ¼ j$ j rx ¼ j ; nðLÞx ¼ i9; nðRÞx ¼ i$Þ ¼

j
j9

� �
i�j

i9�j9

� �

i
i9

� �
ð6Þ

(with i ¼ i9 1 i$ and j ¼ j9 1 j$). As in step 1, these two
equations have the conditioning of the probability
flowing in opposite directions. Again we split the
computation into two stages. At the first stage A(x) is
computed. We compute A(x) as

AðxÞi ¼ Prðnx ¼ iÞ

¼
Xi

i9¼0

PrðnðLÞx ¼ i9ÞPrðnðRÞx ¼ i � i9Þ

¼
Xi

i9¼0

AðLÞðxÞi9AðRÞðxÞði�i9Þ:

Then at the second stage B(x) is computed. Bayes’
theorem is used to reverse the direction of conditioning
and compute the probabilities PrðnðLÞx ¼ i9;nðRÞx ¼
i$ jnx ¼ iÞ, and then these quantities are used to
compute the components of B(x):

PrðnðLÞx ¼ i9;nðRÞx ¼ i$ jnx ¼ iÞ
¼ Prðnx ¼ i jnðLÞx ¼ i9;nðRÞx ¼ i$Þ

3 PrðnðLÞx ¼ i9ÞPrðnðRÞx ¼ i$Þ=Prðnx ¼ iÞ
¼ 1ði¼i91i$ÞA

ðLÞðxÞi9AðRÞðxÞi$AðxÞ�1
i :

We can then get the components of B(x) as

BðxÞij ¼ PrðsðbÞx jnx ¼ i; rx ¼ jÞ

¼
Xmðb;LÞx

i9¼1

Xmðb;RÞx

i$¼1

Xi9

j9¼0

Xi$
j$¼0

Prðsðb;LÞx jnðLÞx ¼ i9; r ðLÞx ¼ j9Þ

3 Prðsðb;RÞx jnðRÞx ¼ i$; r ðRÞx ¼ j$Þ
3 Prðr ðLÞx ¼ j9; r ðRÞx ¼ j$ j rx¼ j ; nðLÞx ¼i9; nðRÞx ¼i$Þ
3 PrðnðLÞx ¼ i9; nðRÞx ¼ i$ jnx ¼ iÞ

¼
Xmðb;LÞx

i9¼1

Xi9

j9¼0

Xi�i9

j$¼0

BðLÞðxÞi9j9BðRÞðxÞði�i9Þj$

3 Prðr ðLÞx ¼ j9; r ðRÞx ¼ j$ j rx ¼ j ;nðLÞx ¼ i9;

nðRÞx ¼ i � i9Þ:
ð7Þ

These equations are analogous to the corresponding
Equation 5 in step 1, but are more complicated as the
arrays of probabilities from the two branches are being
combined. Equation 7 uses the fact that sðbÞx ¼ ðsðb;LÞx ;
sðb;RÞx ) and that sðb;LÞx and sðb;RÞx are independent of each
other given nðLÞx , nðRÞx , r ðLÞx , and r ðRÞx .

Likelihood from the arrays at the root: For conve-
nience, let us denote the root as node 0. At the root we
have arrays given by

Að0Þ ¼ ðPrðn0 ¼ iÞ; i ¼ 1; 2; . . . ;m0Þ

Bð0Þ ¼ ððPrðsðbÞ0 jn0 ¼ i; r0 ¼ jÞ; j ¼ 0; 1; 2; . . . ; iÞ;
i ¼ 1; 2; . . . ;m0Þ:

Using these we can compute the joint likelihood of t
and the ancestral allele frequency p as

Lðt; pÞ ¼
Xm0

i¼1

Xi

j¼0

PrðData [ s
ðbÞ
0 jn0 ¼ i; r0 ¼ jÞ

3 Prðr0 ¼ j jn0 ¼ i; pÞPrðn0 ¼ iÞ

¼
Xm0

i¼1

Xi

j¼0

Bð0ÞijPrðr0 ¼ j jn0 ¼ i; pÞAð0Þi :

Here Pr(r0 ¼ j j n0 ¼ i, p) is the binomial probability,

Prðr0 ¼ j jn0 ¼ i; pÞ ¼ i
j

� �
pjð1� pÞði�jÞ:

We assume that p has a beta(u, u) distribution, where the
density of beta(z1, z2) is given by

Pruning a Tree of Populations 1099



fbetaðx; z1; z2Þ ¼
1

bðz1; z2Þ
xz1�1ð1� xÞz2�1:

The quantity u is 4Nem, where the quantities Ne and m

are the effective population size and the mutation rate,
respectively, for the common ancestral population of
the populations under consideration. This gives us the
marginal likelihood of t as

LðtÞ ¼
ð1

0
Lðt; pÞpðpÞdp

¼
Xm0

i¼1

Xi

j¼0

Bð0Þij Að0Þi
i

j

� �ð1

0
pjð1�pÞði�jÞfbetaðp; u; uÞdp

¼
Xm0

i¼1

Xi

j¼0

Bð0Þij Að0Þi
i

j

� �
bðj 1 u; i � j 1 uÞ

bðu; uÞ

� �
:

The choice of this beta distribution comes from the
fact that the stationary distribution of allele frequency
over loci has this distribution if the population has had
the same value of u for a considerable time (Wright

1931). However, this choice is not binding. We would get
a similar closed-form expression for any other beta
distribution. Even for an arbitrary p we might be able to
compute this likelihood numerically. This approach
gives us the likelihood for a given tree with specified
branch lengths. There remains the issue of efficiently
maximizing the likelihood over branch lengths.

MAXIMIZING THE LIKELIHOOD OVER
BRANCH LENGTHS

Due to the multidimensional parameter space we did
not use any derivative-based methods (such as the
Newton–Raphson method) to maximize the likelihood
over branch lengths for a given topology.

This maximization strategy involves comparing differ-
ent branch lengths of a particular branch of otherwise
identical trees. The most efficient way of maximizing the
likelihood over values of a single branch length is to
implement computation of upward and downward views
(Felsenstein 1981, 2004).

The upward and the downward views: This mecha-
nism works by storing two sets of probabilities for each
locus at each node and at the locations just below each
nontip node. The two sets, the upward view and the
downward view for a particular locus, consist of compo-
nents of likelihood that are the probabilities for the
parts of the tree above and below that node (or location),
respectively, at that locus. (We provide the mathematical
definitions of the upward and the downward views
later in this section.) Figure 3a indicates, for an
example, the regions that are covered by the upward
and downward views at a node; Figure 3b indicates the
regions that are covered by the upward and downward
views at a location just below the node on the branch
going to the left side.

Suppose that we have the likelihood for one set of
branch lengths and want to change the length of a
branch and recompute the likelihood. Let the top and
the bottom nodes of the branch be x and y, respectively.
The change will affect the downward views of the nodes
that are in the path from x to the root (including x and
the root) and the upward views of y and the nodes below
y. Using the views, the likelihood can be computed from
the downward views at all loci at the bottom node of the
branch, the updated length of the branch, and the
upward views at all loci at the location just below the top
node of the branch. The likelihood for multiple loci is
computed as the product of the single-locus likelihoods.

For a locus, the downward views at a node x and at the
two locations just below the node are B(x), B(L)(x), and
B(R)(x), respectively. The upward view at node x is the
array C(x). This array consists of the probabilities of
allele counts at node x given the data observed at the tips
that are not at or below x. These probabilities are
conditioned on different possible numbers of lineages
nx at x. Thus we have the triangular array C(x) whose ij
element is

CðxÞij ¼ Prðrx ¼ j ; sðaÞx jnx ¼ iÞ;

with i taking values from 1 to mðbÞx and j taking values
from 0 to i. By sðaÞx we have designated all the data that
are not at or below node x. The upward views at the
locations just below the node, at the branches coming
from the left side and coming from the right side, are
two arrays of probabilities C(L)(x) and C(R)(x). The array
C(L)(x) is the probabilities of allele counts just below
node x on the branch coming from the left side of x.
These probabilities are conditioned on different num-
bers of lineages nðLÞx at that location. The array C(R)(x) is
similar.

Figure 3.—The regions of a tree where the arrays of prob-
abilities affect the upward and downward views, for views at
node x and for views immediately below and to the left of
node x.

1100 A. RoyChoudhury, J. Felsenstein and E. A. Thompson



Thus we have a triangular array whose ij element is

C ðLÞðxÞij ¼ Prðr ðLÞx ¼ j ; sða;LÞx jnðLÞx ¼ iÞ;

with i taking values from 1 to mðb;LÞx and j taking values
from 0 to i. As before, sða;LÞx and sða;RÞx denote all data that
are not at or below the branch coming from the left side
and the right side of node x, respectively. Also as before
consider a branch with bottom node y and top node z.
Without loss of generality, let us assume that this branch
comes to z from the left side.

The arrays A(L)(z)i and B(L)(z)ij can be recomputed
with the new branch length and the old A(y)i and B(y)ij

as in Equations 4 and 5, respectively. For each locus, the
likelihood can be recomputed after changing the
length of the branch that joins y (at its bottom node)
and z (at its top) coming from the left side of z, as

LðtÞ ¼ PrðDataÞ
¼ Prðsða;LÞz ; sðb;LÞz Þ

¼
XmðLÞz

i

Prðsða;LÞz ; sðb;LÞz jnðLÞz ¼ iÞPrðnðLÞz ¼ iÞ

¼
XmðLÞz

i

Xi

j¼0

Prðsðb;LÞz j sða;LÞz ; r ðLÞz ¼ j ; nðLÞz ¼ iÞ

3 Prðsða;LÞz ; r ðLÞz ¼ j jnðLÞz ¼ iÞPrðnðLÞz ¼ iÞ

¼
XmðLÞz

i

Xi

j¼0

Prðsðb;LÞz j r ðLÞz ¼ j ; nðLÞz ¼ iÞ

3 Prðsða;LÞz ; r ðLÞz ¼ j jnðLÞz ¼ iÞPrðnðLÞz ¼ iÞ

¼
XmðLÞz

i

X
j

BðLÞðzÞij C ðLÞðzÞij AðLÞðzÞi :

The above calculation uses the fact that sða;LÞx and sðb;LÞx

are independent of each other. The likelihood for the
multiple-locus data can then be recomputed as the
product of the single-locus likelihoods.

If we have the downward views in a completely
specified tree, then the upward views can be computed
recursively starting from the root and going downward
to the tips. The array C(0), the upward view at the root, is
computed as

Cð0Þij ¼ Prðr0 ¼ j jm0 ¼ iÞ

¼
ð1

0
Prðr0 ¼ j jm0 ¼ i; pÞpðpÞdp

¼
ð1

0

i

j

� �
pjð1� pÞði�jÞ 1

bðu; uÞ p
u�1ð1� pÞu�1dp

¼
i

j

� �
bðj 1 u; i � j 1 uÞ

bðu; uÞ ;

for each locus. Then, for each locus, applying a recursive
formula to compute the upward views at a location from

the upward and downward views just above that loca-
tion, we show how we can obtain the upward views for
each locus and for all the locations on the tree. (See
Figure 4.)

The recursive formula has two parts, as was the case
for the recursive formula in the section, a pruning

algorithm. One part computes the upward view at the
bottom of a branch from the view at the location just
below the top of the branch. We call this computational
step reverse step 1. The other part of the formula
computes the upward view at a location just below a
node from the upward views at the node and the
downward view for the other branch that is just below
the node. We call this computational step reverse step 2.

Reverse step 1: In this section, we describe the work-
ings of reverse step 1. Consider a branch with bottom
node y and top node z. Assume that this branch comes to
z from the left side. Let us recall that reverse step 1
computes C(y) from C(L)(z) and the length of the branch,

CðyÞij ¼ Prðry ¼ j ; sðaÞy jny ¼ iÞ

¼
Xi

i9¼1

Xminði9;jÞ

j9¼maxð0;i9�i1jÞ
Prðry ¼ j j r ðLÞz ¼ j9;sðaÞy ;nðLÞz ¼i9;ny¼iÞ

3 Prðr ðLÞz ¼ j9; sðaÞy ; j nðLÞz ¼ i9ÞPrðnðLÞz ¼ i9 jny ¼ iÞ

¼
Xi

i9¼1

Xminði9;jÞ

j9¼maxð0;i9�i1jÞ
Prðry ¼ j j r ðLÞz ¼ j9;nðLÞz ¼i9;ny¼iÞ

3 C ðLÞðzÞi9j9Qii9; ð8Þ

where the bounds on i9 and j9 come from the following
relations:

0 # r ðLÞz # ry; 0 # nðLÞz � r ðLÞz # ny � ry; 1 # nðLÞz :

Combining (3) and (8), we have the required method
for computing C(y).

Reverse step 2: Consider a node x. Just below a node x
in the branch coming from the left side, reverse step 2
computes C(L)(x) from C(x), A(R)(x), and B(R)(x). Here
we give formula for the computation of C(L)(x):

Figure 4.—Flow of the computation using the two reverse
steps to update downward views.

Pruning a Tree of Populations 1101



C ðLÞðxÞij ¼ Prðr ðLÞx ¼ j ; sða;LÞx ; jnðLÞx ¼ iÞ
¼ Prðr ðLÞx ¼ j ; sðb;RÞx ; sðaÞx jnðLÞx ¼ iÞ

¼
XmðbÞx

i9¼i

Xi9�ði�jÞ

j9¼j

Prðsðb;RÞx j rx¼ j9; r ðLÞx ¼ j ; sðaÞx ;nx¼i9;

nðLÞx ¼ iÞ
3 Prðr ðLÞx ¼ j j rx ¼ j9; sðaÞx ;nx ¼ i9;nðLÞx ¼ iÞ
3 Prðrx ¼ j9; sðaÞx jnx¼i9ÞPrðnx¼i9 jnðLÞx ¼iÞ

¼
XmðbÞx

i9¼i

Xi9�ði�jÞ

j9¼j

Prðsðb;RÞx j r ðRÞx ¼j9� j ;nðRÞx ¼i9� iÞ

3 Prðr ðLÞx ¼ j j rx ¼ j9;nx ¼ i9;nðLÞx ¼ iÞ
3 CðxÞi9j9PrðnðRÞx ¼ i � i9Þ

¼
XmðbÞx

i9¼i

Xi9�ði�jÞ

j9¼j

BðRÞðxÞði�i9Þðj�j9ÞCðxÞi9j9AðRÞðxÞði�iÞ9

3 Prðr ðLÞx ¼ jr ðRÞx ¼ j � j9 j rx ¼ j9;nx ¼ i9;

nðLÞx ¼ iÞ;
ð9Þ

where the bounds on i9 and j9 come from the following
relations:

r ðLÞx # rx ; nðLÞx � r ðLÞx # nx � rx ; nðLÞx # nx # mðbÞx :

Combining (6) and (9), we have the formula for C(L)(x).
The computation of C(R)(x) is analogous.

Maximization: We maximize the likelihood with re-
spect to the branch lengths for each u in a grid of values
of u. For each value of u, we maximize the likelihood
with respect to one branch length and do this succes-
sively for each branch in the tree. For each branch we
carry out a simple line search over values separated by a
constant small spacing. We repeat the process, continu-
ing until none of the branches changes in a pass
through the tree. After we have maximized the likeli-
hood for the length of a branch, if the new length is
different from its previous length, we recompute all
views that are affected by that change of length. Once
the maximization is done for each value of u, we compare
those maximum values and pick the overall maximum.

As we are searching over a grid of fixed spacing, the
maximization takes a finite number of iterations. We
have no proof that this process does not yield a local
maximum within a topology and that another maxi-
mum with a larger likelihood does not exist. However,
we have not come across any data set where we have
found two separate maxima within a topology.

This process maximizes the likelihood over branch
lengths for a specified tree topology. The search for the
maximum-likelihood tree involves either consideration
of all possible tree topologies or heuristic searches that
consider only neighboring tree topologies. For trees of

moderate to large size, exhaustive consideration of all
topologies is not possible. The issues and strategies
involved are the same as with other phylogeny inference
problems. They are not described here. Common
strategies are described by Felsenstein (2004, Chaps.
4 and 5).

SIMULATION STUDIES

To test the performance of our method, we carried
out two simulation studies, one with four populations
(repeated 10 times) and one with seven populations. A
molecular clock is not assumed in any of these studies.

To simulate a data set from a completely specified
tree, we start with simulating L (number of loci) beta(u,
u) variables: p1; p2; . . . ; pL. An array of N (population
size) Bernoulli(pl) variables are generated for each
pl ; l ¼ 1; 2; . . . ;L. Then according to the structure of
the tree, the population is divided into two groups at
each node and made to evolve according to a continu-
ous-time Moran model at each branch (by having events
that consist of selecting an individual to replace another
individual, independently for each locus). At each
branch the population is made to evolve the exact
amount of time so that the scaled time passed at that
branch agrees with the length of the corresponding
branch of the tree. When the populations reach at the
tip of the tree, we take a sample of n individuals from
each population; the data consist of the counts of 1
alleles at the L loci of all present-day populations.

In the first study the data consist of allele counts in 50
haploids from each population for 50 independent SNP
loci. The data are simulated as described in the previous
paragraph from a symmetric tree where the length of
each branch is 0.02 and the value of u is 0.05. Then the
maximum-likelihood estimate (MLE) tree is estimated
using our pruning algorithm. The same exercise is
repeated 10 times, each time simulating the data in-
dependently with the same parameters. Each time the
true tree was estimated by our method. The estimated
bias of the branch lengths is close to 0.005 for each
branch.

In the second study, we tested our pruning algorithm
in a tree with seven populations; the data consist of allele
counts in eight haploids from each population for 500
independent SNP loci.

Note that there are .10,000 possible topologies for a
seven-population tree. We have computed only the
likelihood of the true topology and the other topologies
that are nearest neighbors to the true topology.

The true tree for the second study is given in Figure
5a. Among the topologies considered, the likelihood is
highest for the true tree topology. The likelihood, the
MLE branch lengths, and û for five of the topologies are
given in Figure 5, b–f. In Figure 5b, the estimated
branch lengths are close to the true ones.

1102 A. RoyChoudhury, J. Felsenstein and E. A. Thompson



In all cases that have misspecified topologies, the
internal branches collapse to make the topology as close
as to the topology of Figure 5a as possible. For example,
when the branch adjacent to ‘‘G’’ of Figure 5b is
reattached at the branch that is at the immediate right
of the root, the tree of Figure 5c is the maximum-
likelihood tree for the resulting topology. The internal
branch created between the top of the branch adjacent
to G and the meeting point of ‘‘E’’ and ‘‘F’’ collapses.
(We do not have any proof that this will always be true; it
is quite possible that for some data sets there may be
local maxima of the likelihood for nonzero branch
lengths within two or more tree topologies.)

Thus we have demonstrated that the correct topology
can be estimated using our method. We saw no sign of
systematic bias in the tree topology of branch lengths.

INFORMATION ABOUT THE ROOT

As mentioned in the Introduction, it is possible to
estimate the root of the tree owing to the nonreversi-
bility of the model. Here we investigate how much
information a single locus provides for the estimation of
the location of the root.

For simplicity we investigate the information on the
location of the root in a tree with two populations.
There is only one possible topology for a tree of two
populations. The branch lengths determine the loca-

tion of the root. As the branch lengths are time scaled by
effective population sizes, the ratio of the lengths of the
branches is determined by the (unknown) ratio of the
effective population sizes of the branches. So, the length
of each branch can be treated as a free parameter.

A tree of two populations can be completely charac-
terized by the total length of the two branches and the
location of the root. To isolate the information about
the root from the information about the total length of
the two branches, we assume that we are aware of the
total length (tt ¼ t1 1 t2) of the two branches, but that
the lengths (t1 and t2) of the individual branches are
unknown. In other words, we assume that we do not
know the location of the root in an otherwise completely
specified tree with two populations. The information
about the root is obtained as

IrootðttÞ ¼ E
@ logðLðt; tt � tÞÞ

@t

� �2� �
; ð10Þ

where L(., .) denotes the likelihood of a tree with two tips
with the two branch lengths as the two arguments. The
derivative of the likelihood in (10) is computed theoret-
ically for all possible sets of allele counts. Then the
expectation of the squared derivative of the likelihood is
computed numerically. The likelihood is a weighted aver-
age of the squared derivative over all possible data out-
comes, weighted by the probability of each data outcome.

Figure 6 plots the log 10 of the information about the
root for different branch lengths in a tree with two tips.
In each case, the information is for samples of size 10
from each tip. Figure 6 shows that the information is at a
minimum at t1 ¼ t2 ¼ 1

2 ðt1 1 t2Þ. If t1 6¼ t2, one
population (Pop. 1) will be expected to have more
extreme allele counts than the other (Pop. 2). Having
more extreme allele counts indicates that Pop. 1 has the
smaller population size of the two. Having a smaller

Figure 5.—Results from the simulation study with seven
populations.

Figure 6.—Information about the root from samples of
(haploid) size 10 from each tip in a tree with two tips.

Pruning a Tree of Populations 1103



population size indicates that the length of the branch
connected to Pop. 1 is bigger than that of Pop. 2. In
other words, the root is closer to Pop. 2 than to Pop. 1. As
demonstrated in Figure 6, the log10 of the information
about the root ranges between 3 and 8 from the cases that
we analyzed here. This suggests that the standard error of
estimation of the root is at most of order 10�1.

IMPLEMENTING AN ASCERTAINMENT CORRECTION

We can characterize the process of choice of SNPs by
considering which loci will fail to be ascertained, as
follows. If the observation from a locus falls into a
predefined rejection set, then that locus will be ex-
cluded from study. As a simple example, let us consider a
sample of diallelic SNP loci. If we want to exclude those
loci that have only one allele type in a sample of haploid
size m, our rejection set would be {0, m}. Table 2 shows
examples of several possible ascertainment methods in
one or more populations.

Ascertainment based on the current sample: Ascer-
tainment is sometimes based on the observations in the
sample under study [for example, in The SNP Consor-
tium study (Thorissonand Stein 2003)]. In such cases,
we implement an ascertainment bias correction as
follows.

Let the data be

D ¼ fD1;D2; . . . ;DPg;

from the P populations under study. Let the rejection
set be R. Then, the ascertainment-corrected likelihood
for the branch length vector t is given by

Lðt jDÞ ¼ PrðD j t;D;RÞ ¼ PrðD j tÞ
PrðD;R j tÞ :

Here, PrðD j tÞ is the same as the uncorrected likeli-
hood. For the denominator, we need a mechanism of
computing the collective probability of a set of possible

observations, rather than an individual observation.
One way of doing this is to compute the probability of
all the individual members of the set, and sum up. We
will describe a more efficient computational method
than this in an upcoming publication (A. RoyChoudhury

and E. A. Thompson, unpublished data).
Ascertainment based on a previous sample: In some

studies, ascertainment is done on the basis of data from
a panel of SNPs (see, for example, Clark et al. 2005). To
correct the bias induced by such ascertainments, we
implement the following procedure.

Let us denote the data from the preliminary sample as

DðvÞ ¼ fDðvÞ1 ;D
ðvÞ
2 ; . . . ;D

ðvÞ
P g

and the rejection set in the preliminary sample as R(v).
Then, if D(v) is available for current analysis, the
ascertainment-corrected likelihood for the branch
length vector t is given by

Lðt jD;DðvÞÞ

¼ PrðD;DðvÞ j t;DðvÞ;R ðvÞÞ ¼ PrðD;DðvÞ j tÞ
PrðDðvÞ;R ðvÞ j tÞ

:

Here, PrðD; DðvÞ j tÞ is the uncorrected likelihood for
the collection of D and D(v). The denominator requires a
method for computing the probability of a collective set
of possible observations. An efficient way of doing this
will be demonstrated in an upcoming publication by
A. RoyChoudhury and E. A. Thompson (unpublished
data).

DISCUSSION

From the simulation studies, it is apparent that our
method performs well. The branch length estimates
were found to have a low bias. We must note that the first
study is based on 50 loci only. In practice, there are
thousands of independent SNP loci available in hu-
mans. Conditional on the validity of the model, this

TABLE 2

Ascertainment schemes and their associated rejection sets

No. of
populations

Ascertainment scheme:
select the locus only if:

Based on previous
or current sample

Rejection set in sample(s)
of (haploid) size mi from

the ith population

1 Two observed alleles Current R ¼ {0, m1}

1 At least two copies of the minor
allele in the sample

Current R ¼ {0, 1, m1 � 1, m1}

3 Does not have same allele fixed, in
samples from all three populations

Current R ¼ {(0, 0, 0), (m1, m2, m3)}

3 Each allele is observed to have at least two copies
in a sample from at least one population

Current R ¼
Q3

i¼1f0; 1g
� �

[
Q3

i¼1fmi � 1;mig
� �

3 Each minor allele is observed to have at least two
copies in a sample from at least one population

Previous R ðvÞ ¼
Q3

i¼1f0; 1g
� �

[
Q3

i¼1fmi � 1;mig
� �

1104 A. RoyChoudhury, J. Felsenstein and E. A. Thompson



large number of loci will give us much more accurate
estimation of branch lengths using genomewide data.

The work in this article is an improvement on existing
methods of exact-likelihood computation of a popula-
tion tree using a coalescent model. It adds a manageable
structure to the computation, resulting in increased
tractability. Further, this method is free from use of any
Monte Carlo technique and, as a result, can make a
precise estimate without an indefinitely long run.

The difference in log-likelihood between competing
topologies suggests that the data provide a wealth of
information. We believe that this methodology will prove
useful in analyzing data on polymorphisms across sub-
species and populations. In theory, this method of
pruning is applicable to data from loci with any number
ofalleles. However, the computational load of the pruning
algorithm applied to a multiallelic loci could be very large.
As we have to compute the probability of data conditional
on all possible configurations of all the alleles at the root,
the complexity will be of order o(mk), where k is the total
number of alleles and m is the total number of samples.

Although this is a significant improvement in com-
puting the likelihood of a fully specified tree, the
number of possible topologies makes maximum-likeli-
hood estimation a daunting task for larger trees (.10
populations). With other kinds of data the problem of
searching among tree topologies is also difficult, with
some methods provably NP hard (Foulds and Graham

1982; Graham and Foulds 1982).
The maximization is done as a line search over a fixed

grid. We did not use a more sophisticated method for
two reasons. The first reason is that some of the more
sophisticated methods are not designed for optimizing
multimodal functions. It is possible that our likelihood
function is multimodal as the lengths of different
branch may have similar effects on likelihood. There-
fore we stick to grid search. The second reason is that
grid search makes the computing simpler.

We have written a software based on our method.
Using this software, the likelihood for the first study
(four populations) took �27 sec per locus to compute
in a computer with 3 GHz CPU. For the second study
(seven populations) it took ,1 sec per locus in the same
computer. The computation time can be drastically
improved by efficient coding. We plan to recode parts of
the software to make it more time efficient and make it
available online.

We thank Matthew Stephens, Marco Bink, and an anonymous
reviewer for their helpful comments. This work was supported in part

by National Institutes of Health (NIH) program project grant GM-
45344, NIH program project grant GM 32544-14S1, and NIH grant
R01 GM071639-01A1.

LITERATURE CITED

Cavalli-Sforza, L. L., and A. W. F. Edwards, 1967 Phylogenetic
analysis. Models and estimation procedures. Am. J. Hum. Genet.
19: 233–257.

Clark, A. G., M. J. Hubisz, C. D. Bustamante, S. H. Williamson and
R. Nielsen, 2005 Ascertainment bias in studies of human ge-
nome-wide polymorphism. Genome Res. 15: 1496–1502.

Edwards, A. W. F., and L. L. Cavalli-Sforza, 1964 Reconstruction
of evolutionary trees in phenetic and phylogenetic classifications.
Syst. Assoc. Publ. 6: 67–76.

Elston, R. C., and J. Stewart, 1971 A general model for the anal-
ysis of pedigree data. Hum. Hered. 21: 523–542.

Felsenstein, J., 1968 Statistical Inference and the Estimation of Phylog-
enies. Ph.D. Thesis, University of Chicago, Chicago.

Felsenstein, J., 1973a Maximum likelihood and minimum-steps
methods for estimating evolutionary trees from data on discrete
characters. Syst. Zool. 22: 240–249.

Felsenstein, J., 1973b Maximum-likelihood estimation of evolu-
tionary trees from continuous characters. Am. J. Hum. Genet.
25: 471–492.

Felsenstein, J., 1981 Evolutionary trees from DNA sequences: a
maximum likelihood approach. J. Mol. Evol. 17: 368–376.

Felsenstein, J., 2004 Inferring Phylogenies. Sinauer Associates, Sun-
derland, MA.

Foulds, L. R., and R. L. Graham, 1982 The Steiner problem in phy-
logeny is np-complete. Adv. Appl. Math. 3: 43–49.

Graham, R. L., and L. R. Foulds, 1982 Unlikelihood that
minimum phylogenies for a realistic biological study can be con-
structed in reasonable computational time. Math. Biosci. 60:
133–142.

Heuch, I., and F. M. H. Li, 1972 PEDIG—a computer program for
calculation of genotype probabilities, using phenotypic informa-
tion. Clin. Genet. 3: 501–504.

Hilden, J., 1970 GENEX—an algebraic approach to pedigree prob-
ability calculus. Clin. Genet. 1: 319–348.

Moran, P. A. P., 1962 The Statistical Processes of Evolutionary Theory.
Clarendon Press, Oxford.

Nielsen, R., and M. Slatkin, 2000 Likelihood analysis of ongoing
gene flow and historical association. Evolution 54: 44–50.

Nielsen, R., J. L. Mountain, J. P. Huelsenbeck and M. Slatkin,
1998 Maximum likelihood estimation of population diver-
gence times and population phylogeny in models without muta-
tion. Evolution 52: 669–677.

Takahata, N., and M. Nei, 1985 Gene genealogy and variance
of interpopulational nucleotide differences. Genetics 110:
325–344.

Thompson, E. A., 1975 Human Evolutionary Trees. Cambridge Univer-
sity Press, Cambridge, UK.

Thorisson, G. A., and L. D. Stein, 2003 The SNP Consortium web-
site: past, present and future. Nucleic Acids Res. 31: 124–127.

Wright, S., 1931 Evolution in Mendelian populations. Genetics 16:
97–159.

Communicating editor: M. K. Uyenoyama

Pruning a Tree of Populations 1105


