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ABSTRACT

We developed a computationally efficient algorithm AMBIENCE, for identifying the informative variables
involved in gene–gene (GGI) and gene–environment interactions (GEI) that are associated with disease
phenotypes. The AMBIENCE algorithm uses a novel information theoretic metric called phenotype-
associated information (PAI) to search for combinations of genetic variants and environmental variables
associated with the disease phenotype. The PAI-based AMBIENCE algorithm effectively and efficiently
detected GEI in simulated data sets of varying size and complexity, including the 10K simulated rheumatoid
arthritis data set from Genetic Analysis Workshop 15. The method was also successfully used to detect GGI in
a Crohn’s disease data set. The performance of the AMBIENCE algorithm was compared to the multifactor
dimensionality reduction (MDR), generalized MDR (GMDR), and pedigree disequilibrium test (PDT)
methods. Furthermore, we assessed the computational speed of AMBIENCE for detecting GGI and GEI for
data sets varying in size from 100 to 105 variables. Our results demonstrate that the AMBIENCE information
theoretic algorithm is useful for analyzing a diverse range of epidemiologic data sets containing evidence for
GGI and GEI.

THE risk of developing many chronic diseases such as
cancer, cardiovascular diseases, autoimmune dis-

eases, and mental disorders may involve interactions
among a number of genetic, endogenous, and exoge-
nous environmental factors (Shields and Harris 2000;
Talmud and Stephens 2004; Caspi and Moffitt 2006;
Ambrosone et al. 2007; Arason et al. 2007). The success-
ful identification of critical gene–environment interactions
(GEI) may provide the scientific basis for preventative
public health measures to help individuals with par-
ticular genetic susceptibilities reduce their exposure to
disease risk-increasing environmental variables. Better
analytical methods for detecting GEI can facilitate iden-
tification of environmental factors capable of modifying
the effects of genetic risk factors on disease outcome.

Advances in high-throughput genotyping methods
have made generating dense genetic maps of the hu-
man genome for epidemiological studies feasible. The
additional information from these methods improves
the prospects for uncovering the interactions underly-
ing genetic etiology of multifactorial diseases. With re-
spect to study design, identification of gene–gene

interactions (GGI) is important for follow-up sequenc-
ing studies and results from GEI analyses can help in
reducing confounding in replication studies by ensur-
ing relevant informative environmental variables are
collected. Statistical GGI and GEI analyses can also pro-
vide evidence in support of specific disease mechanisms.
Unfortunately, there is a paucity of comprehensive ap-
proaches that can conduct higher-order GGI and GEI
analyses on a genomewide scale (Purcell et al. 2007).

Although there is considerable need for GGI and GEI
analyses to understand the genetics of many diseases,
there are unique scientific challenges attributable to the
potential involvement of multiple genetic and environ-
mental factors in the etiology of the disease, the high
dimensionality of the data sets from genomewide
studies, and combinatorial explosion. As the number
of ways of selecting a subset of K genetic or environ-
mental variables for assessing interactions from N such
variables is equal to

�
N
K

�
, the binomial coefficient or N-

choose-K function, the number of interactions increases
with extraordinary rapidity. This combinatorial growth
makes it computationally difficult, if not impossible, to
exhaustively assess the full range of genetic and envi-
ronment variables for potential interactions associated
with diseases in epidemiologic studies. As an example,
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there are 1.67 3 1011 possible three-way GGIs for a data
set with 10,000 SNPs. If the calculations for each GGI
could be accomplished in 1 msec, the computation time
required would be .5 years.

The multifactor dimensionality reduction (MDR)
technique (and software) for identifying and analyzing
GEI was developed by Ritchie and colleagues (Ritchie

et al. 2001; Hahn et al. 2003; Moore et al. 2006). MDR is
based on nonparametric multifactor models and allows
statistical and cross-validation analysis of GGI and GEI
for balanced case–control and discordant sib-pair de-
signs (Ritchie et al. 2001, 2003; Hahn et al. 2003; Bush

et al. 2006). MDR uses constructive induction wherein
the dimensionality of the multilocus genotype is system-
atically reduced by pooling into high and low risk
groups (Moore et al. 2006). The MDR method has been
extended to unbalanced data sets (Velez et al. 2007) and
a theoretical analysis of MDR has shown the similarity of
the MDR classifier to the naive Bayes classifier (Hahn

and Moore 2004). The MDR approach has been used
to study GEI in atrial fibrillation, autism, and diabetes
mellitus (Cho et al. 2004; Tsai et al. 2004; Ma et al. 2005;
Motsinger et al. 2006). The recently proposed gener-
alized MDR (GMDR) method employs the generalized
linear model (GLM) framework for scoring in conjunc-
tion with MDR for dimensionality reduction (Lou et al.
2007). GMDR enables inclusion of covariates and
handles both discrete and continuous traits in popula-
tion-based study designs. GMDR employs the same risk-
pooling, dimensionality reduction strategy as MDR and
yields the original MDR as a special case when covariates
are not present and the trait under investigation is binary
(Lou et al. 2007). However, despite availability of a more
efficient parallel computing implementation (Bush et al.
2006), MDR and its variants, including GMDR, are
computationally intensive, especially when .10 poly-
morphisms need to be evaluated (Ritchie et al. 2001).

One approach that allows hypotheses of specific types
of GGI and GEI to be tested is the pedigree disequilib-
rium test (PDT) (Martin et al. 2000) as implemented in
the software program UNPHASED (v3.10) (Dudbridge

2003). Although designed for family-based studies (in-
cluding case–parent trios and affected sibling pairs
study designs), the PDT approach is flexible enough
for the analysis of associations in case–control study
designs. Likelihood-ratio tests (LRT) can be built to test
synergistic epistasis, i.e., when the effect of the combi-
nation of two alleles at two different diallelic loci is
greater than the additive effects of the loci alone. The
LRT can also be built to test for effect measure modifi-
cation, which occurs when varying levels of an environ-
mental risk factor modify the risk ratio of the genotype.
The PDT has the appeal of a formal statistical frame-
work: the hypothesis tests for synergistic epistasis and
effect measure modification are statistical tests of in-
teraction. It is flexible with regard to study design and
can accommodate missing data. The PDT approach has

been used to extend the MDR to allow analysis of
families (Martin et al. 2006). However, the computational
challenges remain.

The available methods are computationally prohibi-
tive for analyzing interactions in genomewide data and
there is a need for novel methodology. Information
theoretic methods are among the most promising
approaches for enhancing single-nucleotide polymor-
phism (SNP) analysis, GGI and GEI analysis, and vi-
sualization (Liu and Lin 2005; Bhasi et al. 2006a,b;
Moore et al. 2006). Information-theoretic approaches
have well-developed theory and are versatile and genetic
model independent but only limited research on
leveraging these strengths into analytical strategies for
GGI and GEI has been done. Several reports have used
the Kullback–Leibler divergence (KLD) for genetic
analysis (Smith et al. 2001; Anderson and Thompson

2002; Rosenberg et al. 2003; Liu and Lin 2005). The
KLD is a measure of the ‘‘distance’’ between two distri-
butions because it measures the inefficiency of assum-
ing that the distribution is q when the true distribution
is p. In genetic analyses, the most frequent application
of the KLD has been for two-group comparisons such
as those used to evaluate ancestry informative markers
(Smith et al. 2001; Anderson and Thompson 2002;
Rosenberg et al. 2003). However, the KLD has also been
proposed as a multilocus linkage disequilibrium (LD)
measure to enable identification of TagSNPs (Liu and
Lin 2005) and our group has adapted the KLD for
analytical visualization (Bhasi et al. 2006a,b). Informa-
tion theory statistics employing entropy-based statistics
have been proposed for genomewide data analysis to
test for allelic association with a phenotype (Zhao et al.
2005, 2007; Li et al. 2007). Entropy-based methods for
two-locus interactions have also been proposed recently
and were found to confirm the negative epistasis be-
tween sickle cell anemia and a-thalassemia genetic
variations against malaria (Dong et al. 2007).

Information theoretic approaches offer many potent
capabilities and advantages for GGI and GEI analyses.
These approaches utilize extensions of the KLD to
measure complex multivariate dependencies among
genetic variations and environmental factors without
complex modeling. In our previous report, we devel-
oped an approach for GGI and GEI visualization and
identification that utilizes two established and comple-
mentary information-theoretic metrics, the K-way in-
teraction information (KWII) and the total correlation
information (TCI) for GEI and GGI analyses (Chanda

et al. 2007). We demonstrated that the KWII spectra of a
data set are capable of identifying critical interactions
and contain information that can be utilized to infer the
biological mechanisms generating the interactions.

The goals for this research were to substantively
extend the concepts and methods developed in our
earlier report (Chanda et al. 2007) by (i) developing a
novel metric, the phenotype-associated information
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(PAI) that is robust to the confounding effects of factors
such as pairwise and higher-order LD and correlations
between environmental variables, (ii) demonstrating
that the PAI is a useful information theoretic metric for
effectively screening GGI and GEI, and (iii) developing
an algorithm AMBIENCE that employs the PAI metric
to efficiently search the combinatorial space to identify
the variables involved in the strongest interactions. The
results from this work will enable the development of
better methods for efficient, large-scale interaction
analysis.

MATERIALS AND METHODS

Terminology and representation: The methods in this
article are applicable to both GEI and GGI analyses and
henceforth we simply use the term GEI to refer to both. The
term GGI is used only when environmental variables are not
present in a data set.

Definition of interaction: The KWII is a parsimonious, multi-
variate measure of information gain, which is defined and
described in detail below (Jakulin and Bratko 2004; Jakulin

2005). In our information theoretic framework, we use the
KWII as the measure of interaction information for each
variable combination. We operationally define that a positive
KWII value for a variable combination indicates the presence
of an interaction, negative values of KWII indicate the
presence of redundancy, and a KWII value of zero denotes
the absence of K-way interactions.

This operational definition based on the KWII corresponds
closely to but is not exactly the same as the formulation of
statistical interactions in the context of logistic regression. For
a succinct discussion of the concordance and differences with
other definitions see Jakulin (2005).

Entropy: The entropy, H(X), of a discrete random variable X
can be computed from the probabilities of p(x) using the
formula

H ðX Þ ¼ �
X

x

pðxÞlog pðxÞ:

K-way interaction information (KWII): For the three-variable
case, the KWII is defined in terms of entropies of the
individual variables, H(A), H(B), and H(C) and the entropies,
H(AB), H(AC), H(BC), and H(ABC), of the combinations of
the variables:

KWII ðA; B; CÞ ¼ �H ðAÞ �H ðBÞ �H ðCÞ1 H ðABÞ
1 H ðACÞ1 H ðBCÞ �H ðABCÞ:

For the K-variable case on the set n ¼ fX1; X2; . . . ; XKg, the
KWII can be written succinctly as an alternating sum over all
possible subsets T of n using the difference operator notation
of Han (1980):

KWIIðnÞ[�
X

T 4n

ð�1Þ jnj�jT jH ðT Þ:

The number of variables K in a combination is called the order
of the combination. The KWII represents the gain or loss of
information due to the inclusion of additional variables in the
model. It quantifies interactions by representing the informa-
tion that cannot be obtained without observing all K variables
at the same time (McGill 1954; Fano 1961; Jakulin and

Bratko 2004; Jakulin 2005). The KWII of a given combina-
tion of variables is a parsimonious interaction metric. It does
not contain contributions arising from the KWII of other
lower-order combinations of these variables.

In the bivariate case, the KWII is always nonnegative but in
the multivariate case, KWII can be positive or negative. The
interpretation of KWII values is intuitive because positive
values indicate synergy between the variables, negative values
indicate redundancy between variables, and a value of zero
indicates the absence of K-way interactions.

TCI: For the three-variable case, the TCI (Watanabe 1960)
is defined in terms of entropies of the individual variables
H(A), H(B), and H(C) and the entropy of the joint distribu-
tion H(ABC):

TCIðA;B;CÞ ¼ H ðAÞ1 H ðBÞ1 H ðCÞ �H ðABCÞ:

For the K-variable case on the set n ¼ fX1; X2; . . . ; XKg, the
TCI can be expressed as the difference between the entropies
of the individual variables H(Xi) and the entropy of the joint
distribution H(X1 X2 . . . XK):

TCIðX1;X2; . . . ;XK Þ ¼
XK

i¼1

H ðXiÞ �H ðX1X2; . . . XK Þ:

The TCI is the amount of information shared among the
variables in the set; equivalently, it can be viewed a general
measure of dependency. A TCI value that is zero indicates that
knowing the value of one variable tells you nothing about the
others, i.e., that the variables are independent. The maximal
value of TCI occurs when one variable is completely re-
dundant with the others; i.e., knowing one variable provides
complete knowledge regarding all the others.

Phenotype-associated information: The PAI is obtained
from the TCI, which represents the overall dependency
among the genetic and environmental variables and the
phenotype variable by removing the TCI contributions repre-
senting the interdependencies among the genetic and envi-
ronmental variables. The interdependencies among variables
can be caused by factors such as LD or by a common source for
multiple pollutant exposures. Accordingly, PAI is defined by

PAIðX1;X2; . . . ;XK ;PÞ
¼ TCIðX1;X2; . . . ;XK ;PÞ � TCIðX1;X2; . . . ;XK Þ:

In the above equation, the genetic and environmental
variables are denoted by the X1, X2, . . . , XK, and the phenotype
variable is denoted by P. In the PAI definition, the TCI(X1,
X2, . . . , XK, P) term represents the overall dependency among
the genetic and environmental variables and the phenotype
whereas the TCI(X1, X2, . . . , XK) term represents the inter-
dependencies among the genetic and environmental variables
in the absence of the phenotype variable.

Rationale for the PAI in GEI analysis: The PAI is a measure of
the interdependencies that affect the phenotype and is robust
to interdependencies among the variables. Information and
dependencies among genetic and environmental variables
can be distributed in complicated ways; e.g., there may be
complete interredundancy among some variables whereas
others may be independent. Furthermore, there may be
interdependencies of various degrees; e.g., variables without
direct associations could have higher-order interdependen-
cies. In the genetic epidemiology context, the presence of
factors such as LD indicates that many disease-uninformative
genetic variants are not independent of each other. Other
biological factors such as admixture can also confound the
differences between diseased and nondiseased groups be-
cause of differences among various racial groups.
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The KWII is the more valuable information metric because
it is a parsimonious measure of interaction for the variable
combination of interest alone and does not contain contribu-
tions from lower-order interactions. However, KWII computa-
tions on the entire combinatorial space are computationally
intractable because they require the entropies of all subsets. In
addition, the KWII cannot be used for hill-climbing algorithms
because it takes on both positive and negative values. Thus, it is
necessary to concomitantly address the biological complex-
ities and computational efficiency in GEI analysis.

Only individual and joint entropies are needed for TCI
calculations, making it computationally far more tractable
than the KWII. TCI (and PAI) on the other hand, is always
greater than or equal to zero and increases monotonically with
increased combination size [i.e., TCI(A, B, C, D) $ TCI(A,
B,C)], making it potentially suitable for hill-climbing algo-
rithms. Unfortunately because the TCI is a general measure of
dependency, it is sensitive to factors that cause correlations
and interredundancies among variables such as LD.

The PAI is an effective approach to overcoming these GEI-
associated biological and computational issues.

Properties of the PAI: We developed the PAI to obtain a TCI-
based measure that is robust to the confounding effects of
biological dependencies such as LD.

PAI, TCI, and KWII are each equal to mutual information
for single variable associations with the phenotype. However,
for higher-order combinations, the PAI definition removes the
TCI for pairwise and multimarker LD among the genetic
variables and similar uninformative dependencies among
environmental variables from the overall TCI. As a conse-
quence, the PAI does not have the biological drawbacks such
as sensitivity to LD and to correlations among environmental
variables that limit the usefulness of the TCI.

The PAI also offers the computational efficiency associated
with TCI calculations. The PAI is always greater than or equal
to zero (see appendix) and increases monotonically with
increased combination size (see appendix), making it very
suitable as the basis for hill-climbing algorithm design.

The PAI contains useful information regarding the KWII of
the genetic and environmental variables and the phenotype.
By derivation (see appendix), it can be shown that

PAIðX1;X2; . . . ;XK ;PÞ ¼
X

T 4n

KWIIðT ; PÞ:

This equation demonstrates that the PAI is the cumulative
phenotype-associated synergy present in all subset combina-
tions of the variables X1, X2, . . . , XK and P. It is important to
note that each component of the KWII is free of the
confounding effects of other combinations.

We use the PAI to identify the interesting regions in the
combinatorial space and then compute the KWII for the
reduced combinatorial space. This is a ‘‘greedy search’’
strategy that avoids combinatorial explosion because it does
not conduct GEI analysis for every possible combination.

The AMBIENCE algorithm: The AMBIENCE algorithm is
computationally much more efficient than the exhaustive
search (EXS) approach used in our earlier report (Chanda

et al. 2007) to compute KWII for all possible SNP combina-
tions, which requires exponential time. The pseudocode for
AMBIENCE is shown in Figure 1.

The AMBIENCE algorithm employs the PAI to search for
combinations of genetic variations and environmental varia-
bles related to the disease phenotype. Let X ¼
fX1;X2; . . . ;Xng be the set of all genetic/environmental
variables and P be the disease phenotype variable. The inputs
to the AMBIENCE algorithm are X, P, and algorithm param-
eters u and t, which represent the number of combinations

retained in the iterations of the search and the number of
iterations, respectively. The parameter t determines the high-
est order of variable combination detected.

We start by calculating PAIðXi ;PÞ"i 2 1 . . . n. We retain the
top u combinations with the highest values of PAI. Let this set
of variables be denoted by S1. In the next step, we calculate
PAIðXi ;Xj ;PÞ"Xi 2 S1;"j 2 1 . . . n; ðj 6¼ iÞ. We again retain
the top u combinations with the highest values of PAIðXi ;Xj ;PÞ
in set S2. The above steps are repeated t times. Thus, we
greedily search for combinations containing up to t variables
that have higher values of PAI. These combinations identify
regions in the combinatorial space that have combinations
with strongly interacting variables. Finally, for each combina-
tion C identified by the above search steps, we calculate the
KWIIðn; PÞ"n4C to identify the most parsimonious strongly
interacting combinations fn; Pg.

Additional analyses of time complexity and evaluations of
computational speed for AMBIENCE are presented in
results.

Simulations for case studies: Simulated data sets were used
to critically assess the effectiveness of the PAI metric to
correctly identify the interacting variables. We selected the
interaction model for case study 1 from our earlier article
(Chanda et al. 2007) because it had necessary levels of
complexity and also contained nuanced GEI patterns that
could provide a challenging test for evaluating the PAI. The
model for case study 2 was constructed to be more complex
than case study 1 and was motivated by genetic, environmen-
tal, and biomarker variables implicated in congestive heart
disease. The simulations assumed complete penetrance.

A population of 50,000 individuals with randomly varying
genotypes and environmental exposures consistent with the
underlying GEI models was generated for each of the case
studies. The case–control study design was assumed. From the
population of 50,000 individual genotypes, a sample of 500
cases and 500 controls was randomly selected. The value 1 was
used to represent cases and 0 was used for controls. The
standard deviations due to sampling were calculated from 100
independent repetitions of this procedure.

Case studies 1A and 1B: The underlying GEI model for case
studies 1A and 1B is summarized in Figure 2A. The simulated
data for case studies 1A and 1B consisted of four environmen-
tal variables, E1–E4, and six SNP variables, SNP 1–SNP 6. The
environmental variables E1 and E2 were assumed associated
with the disease phenotype whereas E3 and E4 were assumed
to be uninformative. The environmental variables E1 and E3
were assumed to have two states, low exposure (assigned value¼
L) and high exposure (assigned value ¼ H) that were treated
as categorical. The environmental variables E2 and E4 were
assumed to have three states, low exposure (assigned value ¼
L), medium exposure (assigned value ¼ M), and high expo-
sure (assigned value¼H) that were also treated as categorical.
The percentages of subjects in low- and high-exposure groups
of E1 and E3 were each 50%; the percentages of subjects in
low-, intermediate-, and high-exposure groups of E2 and E4
were 33.33% each, respectively. The disease was modeled to
occur for various combinations of exposure to the environ-
mental variables E1 and E2 via interactions with alleles for two
SNPs, SNP 1 and SNP 2. To mimic an additive genetic model,
the values 1, 2, and 3 were used to represent the homozygous
state for the major allele, the heterozygous genotype, and the
homozygous state for the minor allele, respectively, for all six
SNP variables. The more common and less common (disease)
alleles of SNP 1 and SNP 2 were assigned allele frequencies of
0.9 and 0.1, respectively. The other SNP variables, SNP 3–SNP
6, were uninformative and had allele frequencies of 0.5. All
SNPs were assumed to be diallelic with the three possible geno-
types in Hardy–Weinberg equilibrium. A binary phenotype

1194 P. Chanda et al.



variable, C, representing case (assigned value ¼ 1) or control
(assigned value ¼ 0) was used.

In both case studies 1A and 1B, the E1 and E2 variables were
assumed to act independently of each other and the case
phenotype value was assigned when combinations of the SNP
genotypes and either environmental variable resulted in a case.

In case study 1A, absence of LD among the SNP variables
was assumed. In contrast, for case study 1B, the SNP variables
SNP 3 and SNP 4 were assumed to be in LD (R 2 ¼ 0.9) with
each other.

Case study 2: This case study is summarized in Figure 2B and
contains a complex combination of environmental variables,
SNP variables, and biomarker variables that determine the
disease phenotype.

The model for case study 2 consisted of four environmental
variables, E1–E4, four SNP variables, SNP 1–SNP 4, and two
biomarker variables B1 and B2. The overall risk of developing
the disease phenotype was determined by contributions from
three components termed (i) environmental risk component
(risk E), (ii) the genetic risk component (risk G), and (iii) the
biomarker risk component (risk B). The risk E component was
assumed to have three states (H, high; M, medium; and L, low)
whereas risk G and risk B were assumed to have two states (H
and L). The SNP 1 variable interacted with the E1 and E2
environmental variables to determine the environmental risk
component (risk E) of disease risk in Figure 2B. The gene–
gene interactions between SNP 2 and SNP 3 variables de-
termined the genetic risk component (risk G) of disease risk
whereas interactions between the two biomarker variables, B1
and B2, determined risk B.

The environmental variables, E1 and E2, were disease
associated whereas E3 and E4 were assumed to be uninforma-
tive. The environmental variables E1 and E3 were each
assumed to have two states, low exposure (assigned value ¼
L) and high exposure (assigned value ¼ H); the remaining
environmental variables E2 and E4 each had an additional
state of medium exposure (assigned value ¼ M). The per-
centages of subjects in low- and high-exposure groups of E1
and E3 were each 50%; the percentages of subjects in low-,
medium-, and high-exposure groups of E2 and E4 were each
33.33%, respectively.

Both biomarker variables, B1 and B2 were assumed associ-
ated with the disease phenotype and were each assumed to
have three states, low exposure (assigned value ¼ L), medium
exposure (assigned value ¼M), and high exposure (assigned
value ¼ H). The percentages of subjects in the low-, medium-,
and high-exposure groups of B1 and B2 were 33.33% each,
respectively.

All four SNP variables were assumed to be diallelic with the
three possible genotypes in Hardy–Weinberg equilibrium. The
values 1, 2, and 3 were used to represent the homozygous state for
the major allele, the heterozygous genotype, and the homozygous
state for the minor allele, respectively, for all four SNP variables.
The more common and less common (‘‘disease’’) alleles of SNP
1, SNP 2, and SNP 3 were assigned allele frequencies of 0.9 and
0.1, respectively. The remaining SNP variable SNP 4 was un-
informative and had allele frequencies of 0.5.

A binary phenotype variable, C, representing case (assigned
value ¼ 1) or control (assigned value ¼ 0) was used. The
disease was modeled to occur for various combinations of

Figure 1.—Pseudocode for the AMBIENCE
search algorithm.
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exposure to the environmental variables E1 and E2 via
interactions with the biomarker variables B1 and B2 and
alleles for three SNPs, SNP 1, SNP 2, and SNP 3. Variables E1,
E2, and SNP 1 interact to affect the environmental risk E of the
disease. Variables SNP 2 and SNP 3 interact to affect the
genetic risk G of the disease. Variables B1 and B2 interact to
affect the biomarker risk B of the disease.

Examples of prototypical environmental variables in con-
gestive heart disease are inflammation and smoking. Bio-
markers that are predictive of congestive heart disease risk
include factors such as C-reactive peptide and blood choles-
terol levels in serum.

Visualization of GEI: Results are summarized graphically as
KWII, TCI, and PAI ‘‘spectra’’ as previously described
(Chanda et al. 2007). These spectra are bar plots with KWII,
TCI, or PAI on the x-axis and the corresponding variable
combinations on the y-axis. The variable combinations on the
y-axis were grouped according to the number of variables
involved in the combinations; i.e., the one-variable-containing
combinations, two-variable-containing combinations, and
three-variable-containing combinations were each placed in
separate groups. Within each group, the combinations were
arranged in ascending order so that specific variable combi-
nations of interest could be easily found.

Analysis of public domain data sets: GEI analysis of Genetic
Analysis Workshop 15 data: The data corresponding to problem
3 of Genetic Analysis Workshop 15 (GAW15) were obtained
from the GAW site (http://www.gaworkshop.org/gaw15data.
htm) and used with permission.

These data consist of 100 replicates of simulated data that
are modeled after the rheumatoid arthritis (RA) data. Michael
Miller and his colleagues generated the data (Miller et al.
2007) and the following data description was obtained from
the web site http://genetsim.org/gaw15/answers/. Each rep-

licate includes 1500 nuclear families each with two parents and
an affected sib pair and 2000 unrelated controls. The data
contain three types of autosomal markers: (i) 730 micro-
satellite markers with an average spacing of 5 cM, (ii) 9187
SNPs distributed on the genome to mimic a 10K SNP chip set,
and (iii) 17,820 SNPs on chromosome 6. The data include
map information, with lists of markers and their locations, and
simulated family, marker, and phenotype data. The HLA DR
genotype was also available and the phenotype/covariate data
included rheumatoid arthritis affection status, age at ascer-
tainment, lifetime smoking, anticyclic citrullinated peptide
antibody (anti-CCP), immunoglobulin M (IgM), severity, age
at onset, and age at death.

This simulated data set mimics the epidemiology and
familial pattern of RA, a complex genetic disease in which it
is hypothesized that several loci contribute to disease suscep-
tibility. As summarized in Table 1, the data set models in-
teractions of nine loci: C, DR, and D on chromosome 6, A on
chromosome 16, B on chromosome 8, E on chromosome 18, F
on chromosome 11, and G and H on chromosome 9. In ad-
dition, sex, age, smoking status, anti-CCP measure, IgM mea-
sure, severity, DR allele from father, DR allele from mother, age
at onset, and age at death are included as covariates. The
biomarkers, anti-CCP measures, and IgM measures are de-
fined for the cases only. All SNP loci are diallelic and alleles are
coded as 1 and 2.

For our analysis, which aimed to evaluate the effectiveness
of AMBIENCE, we used the set of 9187 SNPs along with sex,
age, and smoking status as covariates. We used all 100 rep-
licates to obtain KWII and PAI values and the corresponding
95% confidence intervals for each combination of variables.

We refer to this data set as the ‘‘10K GAW15 data set.’’ The
age, anti-CCP, and IgM variables, which are continuous
measures, were discretized by simple binning into five intervals

Figure 2.—(A) The interaction model used to generate the data for case studies 1A and 1B. (B) The interaction model used to
generate the data for case study 2. In A, the environmental variables E1 (with states H, L) and E2 (with states H, M, and L) in-
dependently interact with two SNP variables, SNP 1 (with alleles A1 and A2) and SNP 2 (with alleles B1 and B2) to determine the
disease status (controls are indicated by 0 and cases are indicated by 1). In B, the disease occurs due to exposure to the environ-
mental variables E1 and E2 via interactions with the biomarker variables B1 and B2 and alleles for three SNPs, SNP 1, SNP 2, and
SNP 3. The environmental, genetic, and biomarker risks are denoted by E, G, and B, respectively. The asterisk in a genotype
represents a ‘‘wild card’’ indicating that either allele is allowable. The uninformative variables are not shown.
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of equal width. Although haplotype-phase information was
provided, we chose to not include it and treated the data as
unphased genotype data. We conducted separate analyses with
RA affection status, anti-CCP, and IgM as phenotypes of
interest. The IgM variable was included as a covariate in the
analysis of anti-CCP as phenotype and vice versa. All the
analyses were performed with AMBIENCE input parameter
values of u ¼ 50 and t ¼ 3.

GGI analysis of interactions in chromosome 5: We assessed the
effectiveness of the KWII and TCI spectra for identifying key
interactions in a genotype data set from Daly et al. (2001)
containing 103 SNPs spanning a 616-kb region of chromo-
some 5q31 that has been linked to Crohn’s disease (Rioux

et al. 2001; Onnie et al. 2006). The data set contains genotypes
for 129 parent–child trios composed of 144 cases and 243
controls (Daly et al. 2001). For our analysis, SNPs whose
genotypes were missing in $20% of subjects were excluded.

To obtain corresponding P-values for the KWII and PAI
metrics, we permuted the case–control labels 5000 times. The
family information in the data set was not considered in the
permutation procedure.

Comparison to other competing approaches: We compared
our approach to the MDR (Ritchie et al. 2001, 2003; Hahn

et al. 2003; Bush et al. 2006), the GMDR (Lou et al. 2007), and
the PDT. The data were coded using an additive genetic model
for all methods.

The AMBIENCE approach was compared to the MDR,
GMDR, and PDT methods for GGI analysis on the Daly et al.
(2001) data set.

The ability of AMBIENCE to detect GEI in the presence of
covariates was compared to that of the MDR, GMDR, and PDT
methods on the GAW15 data set. For this head-to-head
comparison of the performance of MDR, GMDR, and PDT
to that of AMBIENCE on GAW15 data, we selected 100 SNPs
from among the 9187 SNPs to create a smaller data set that
could be analyzed by all three competing methods. We refer to
this data set as the ‘‘100-SNP GAW15 data set.’’ Specifically, this
data set included the covariates smoking, age, and sex and
contained key informative loci and sufficient uninformative
loci as follows: (i) SNPs 131–171 from the region of chromo-
some 6 containing loci C, DR, and D; (ii) SNPs 30–32 from the
region of chromosome 16 containing locus A; (iii) SNPs 438–
442 from the region of chromosome 8 containing locus B; (iv)
SNPs 266–272 from the region of chromosome 18 containing
locus E; (v) SNPs 387–391 from the region of chromosome 11
containing locus F; (vi) SNPs 181–196 from the region of
chromosome 9 containing loci G and H; and (vii) the
remaining 22 SNPs were selected randomly from the rest of

the 9187 SNPs. The RA affection status was used as the
phenotype.

MDR method: The MDR implementation was downloaded
from http://sourceforge.net/projects/mdr/. For MDR analy-
sis of the Daly et al. (2001) data set, samples missing genotypes
at $10% of the SNPs were excluded followed by the exclusion
of SNPs whose genotypes were missing in $10% of subjects.

The binary covariates, sex and smoking, and age (discre-
tized as for the AMBIENCE analysis) in the 100-SNP GAW15
data set were input as additional markers for MDR analysis.

GMDR: The GMDR implementation was downloaded from
http://www.healthsystem.virginia.edu/internet/addiction-
genomics/software/gmdr.cfm#.

Pedigree disequilibrium test: The PDT (Martin et al. 2000)
implementation in the software package UNPHASED v3.10
(Dudbridge 2003) was used. The program PDTPHASE v3.07
(see http://www.mrc-bsu.cam.ac.uk/BSUsite/Publications/
Preprints/Unphased_manual.pdf) was used to perform tests
of association of single SNPs and two-SNP haplotypes with
disease status (Dudbridge 2003). The Daly et al. and the
GAW15 data sets both included family information that was
provided to the software program (Daly et al. 2001; Miller

et al. 2007). For the GAW15 data set (Miller et al. 2007), the
covariates of age, sex, and smoking, which are available for
both cases and controls, were included in the analysis.

Computational speed estimate: We tested the computa-
tional efficiency of the AMBIENCE algorithm using the GAW
15 data set problem 3 (http://www.gaworkshop.org/gaw15data.
htm).

We used the dense map of chromosome 6 (17,820 diallelic
SNPs) on chromosome 6 data because it has more markers
that enabled assessment of the scalability–computational
speed relationships for the AMBIENCE method. Three
additional covariates (age, sex, and smoking) with the RA
affection status as the phenotype were used. Together, this
subset of the GAW 15 data set has a total of 17,823 genetic and
environmental variables. From the simulation framework
(i.e., the GAW15 ‘‘answers’’) provided to us by Michael Miller
(University of Minnesota) (Miller et al. 2007), it was known
that the DR, C, and D loci in the chromosome 6 data were
associated with the phenotype status. We therefore estab-
lished data sets containing a total of 1000, 10,000, 17,823,
or 100,000 variables in the following way: (i) all four data sets
had the three informative DR, C, and D loci and three
covariates (age, sex, and smoking) from the GAW15 data sub-
set; (ii) the remaining SNPs were randomly selected from
among the remaining 17,817 SNP variables; and (iii) the data
set with 100,000 variables had additional randomly generated

TABLE 1

Effects of major trait loci and covariates in the GAW15 data set

Locus Chr. SNP no. Phenotype Effects

DR 6 152–155 RA Affects risk of RA
A 16 30–31 RA Controls effect of DR on RA risk
B 8 442 RA Controls effect of smoking on RA risk
C 6 152–155 RA Increases RA risk only in women
D 6 161–162 RA Rare allele increases RA risk fivefold
E 18 268–269 RA, anti-CCP Controls effects of DR on anti-CCP and increases RA risk
F 11 387–389 IgM QTL for IgM
G 9 185–186 Severity 25% QTL for severity
H 9 192–193 Severity 25% QTL for severity
Age — RA Affects RA risk through smoking and sex ratio
Sex — RA Affects RA risk with locus C
Smoking — RA, IgM Affects RA risk with locus B and through IgM
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uninformative diallelic SNP variables added to make up the
difference. We refer to this as the ‘‘computational speed
GAW15 data set.’’

The AMBIENCE algorithm was used to search for combi-
nations containing up to three variables with u ¼ 50. The
computations were conducted on a Hewlett-Packard Proliant
server with four dual-core 2.8-GHz processors with 16 GB of
memory and running the Linux operating system.

RESULTS

Performance of the PAI-search algorithm on simu-
lated data: In the following numerical experiments, we
simulated data with known patterns of GEI and examined
their relationships with the KWII, TCI, and PAI spectra.

Case studies 1A and 1B: In case studies 1A and 1B,
the GEI scheme (Figure 2A) contained multiple envi-
ronmental variables and SNP variables. The model
represents a challenging scenario with environmental

heterogeneity; i.e., the two different environmental
variables increase disease risk independently via the
same genetic variables.

In Figure 3, the KWII (Figure 3A), TCI (Figure 3B),
and PAI (Figure 3C) spectra, obtained using the PAI-
based AMBIENCE search algorithm are compared to
the corresponding results from an exhaustive search
(EXS) of all combinations containing four variables or
less for case study 1A. Figure 4, A–C, summarizes the
spectra for case study 1B. The goal is to assess the
effectiveness of the AMBIENCE search strategy by
verifying that the critical interactions are identified.

For each method of search, the 20 combinations with the
highest KWII values are presented each for one-variable,
two-variable, and three-variable combinations. The spectra
for four-variable combinations are uninformative and not
shown for clarity. The solid bars in Figure 4, A–C, identify
the peaks obtained by both the PAI-based AMBIENCE

Figure 3.—A, B, and C are the KWII, TCI, and PAI spectra for case study 1A, respectively. All the one-variable-containing com-
binations and the 20 two-variable and 20 three-variable combinations with the highest KWII values are shown. The environmental
variables are shown as E1, E2, E3, E4, the SNP variables are numbered 1–6, and phenotype is indicated as C. The combinations are
indicated on the y-axis. The error bars represent the standard deviations. The solid bars identify the peaks obtained by both the
PAI-based AMBIENCE search algorithm and EXS methods, the open bars indicate the peaks obtained by the EXS alone, and the
shaded bars indicate the peaks obtained by AMBIENCE alone.
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search algorithm and the EXS methods, the open bars
indicate the peaks obtained by EXS alone, and the shaded
bars indicate the peaks obtained by AMBIENCE alone.

The KWII spectra in Figures 3A and 4A demonstrate
that our PAI-based AMBIENCE search algorithm de-
tects all peaks with significant GEI without the enumer-
ation of all possible combinations that is required in an
exhaustive search approach. The KWII values of combi-
nations containing only informative variables are un-
affected by the LD between uninformative variables.

The patterns in the TCI and PAI spectra of case study
1A (Figure 3, B and C) are identical. The TCI spectrum of
case study 1B (Figure 4B) shows prominent peak changes
relative to Figure 3B for combinations {2, 3, 4, C}, {1, 3, 4,
C}, {E4, 3, 4, C}, {E2, 3, 4, C}, {E1, 3, 4, C} and {3, 4, C} that
are caused by the LD between the uninformative
variables SNP 3 and SNP 4. These peak changes are
absent in the PAI spectrum of case study 1B (Figure 4C),
demonstrating that PAI is unaffected in the presence of
LD between uninformative SNP variables. Thus the PAI
is more effective than TCI in detecting GEI when LD
between uninformative SNP variables is present.

The KWII spectrum (Figure 4A) shows that the
AMBIENCE search algorithm correctly identifies the
one-variable-containing peaks that demonstrate the crit-
ical roles of E1, E2, SNP 1, and SNP 2 variables in the
underlying model. A strong peak corresponding to the
{1, 2, C} interaction is also identified. These peaks also
feature in the KWII spectrum of EXS (as indicated by
the shaded bars). None of the significant peaks in-
volving an interaction between the known interacting
variables are omitted in the spectrum of the PAI-based
AMBIENCE search algorithm. All the peaks present in
the KWII spectra of EXS only (open bars in Figures 3A
and 4A) have very low magnitudes compared to the
stronger peaks with known interactions. These results
demonstrate that our search algorithm correctly identi-
fies all known GEIs in both the case studies. Notably, the
{E1, E2, C} combination was not present among the top 20
two-variable combinations with the highest KWII values in
both the AMBIENCE search and EXS methods denoting
the absence of any interaction between E1 and E2.

Case study 2: In case study 2, the GEI scheme (Figure
2B) consists of multiple environmental, biomarker, and

Figure 4.—A, B, and C are the KWII, TCI, and PAI spectra of case study 1B, respectively. The legend is the same as that for
Figure 3.
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SNP variables whose interactions affect intermediate
risk factors that contribute to the disease phenotype
status. The schematic for the case study was motivated by
the combinations of risk factors involved in congestive
heart disease.

Figure 5, A, B, and C, summarizes the KWII, TCI, and
PAI spectra, respectively, obtained using both the
AMBIENCE algorithm and the EXS algorithm. For the
KWII spectra (Figure 5A), combinations with the top 20
KWII values are presented each for one-variable, two-
variable, and three-variable combinations.

The one-variable-containing peaks in the KWII spec-
trum correctly detect the critical roles of E1, E2, B1, B2,
SNP 1, SNP 2, and SNP 3 variables in the underlying
model. Strong two-variable-containing interactions {E1,
E2, C}, {E1, 1, C}, {B1, B2, C}, and {2, 3, C} were also
identified. Again, all the peaks with significant KWII
values that are detected by EXS are also identified by
AMBIENCE. The KWII peaks that are detected by EXS
alone (open bars in Figure 5A) are skipped during the

search process by AMBIENCE because these have very
low magnitudes compared to the other stronger peaks
present. The TCI and PAI spectra show that AMBIENCE
identifies combinations with higher values of TCI
(shaded bars in Figure 5B) and PAI (shaded bars in
Figure 5C) than EXS (open bars in Figure 5, B and C),
respectively. These results demonstrate that AMBIENCE
correctly and efficiently identified all significant inter-
actions in this relatively complex model.

We have analyzed a diverse range of additional case
studies. In each case, AMBIENCE identified the key
interacting variables effectively (data not shown).

Assessing robustness of PAI to LD: We critically
assessed the variations in PAI values for different combi-
nations in the presence of pairwise LD to evaluate the
effectiveness of PAI for disease-associated GEI analysis.

We first examined the effect of LD between two SNPs
that were not associated with the disease phenotype
variable on TCI and PAI. We varied the LD between SNP
3 and SNP 4 from 0 to 1 for case study 1B in this

Figure 5.—A, B, and C are the KWII, TCI, and PAI spectra for case study 2, respectively. All the one-variable-containing combi-
nations and the 20 two-variable and 20 three-variable combinations with the highest KWII values are shown. The environmental
variables are shown as E1, E2, E3, E4, the SNP variables are numbered 1–6, the biomarker variables are B1 and B2, and the phe-
notype is indicated as C. The combinations are indicated on the y-axis. The error bars represent the standard deviations.
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experiment. The representative combinations {3, 4, C}
and {E1, 3, 4, C} are presented because they include the
two SNP variables in LD with each other (SNP 3 and SNP
4), the risk-increasing environmental variable E1, and
the phenotype variable. The results (Figure 6A) dem-
onstrate that as expected, the increasing LD between
SNP 3 and SNP 4 contributes to the TCI of the com-
binations containing these variables. In contrast to the
TCI, which increases with increasing LD, the PAI
remains unchanged: 0.0055 6 SD 0.0027 in the absence
of LD and 0.0043 6 0.0022 for LD ¼ 0.9. Importantly
for the {3, 4, C} combination the PAI remains at a value
close to zero, indicating correct detection of no associ-
ation between the SNPS and disease status despite the
high LD. The TCI also correctly assessed no association
between SNPs and phenotype in the absence of LD,
0.0086 6 0.0032; however, when LD between SNPs 3 and
4 was increased to 0.9, the TCI increased to a value of
1.19 6 0.037. In the second combination assessed, we
include a risk-increasing environmental variable, E1, to
{3, 4, C}. Because the {E1, 3, 4, C} combination contains
the disease-associated E1 environmental variable, we
correctly anticipated that both the PAI and the TCI
values would be larger for {E1, 3, 4, C} than for {3, 4, C}.
In the absence of LD, PAI and TCI were 0.170 6 0.021
and TCI ¼ 0.178 6 0.021, respectively. When the LD
between SNP 3 and SNP 4 was increased to 0.9, the TCI
value combination increased .10-fold whereas the PAI
was constant at 0.170 6 0.019. The PAI retained the
disease association due to the presence of E1 while
remaining unaffected by the LD between SNP 3 and
SNP 4. Thus, in the presence of LD, PAI is a more
effective metric than TCI for detecting disease pheno-
type-associated GEI.

In the next set of experiments, we examined the
effect of LD between two SNPs, one of which was
associated with the disease phenotype variable. We
modified case study 1A by introducing LD between
SNP 3, which is not associated with the disease, and SNP
2, which is involved in the disease susceptibility. For this
case (Figure 6B), the representative combinations {2, 3,
C} and {E1, 2, 3,C} are presented. In the absence of LD,
the TCI values of the {2, 3, C} and {E1, 2, 3, C}
combinations were 0.411 6 0.026 and 0.602 6 0.032,

respectively, and the PAI values were 0.408 6 0.026 and
0.534 6 0.026, respectively. The higher TCI and PAI
values in Figure 6B compared with 6A reflect the
presence of informative variables in each of the combi-
nations. In the presence of LD ¼ 0.9, the TCI values of
the {2, 3, C} and {E1, 2, 3, C} combinations increased to
1.49 6 0.046 and 1.68 6 0.048, respectively. The PAI
values of the {2, 3, C} and {E1, 2, 3, C} combinations
remained constant at 0.400 6 0.029 and 0.530 6 0.024,
respectively at LD ¼ 0.9. Again, the results clearly
indicate that the PAI effectively captured the genetic
and environment risk-increasing information in the
data while simultaneously filtering the spurious effects
of LD in the {2, 3, C} and {E1, 2, 3, C} combinations.

In Figure 7, we investigate the relationship between
TCI and a measure of LD, R 2, as well as the sensitivity of
the PAI at varying levels of LD in real data for the Daly
data set (Daly et al. 2001). We computed PAI and TCI
values for all two-SNP-containing combinations with the
case–control status phenotype; the corresponding R 2

values for these same SNPs were also computed to
measure LD. The R 2, TCI, and PAI spectra for 40
representative combinations varying in R 2 values are
shown in Figure 7, A, B, and C, respectively. Compar-
isons of Figure 7A to 7B demonstrate that the TCI
spectrum mimics the dependencies present in the
patterns of LD as measured by R 2 values. Figure 7C
shows that in the presence of extensive pairwise LD, the
TCI variations that closely resemble the LD patterns are
not present in the PAI spectrum; consequently, PAI
values are an order of magnitude (or more) smaller
than the corresponding TCI values and the PAI spec-
trum is relatively independent of the LD patterns.

These results indicate that the PAI is effective at
detecting disease phenotype-associated GEI and is also
robust to the confounding effects of complex patterns
of dependencies among the genetic and environmental
variables.

Performance of the PAI-based AMBIENCE algo-
rithm on disease-relevant data sets: Performance on the
Daly data: To assess the performance of AMBIENCE, we
compared the results from the AMBIENCE analysis of
the Daly data set (Daly et al. 2001) to those obtained by
Rioux et al. (2001). Nine of the 11 SNPs on chromo-

Figure 6.—(A) TCI and PAI for various levels
of LD between SNP 3 and SNP 4 (both are unin-
formative SNPs) for case study 1B. (B) The effects
of LD between the informative SNP 2 and the un-
informative SNP 3 when case study 1A was mod-
ified by introducing LD between SNP 2 and SNP
3. In A, the combinations {3, 4, C} and {E1, 3, 4, C}
are shown as triangles and squares, respectively.
In B, the combinations {2, 3, C} and {E1, 2, 3,
C} are shown are shown as triangles and squares,
respectively. In A and B, the solid symbols are TCI
whereas the open symbols are PAI.
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some region 5q31 associated by Rioux et al. (2001) with
the risk of Crohn’s were present in the data set we
analyzed (see Table 2); SNPs IGR2078a_1 and
IGR2277a_1 were missing (Chanda et al. 2007).

In the AMBIENCE analysis, 8 of the 9 reported SNPs
(see Table 2) were present among the 20 combinations
with the highest KWII values (spectra not shown). The
permutation-based P-values of the KWII for these SNPs
(Table 2) ranged from 0.0028 to 0.029. We were unable to
identify one SNP, IGR2230a_1 using AMBIENCE and it
had a permutation-based P-value of 0.065. Of the 103
SNPs present in the Daly data set, only 17 single SNP
combinations had KWII P-values #0.05 in permutation
testing. AMBIENCE detected all 17 SNPs among the top
20 single SNP combinations with the highest KWII values.

10K GAW15 data set: The underlying GGIs and GEIs in
the simulations for this data set model the interaction of
nine loci: C, DR, and D on chromosome 6, A on chromo-
some 16, B on chromosome 8, E on chromosome 18, F on
chromosome 11, and G and H on chromosome 9 (see
Table 1 for a summary) (Miller et al. 2007). However, the
anti-CCP and IgM measures are defined for the cases only.
Although phase information was provided, we treated the
data as genotype data for the AMBIENCE analysis.

The GAW15 data set contained 100 replicates from
repetitions of the simulation procedure (Miller et al.
2007) and the availability of these replicates enabled us
to compute the 95% confidence interval for the KWII of
each combination.

Figure 8 presents the KWII spectrum with RA affec-
tion status as the phenotype. In interpreting the KWII

spectrum, a nonzero KWII value is significant and values
greater than zero represent synergistic interactions. For
example, in Figure 8A, we note that the KWII peaks for
combinations {C6_153, RA}, {C6_154, RA}, {C6_152, RA},
{age, RA}, {sex, RA}, {C6_155, RA}, {C6_153, age, RA},
{C6_154, age, RA}, {C6_162, RA}, {C11_389, RA}, and
{smoking, RA} are the combinations with the highest
KWII values and also have 95% confidence intervals that
do not include zero. These are therefore informative
combinations in the KWII spectra. These combinations
consist entirely of DR and locus C (both at SNPs C6_152-
C6_155), locus D (C6_162), and locus F (C11_389) and
the environmental variables age, sex, and smoking that
had associations with the RA affection status in the
simulated data set. Miller et al. (2007) built in pro-
nounced effects of DR on RA affection status and this
was confirmed by the highest values of KWII in Figure
8A that correspond to the DR locus. An interesting
finding was the detection of the combination {C6_162,
RA} corresponding to the locus D association with RA
despite very low minor allele frequency (only 0.0083,
making minor allele homozygotes very rare). Locus D
has a direct effect on RA risk and each allele increases
the hazard by fivefold (Miller et al. 2007).

Figure 8B presents the KWII spectrum with anti-CCP
measure as the phenotype. The peaks with the highest
KWII values (Figure 8B) enabled the identification of
the following loci and covariates associated with the
disease: loci C and DR (chromosome 6), locus E
(chromosome 18), age, and IgM. The strongest con-
tributions to the anti-CCP in simulations were from loci

Figure 7.—The R 2 (A), TCI (B), and PAI (C) spectra for 40 representative two-SNP-containing combinations with varying levels
of LD as measured by the R 2 for the Daly data set (Daly et al. 2001). The SNP combinations are indicated on the y-axis.
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E and DR; locus E affects anti-CCP by controlling which
DR genotypes place a subject in the anti-CCP group with
high mean values (Miller et al. 2007). Figure 8B
demonstrates that the three highest KWII values corre-
spond to the interaction between the DR locus (SNPs
C6_152-C6_155) and the anti-CCP phenotype; the next
two peaks, {C18_269, anti-CCP} and {C6_153, C18_269,
anti-CCP}, correspond to the interactions of locus E
alone and the locus E, DR combination with the anti-
CCP phenotype.

Figure 8C presents the KWII spectrum with IgM as the
phenotype. The peaks with the highest KWII values
enabled the identification of the following loci and
covariates associated with the IgM phenotype: loci C and
DR (chromosome 6), locus E (chromosome 18), age,
and smoking. When interpreting the KWII values of the
{C11_389, IgM}, {C11_389, smoking, IgM}, and {smok-
ing, IgM} combinations corresponding to the three
largest peaks in Figure 8C, it is important to note that
the KWII for each of these combinations does not
contain redundant information; i.e., each of the combi-
nations is significant on its own merit. Thus, the
significant peaks for {C11_389, smoking, IgM} and
{smoking, IgM} indicate that smoking alone is IgM
associated but also contributes to the IgM phenotype
synergistically in association C 11_389. Furthermore,
the changes in the peak height should not be inter-
preted to imply any protective role for smoking in the
disease association.

Thus of the nine loci and three key covariates reported
to be associated with the disease, we were able to identify
five loci and all three covariates. We were unable to
identify loci A, B, G, and H. Nonetheless, the performance
of the KWII spectrum derived from AMBIENCE can be
considered promising particularly given that AMBIENCE
in its current form does not utilize either the haplotype–

phase information or the parent–child transmission in-
formation contained in the pedigree structures.

Comparison to other competing approaches: We
compared our AMBIENCE approach to the MDR tech-
nique (Ritchie et al. 2001, 2003; Hahn et al. 2003; Bush

et al. 2006). All three methods were compared head-to-
head on the SNP data set from Daly et al. (2001) and the
100-SNP GAW15 data set.

Daly data set: The results from the head-to-head
comparisons of AMBIENCE to MDR, GMDR, and PDT
on the Daly data set are summarized in Table 2.

The MDR method identifies {IGR2063b_1},
{IGR2063b_1, IGRX100a_1}, {IGR2063b_1, IGR2198a_1
IGR3066a_1}, and {IGR2063b_1, IGR2198a_1
IGR3066a_1, GENS0202ex3_2} as significant combina-
tions associated with the Crohn’s disease phenotype.
The MDR approach combination sets contained only
two of the eight SNPs, IGR2063b_1 and IGR2198a_1,
identified by Rioux et al. (2001) as being significantly
associated with the Crohn’s disease phenotype. As
expected, because the Daly et al. (2001) data set lacked
covariates, the GMDR results were identical to the
corresponding MDR results. The PDT analysis, which
was provided with the phase and family/transmission
information in the Daly data set, identified all nine SNPs
reported by Rioux et al. (2001).

100-SNP GAW15 data set: The results from the head-
to-head comparisons of AMBIENCE to MDR, GMDR,
and PDT for the 100-SNP GAW15 data set are summa-
rized in Table 3. The variables and the interactions
identified by AMBIENCE have been previously dis-
cussed in the section Performance of the PAI-based AMBI-
ENCE algorithm on disease-relevant data sets and are also
summarized in Table 3.

The MDR analysis detected {C6_153}, {C6_154, age},
and {C6_153, age, sex} as associated with RA. The SNPs

TABLE 2

A comparison of the various competing methods to AMBIENCE using the Crohn’s disease-associated one-SNP
combinations identified by RIOUX et al. (2001) as a reference

SNPs from Rioux et al. (2001)a AMBIENCE KWII P-valueb MDR GMDRc PDT

IGR2055a_1 u 0.0038 u

IGR2060a_1 u 0.0072 u

IGR2063b_1 u 0.0026 u u u

IGR2096a_1 u 0.018 u

IGR2198a_1 u 0.0044 u

IGR2230a_1 0.065 u

IGR3081a_1 u 0.0038 u

IGR3096a_1 u 0.029 u

IGR3236a_1 u 0.0096 u

The SNPs that were correctly identified in a one-SNP combination by each method are shown with a check
mark.

a Two SNPs IGR2078a_1 and IGR2277a_1 were missing in our data set and are not included.
b The P-values of KWII values were obtained by permuting case–control labels and assessing the proportion of

KWII values of the permutations that exceeded the observed KWII.
c Results for GMDR are identical to those of MDR because there are no covariates.
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C6_153 and C6_154 denote the chromosome loci C and
DR, respectively. The MDR analysis did not detect locus
D and E and smoking.

We analyzed the 100-SNP GAW15 data set using
GMDR with sex, age, and smoking as the covariates
and RA as the trait. The GMDR method identified the
SNP combinations {C6_153}, {C6_153, C6_162}, {C6_153,

C6_154, C11_389}, where SNPs C6_153, C6_154 denote
the chromosome 6 loci C and DR, respectively; C6_162
denotes locus D on chromosome 6; and C11_389
denotes locus F on chromosome 11.

We analyzed the 100-SNP GAW15 data set using the
PDTas implemented in UNPHASED v3.10. Two derived
data sets were used for analysis, one including only

Figure 8.—The KWII spectra for one-variable- and two-variable-containing combinations for the ‘‘10K GAW15 data set’’ with
rheumatoid arthritis (RA) affection status (A), anti-CCP antibody status (B), and IgM status (C) as the phenotype. The variable
combinations are indicated on the y-axis; the chromosome number and the SNP identifiers are provided for SNPs. The bars rep-
resent mean values and the upper and lower error bars are the 95th and 5th percentiles of KWII values, respectively.

TABLE 3

A comparison of the various competing methods to AMBIENCE using the interactions used by MILLER et al.
(2007) in the GAW15 data set as a reference

Combination AMBIENCE MDR GMDR PDT

DR {DR, RA}, {DR, RA} {DR, age, RA}, {DR, age, RA},
{DR, age, RA} {DR, age, RA} {DR, sex, RA}, {DR, sex, RA},

{DR, age, sex, RA} {DR, smoking, RA} {DR, smoking, RA}
A, DR Not found Not found Not found Not found
B, smoking Not found Not found Not found Not found
C, sex {C, RA}, {C, RA} {C, sex, RA} {C, RA},

{Sex, RA} {C, age, sex, RA} {C, sex, RA},
{C, smoking, RA}

D {D, RA} Not found {C, D, age, RA}, {C, D, age, RA},
{DR, D, age, RA} {DR, D, age, RA}

E {E, RA} Not found Not found {E, RA, smoking}
Age, sex, smoking {Age, RA}, {DR, age, RA} a b

{Sex, RA}, {C, age, RA}
{Smoking, RA}, {DR, age, sex, RA}
{C, age, RA}, {C, age, sex, RA}
{DR, age, RA}

a GMDR requires a priori calculation of covariate effects, which are then incorporated into the analysis. Covariates cannot be
analyzed alone. For ease of interpretation, we have used the same notation for results from all the methods.

b PDT analyzes covariates simultaneously with genetic data; however, UNPHASED v3.10 is not designed to analyze covariates
without genetic data.
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nuclear families (6000 individuals) and one including
all controls and one affected sibling selected at random
from each family. Using both data sets we performed
both single SNP analyses and analyses of all possible 2-
SNP combinations with sex, age, and/or smoking status
as effect modifiers of the trait RA. Both data sets
identified the same loci as significant. After correction
for multiple testing (Benjamini and Hochberg 1995)
the PDT method identified loci DR, D, and E as
associated with the RA phenotype and found locus C
and sex as RA associated, specifically indicating an
elevated risk of RA in women. As with the other
methods, the PDT did not find locus A or B. Almost
all of the false-positive associations were in regions
contiguous with the true associations.

Time complexity and computational speed: The
AMBIENCE search algorithm is computationally much
more efficient than exhaustive search, which requires
computing all possible combinations and requires
exponential time.

Here, we borrow the notation from complexity theory
(Corman et al. 2001) to assess the computational
complexity of the AMBIENCE algorithm. Let m be the
sample size of the data and n be the number of variables
(excluding the phenotype variable). Lines 2–5 take
O(n 3 m2) computations because of PAI computation
that consumes O(m2) computations and lines 6 and 16
take O(u 3 n) computations each. Lines 7–15 take O(t 3

n 3 u 3 m2) computations since PAI computations are re-
peated for t (for loop in line 7) 3 n (for loop in line 9) 3 u

(for loop in line 10) computations. Finally, lines 17–22
take O(t 3 u 3 2t 3 m2) time since KWII needs to be
computed for all possible subsets for a maximum com-
bination size of t for each of u combinations that were
obtained at each step of t iterations. However, in genetic
applications, the range of t-values of interest is small
because of sample size constraints, which limits the
computational complexity from becoming exponen-
tially large.

The AMBIENCE algorithm was used to search for
combinations containing up to three variables with u ¼
50 using the computational speed GAW15 data sets as
the test bed. The computations were conducted on a
Hewlett-Packard Proliant server with four dual-core 2.8-

GHz processors with 16 GB of memory and running the
Linux operating system.

Table 4 summarizes the total time requirements and
the time requirements for one-variable-, two-variable-,
and three-variable-containing combinations. These re-
sults indicate that increasing the size of the combina-
tions has only a modest effect on the computation time
of AMBIENCE.

DISCUSSION

In our information theoretical framework, which is
novel for GEI analysis, combinations with positive values
of KWII are operationally defined as interactions. In this
report, we developed and evaluated the PAI, a TCI-
based information theoretic metric, to enable compu-
tationally efficient searching of the GEI combinatorial
space. The PAI is more robust than the TCI when
interdependencies among multiple variables such as
those caused by LD are present. We also critically
evaluated the effectiveness and computational effi-
ciency of the PAI-based AMBIENCE search algorithm
for GEI analysis. Our results demonstrate that these
methods are effective for analyzing a diverse range of
epidemiologic data sets containing complex combina-
tions of direct effects and multiple GEI.

The information theoretic AMBIENCE approach is
flexible and can be used when the genetic and environ-
mental variables have different numbers of classes or
when the phenotype has more than two classes. This
means that SNP and microsatellite markers can be
analyzed together if necessary. Another critical advan-
tage with our approach is that it provides options for
user interactions and visualization for small data sets.
For example, the incremental effect of adding a SNP
can be easily visualized on the PAI spectrum. The ability
to interact with data enriches the user’s experience and
can enable detection of features that are otherwise
difficult to find. In addition to its information theoretic
underpinnings, which are novel for GEI analysis, a key
difference between AMBIENCE and other methods
such as MDR and GMDR is that the AMBIENCE
approach uses a greedy search algorithm based on the
PAI rather than dimensionality reduction. However,

TABLE 4

Computational speed for the AMBIENCE algorithm

Computation time (hr)

No. of variables
in data set

One-variable
combinations

Two-variable
combinations

Three-variable
combinations Total

103 0.004 0.25 0.28 0.53
104 0.02 1.20 1.39 2.61
17,823 0.03 2.09 2.54 4.66
105 0.17 12.2 14.8 27.2
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AMBIENCE may be compatible with dimensionality
reduction methods. It is also noteworthy that the in-
formation theoretic metrics in AMBIENCE are sensitive
to both linear and nonlinear dependencies in the data.

At first sight, our KWII-based definition of interaction
would appear to differ from the more conventional
definition of interactions in statistical genetics. Statisti-
cal interactions represent deviations from additivity that
are present in data: they are said to occur when the
probability of observing the phenotype states for a
variable combination is greater (or less) than expected
from the probabilities of the phenotype states for each
of variable considered individually. Count data are
commonly analyzed using logistic regression and in this
framework, interactions are assumed to be present if the
parameters for the product terms are significant. We
have conducted simulations with a diverse range of
models, many of which could not be included in this
article in the interests of brevity, that indicate a remark-
able degree of concordance between the GEIs identi-
fied by our method and those identified by other
methods. Specifically, we have also conducted a KWII-
based analysis of the two-locus interaction models of
pure epistasis analyzed by Culverhouse (2007). These
models are defined by penetrance matrices and result
in two-locus interactions that are devoid of any main
effects. We found (results not shown) that the KWII
spectra successfully found the combination of the two
variables involved in the interaction and did not contain
peaks from any of the uninformative variables or
combinations. The qualitative concordance of the KWII
with the challenging models used by Culverhouse

(2007) and its performance in the case studies further
demonstrate the utility of the KWII-based definition for
GEI applications and data sets is reassuring and repre-
sent an important step for our novel approach.

Although the KWII is effective at identifying two-locus
interaction models of pure epistasis (Culverhouse

2007), AMBIENCE is likely to have less power than
MDR at identifying informative combinations in such
pure epistasis examples because it utilizes a marginal
effect strategy. The Boolean XOR gate (Jakulin and
Bratko 2003) is another example of a pure interaction
that would be difficult to identify with AMBIENCE.
Nonetheless, a pure epistasis interaction has stringent
symmetry requirements that are rarely met in real data;
this can be readily observed, e.g., in synthetic and
symmetric appearance of the penetrance matrices
employed by Culverhouse (2007). In real data, small
differences in allele frequency cause traces of lower-
order effects that can be detected by AMBIENCE. This
weakness in AMBIENCE can be readily addressed by
conducting an extensive search of two-variable combi-
nations. However, in data sets with large numbers of
genetic and environmental variables, MDR-based meth-
ods can also suffer from loss of power because the
number of variables that can be analyzed is limited and

users may not be able to identify the key variables for
inclusion. Thus, MDR-based methods and AMBIENCE
can suffer from loss of power under certain circum-
stances but for different reasons.

Although the KWII is very effective at detecting GEI,
its correspondence with logistic regression is not exact
(Jakulin 2005). The lack of exact correspondence is
attributable in part to methodological differences:
logistic models fit all the terms simultaneously to the
data, whereas with the KWII approach, higher-order
interactions are inferred after eliminating lower-order
contributions.

The AMBIENCE algorithm was found capable of
identifying the strongest interactions containing #3
variables in the 100,000 SNP-containing computational
speed GAW15 data set with �27 hr of computational
time. However, our goal is to extend the method so that
it is capable of conducting 106- to 107-variable analyses
and match the data acquisition capabilities of the
Affymetrix and Illumina genotyping platforms. This
goal should be considered feasible particularly given
improvements, e.g., parallelization that can be used to
boost the performance of the AMBIENCE algorithm.

Both MDR and AMBIENCE require the user to specify
the maximum combination order, which is the principal
determinant of computational load. However, methods
based on MDR are computationally intensive because
they conduct an exhaustive search of both the genotype
and the variable spaces. AMBIENCE is focused on
identifying interacting variables and derives its compu-
tational efficiency because it conducts a directed search
that harnesses the PAI via a greedy search algorithm.
The monotonic properties of the PAI assist in highlight-
ing combinations with high KWII values.

To minimize estimation errors resulting from the
limited cell counts for higher-order combinations, MDR
conducts cross-validation of the multilocus genotypes
in each variable combination. Although AMBIENCE
currently implements a permutation-based P-value as-
sessment after identifying the set of promising combi-
nations, the inclusion of a permutation test within each
stage can be expected to further improve its perfor-
mance. Despite these weaknesses and differences vis-à-
vis other methods, AMBIENCE has capabilities that are
not present in any of the existing methods; e.g., it can
handle data sets with three or more outcomes.

Nonetheless, the available GEI methods such as MDR,
GMDR, and PDT that employ dimensionality reduction
do different things and ask different questions. For
example, PDT is a method that is particularly useful for
family-based study designs and can accommodate miss-
ing data whereas MDR is a nonparametric dimension-
ality reduction method for case–control study designs.
The GMDR method is capable of handling continuous
covariates. To ensure a fair comparison of the compet-
ing methods, despite their underlying differences, we
provided each competing method with relevant data
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that would enable it to deliver the best possible
performance. We therefore provided the family rela-
tionships for the PDTanalysis, the continuous covariates
for GMDR, and the discretized covariates for MDR. All
algorithms were compared using both real genetic data
from Crohn’s disease (Daly et al. 2001) and simulated
data that were modeled on real data from rheumatoid
arthritis (Miller et al. 2007). AMBIENCE differs from
the entropy-based approach proposed by Dong et al.
(2007) in that it is capable of assessing direct effects and
two-locus and also higher-order interactions. The PAI
metric in AMBIENCE can effectively reduce the confound-
ing effects caused by pairwise (and higher-order) LD.

However, a potential criticism of AMBIENCE is that
there is no specific genetic mechanism or particular
linear or nonlinear mathematical form directly incor-
porated in the GEI assessment. These aspects of the
AMBIENCE method are in direct contrast to methods
such as logistic regression, which employs an explicit
mathematical form, GMDR, which assumes that the
variables conform to the exponential family of distribu-
tions, and the PDT, which is refined for family-based
studies. On the other hand, the absence of such
constraining assumptions may also be construed as a
key strength of the AMBIENCE method as it nonethe-
less accomplishes the goal of detecting nonlinear and
multidimensional relationships in epidemiological data
sets. Another potential criticism is that the AMBIENCE
algorithm employs a search strategy rather than di-
mensionality reduction for GEI analysis. The greedy
search strategy utilizes marginal effects on the PAI of
lower-order combinations to conduct a directed search
of higher-order combinations that increase the PAI.
These distinctions between AMBIENCE and the other
approaches can theoretically impose certain limitations,
e.g., susceptibility to local maxima, but also confer the
advantages of enabling effective and efficient GEI
analyses of larger data sets. Indeed, we selected the
implementation method to showcase the unique advan-
tages of the PAI. It may, however, be possible to combine
other algorithmic strategies such as simulated anneal-
ing and genetic algorithms within the current AMBI-
ENCE to further enhance its performance.

AMBIENCE is dependent on the input parameter u,
which represents the number of combinations retained
in each the iteration of the search. In our experiments,
we employed u¼ 50 and were able to identify GEI in the
Daly et al. and GAW15 data sets (Daly et al. 2001; Miller

et al. 2007). The risk of missing informative combina-
tions increases for lower values of u whereas computa-
tional time increases at higher values. The input
parameter t determines the highest order of variable
combination detected. Although biochemical pathways
and biological processes involve numerous gene prod-
ucts, these are typically mediated by a sequence of
molecular interactions and manifest as statistical inter-
actions of lower order. In our experiments, we set t ¼ 3

and the choice of t should be based on the expected
complexity of the statistical interactions and the sample
size. The computational time of AMBIENCE approaches
that of an exhaustive search when the number of
genetic and environmental variables in the data set is
small or if the majority of the variables are involved in
interactions of high order.

It is also important to note that we have employed the
KWII and PAI spectra to highlight the relationships of
these metrics to the underlying GEI models in simu-
lations. We do not expect that such plots will be useful
for large genomewide data sets because combinatorial
explosion will make direct visual analysis difficult. How-
ever, we have developed a permutation-based statistical
framework that provides P-values that can be deployed
for decision making for data sets from genomewide
association studies. Although AMBIENCE does not cur-
rently include corrections for multiple testing, the
P-values from permutation testing can be corrected
using approaches such as the SDMinP method of
Obreiter et al. (2005) or the Benjamini–Hochberg
method (Benjamini and Hochberg 1995).

In our comparisons, we used both simulated and real
data. The major advantage to using simulated data is
that the ground truth is established during the simula-
tion. The GAW15 data set was also sufficiently rich and
complex because it was modeled on the basis of a real
rheumatoid arthritis data set and simulation details
were available. The Crohn’s disease data set from Daly

et al. (2001) was obtained experimentally from a
population of inflammatory bowel disease patient–
parent trios with at least one unaffected parent. The
genotype data involved a follow-up resequencing anal-
ysis and they contained essentially perfect haplotype-
phase information (Rioux et al. 2001). These factors
provided a sound framework for comparing the perfor-
mance of AMBIENCE.

We also examined the variability of KWII, TCI, and
PAI for a diverse range of simulated GEI case studies.
For example, the error bars representing standard
deviations in Figures 3–6 demonstrate that the effects
of random variations caused by sampling on overall
shapes of PAI and KWII spectra are small. For the Daly

et al. (2001) data set we demonstrated that permutation
testing can be used to compute P-values of the KWII and
assess significance. Because of the availability of 100
replicates in the GAW15 data set, we were able to
compute confidence intervals for the KWII. The distri-
butions of KWII, TCI, and PAI of higher-order inter-
actions have not been well characterized. However, for
one-variable-containing interactions, KLD, KWII, and
TCI are equal to each other and these metrics are
asymptotically x2-distributed (Jakulin and Bratko 2004).

In conclusion, our approach incorporates several
features that are novel for GEI analysis. We have defined
the PAI, a novel information theoretic metric that is
robust to LD, and leveraged its mathematical properties
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to implement an algorithm, AMBIENCE, which is com-
putationally efficient and effective at GEI analysis.
Information-theoretic methods may have great poten-
tial in GEI analysis and statistical genomics and warrant
more research.
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APPENDIX: PROPERTIES OF PHENOTYPE-ASSOCIATED INFORMATION

Property 1: the PAI is a nonoverlapping sum: Here, we demonstrate the development of PAI as an information
theoretic metric to efficiently search the combinatorial space to identify the variables involved in the strongest
interactions. The interaction information involving three variables A, B, C can be written as

KWIIðA; B; CÞ ¼ �fH ðAÞ1 H ðBÞ1 H ðCÞg1 fH ðABÞ1 H ðACÞ1 H ðBCÞg �H ðABCÞ
¼ fH ðABÞ �H ðAÞ �H ðBÞg1 fH ðBCÞ �H ðBÞ �H ðCÞg1 fH ðACÞ �H ðAÞ �H ðCÞg

1 fH ðAÞ1 H ðBÞ1 H ðCÞ �H ðABCÞg
¼ �KWIIðA; BÞ � KWIIðB; CÞ � KWIIðA; CÞ1 TCIðA;B;CÞ
¼ TCIðA;B;CÞ � fKWIIðA; BÞ1 KWIIðB; CÞ1 KWIIðA; CÞg:

Thus

TCIðA;B;CÞ ¼ KWIIðA; B; CÞ1 KWIIðA; BÞ1 KWIIðB; CÞ1 KWIIðA; CÞ:

Similarly TCI for four variables A, B, C, D can be expressed as

TCIðA;B;C ;DÞ ¼ KWIIðA; B; C ; DÞ1 KWIIðA; BÞ1 KWIIðB; CÞ1 KWIIðA; CÞ1 KWIIðA; B; CÞ
KWIIðA; B; DÞ1 KWIIðA; C ; DÞ1 KWIIðB; C ; DÞ1 KWIIðA; B; C ; DÞ:

Generalizing to TCI for K variables X1, X2, . . . , XK,

TCIðX1;X2; . . . ;XK Þ ¼
X

n4fX1;X2;...;XK g; jnj$2

KWIIðnÞ:

We assume a case–control study design for the problem of detecting the underlying GEI in a given data set with the
genetic and environmental variables denoted by X1, X2, . . . , XN and the disease phenotype variable denoted by P. The
TCI of K variables and the phenotype can be expressed as

TCIðX1;X2; . . . ;XK ;PÞ ¼
XK

i¼1

H ðXiÞ1 H ðPÞ �H ðX1X2 . . . XK PÞ

¼
XK

i¼1

H ðXiÞ �H ðX1 . . . XK Þ1 H ðPÞ1 H ðX1 . . . XK Þ �H ðX1X2 . . . XK PÞ

¼ TCI ðX1;X2; . . . ;XK Þ1 TCIðX1X2 . . . XK ;PÞ:

Alternatively,

TCIðX1X2 . . . XK ;PÞ ¼ TCIðX1;X2; . . . ;XK ;PÞ � TCIðX1;X2; . . . ;XK Þ
¼

X

n4fX1;X2;...;XK ;Pg; jnj$ 2

KWIIðnÞ �
X

v4fX1;X2;...;XK g; jtj$2

KWIIðvÞ

¼
X

j4fX1;X2;...;XK g; jjj$1

KWIIðj; PÞ:
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The term TCI(X1X2 . . . XK, P) is the TCI between the joint distribution of the K variables and the phenotype; the
TCI(X1, X2, . . . , XK) term is the TCI among the K variables, and TCI(X1, X2, . . . , XK, P) is the TCI among the K variables
and the phenotype. The above equation is the sum of all possible interactions involving variables X1, X2, . . . , XK, P that
contains the phenotype variable P. This is defined as the PAI.

The PAI is derived from the TCI, which is the overall dependency among the genetic and environmental variables
and the phenotype and removes the TCI contributions due to the interdependencies (caused by factors such as LD)
among the genetic and environmental variables. Accordingly, the PAI is equal to

PAIðX1;X2; . . . ;XK ;PÞ ¼ TCIðX1;X2; . . . ;XK ;PÞ � TCIðX1;X2; . . . ;XK Þ
¼

X

j4fX1;X2;...;XK g; jjj$1

KWIIðj; PÞ:

Because each KWII is nonredundant with every other combination and the PAI can be expressed as a sum of KWII
values, the PAI is a nonoverlapping sum.

Property 2: PAI is greater than zero and increases monotonically: We demonstrate two properties of PAI that make
it suitable for designing hill-climbing algorithms to search the combinatorial space effectively: PAI is always greater
than or equal to zero and increases monotonically with increased combination size.

For K genetic and/or environmental variables X1, X2, . . . , XK, and phenotype status variable P, we have

PAIðX1;X2; . . . ;XK ;PÞ ¼ TCIðX1X2 . . . XK ;PÞ
¼ H ðX1X2 . . . XK Þ1 H ðPÞ �H ðX1X2 . . . XK PÞ
¼ H ðX1X2 . . . XK Þ �H ðX1X2 . . . XK jPÞ
$ 0:

The value of H(X1, X2, . . . , XK) $ H(X1, X2, . . . , XK j P) because entropy decreases when information regarding
phenotype P is known (the vertical line represents conditional entropy). As a result, PAI(X1, X2, . . . , XK) is thus
nonnegative.

To demonstrate that PAI increases monotonically, we note that the PAI is equivalent to the mutual information
between the joint distribution of K variables and phenotype status variable P. We have

PAIðX1;X2; . . . ;XK ;PÞ ¼ H ðX1X2 . . . XK Þ1 H ðPÞ �H ðX1X2 . . . XK PÞ
¼ H ðPÞ �H ðP jX1X2 . . . XK Þ:

Thus,

PAIðX1;X2; . . . ;XK ;PÞ � PAIðX1;X2; . . . ;XK�1;PÞ ¼ H ðP jX1X2 . . . XK�1Þ �H ðP jX1X2 . . . XK Þ
$ 0:

These equations demonstrate that the PAI increases monotonically with the inclusion of additional genetic or
environmental variables because uncertainty about the variable P decreases when information on the additional
variable XK is considered.
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