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ABSTRACT

Identifying loci under natural selection from genomic surveys is of great interest in different research
areas. Commonly used methods to separate neutral effects from adaptive effects are based on locus-
specific population differentiation coefficients to identify outliers. Here we extend such an approach to
estimate directly the probability that each locus is subject to selection using a Bayesian method. We also
extend it to allow the use of dominant markers like AFLPs. It has been shown that this model is robust to
complex demographic scenarios for neutral genetic differentiation. Here we show that the inclusion of
isolated populations that underwent a strong bottleneck can lead to a high rate of false positives.
Nevertheless, we demonstrate that it is possible to avoid them by carefully choosing the populations that
should be included in the analysis. We analyze two previously published data sets: a human data set of
codominant markers and a Littorina saxatilis data set of dominant markers. We also perform a detailed
sensitivity study to compare the power of the method using amplified fragment length polymorphism
(AFLP), SNP, and microsatellite markers. The method has been implemented in a new software available
at our website (http://www-leca.ujf-grenoble.fr/logiciels.htm).

ONE of the main challenges of modern biology is to
dissect and understand the molecular basis for

naturally occurring genetic variation. Recent advances
in the fields of computational biology and molecular
biology techniques have led to the emerging field of
‘‘population genomics,’’ whose main objective is to char-
acterize the parts of the genome subject to natural se-
lection. This new discipline has important applications
in many domains such as medical genetics and the
improvement of agricultural crops and breeds. Addi-
tionally, ignoring the effect of natural selection in
evolutionary studies can lead to wrong estimates of
the demographic history of species. Therefore, sepa-
rating the effect of neutral drift and adaptive genetic
differentiation is a necessary preliminary step in most
analyses of genomewide data sets, and this distinction
can also help us to understand speciation processes.

A wide variety of methods have been developed to
identify regions of the genome that have been subject
to natural selection (see Nielsen et al. 2005, for a re-
view). Among them, we can distinguish those based on
comparative data (taken from different species) that
can detect old signatures of selection and those using
population genomics data that allow the detection of
more recent ones. This latter family of methods has
became very popular in the last decade and has been

applied to many nonmodel species (see Wilding et al.
2001, for example).

Many of the existing methods for detecting recent
selection from population genomics data are based on an
idea first introduced by Lewontin and Krakauer (1973)
(see, for example, Bowcock et al. 1991; Beaumont and
Nichols 1996; Vitalis et al. 2001; Beaumont and
Balding 2004). The basic rationale is that loci influ-
enced by directional (also called adaptive or positive)
selection will show a larger genetic differentiation than
neutral loci, and loci that have been subject to balancing
(also called negative or purifying) selection will show a
lower genetic differentiation. Thus, the methods gen-
erally consist of identifying loci that present FST co-
efficients that are ‘‘significantly’’ different from those
expected under the neutral theory (they are called
outlier loci).

Lewontin and Krakauer’s (1973) method has raised
many criticisms (see Beaumont 2005, for more details
about them) and finally fell out of use. More recently,
Bowcock et al. (1991) and Beaumont and Balding

(2004) showed that problems of a purely statistical
nature can be easily solved. In particular, the problem
related to the correlation of allele frequencies among
demes can be overcome by adopting a Bayesian ap-
proach that implements the multinomial-Dirichlet
likelihood, which arises in a wide variety of neutral pop-
ulation genetic models (see Balding 2003). One of the
scenarios covered consists of an island model (Wright

1931) in which subpopulation allele frequencies are
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correlated through a common migrant gene pool from
which they differ in varying degrees. The difference in
allele frequency between this common gene pool and
each subpopulation is measured by a subpopulation-
specific FST. Therefore, this formulation can consider
more realistic ecological scenarios where the effective
size and the immigration rate may differ among sub-
populations. Additionally, a previous study (Foll and
Gaggiotti 2006) has shown that statistical methods
based on this approach are robust to deviations from the
underlying demographic model.

As opposed to the multinomial-Dirichlet approach,
most existing methods to detect outlier loci are based
on simpler demographic models. More precisely,
Beaumont and Nichols (1996) used a model with an
infinite number of islands, all of which have equal sizes
and exchange migrants at the same rate. A violation of
this model can lead to a high false-positive rate and, in
particular, it requires the consideration of a large
number of subpopulations (Flint et al. 1999). The
mutation rate, the mutation model, and the demo-
graphic history may also have a large effect on the
distribution of FST, especially if heterozygosities are high
(see the manual of the FDist2 program implementing
this method). More recently, Vitalis et al. (2001) pro-
posed an alternative model to obtain the expected
distribution of FST under the neutral scenario. For this
purpose, they use coalescence simulations of pairs of
haploid populations that do not exchange migrants and
are of constant size, having diverged from an ancestral
population that may have experienced a bottleneck
before splitting. This method has the disadvantage
of considering a model consisting of a single pair of
populations and, therefore, the authors recommend to
identify a locus as an outlier only if it is identified as such
in all or most of the pairwise comparisons that include a
particular population (Vitalis et al. 2001). The prob-
lem with this approach is that the pairs of populations
analyzed are not independent and it is impossible to
define rigorous P-values in this case. For this reason, this
method is suitable to detect only extreme cases of
natural selection. Both of the methods discussed above
share an additional drawback: the expected distribution
of FST is obtained by simulating a large number of
neutral data sets using as input parameters the estimates
obtained from the real data set. The problem is that,
ideally, input parameters should be based only on
neutral markers, and, therefore, the presence of se-
lected loci in the data set can lead to biases. Ad hoc
procedures can be used to reduce this problem but
they are fairly subjective.

Instead of focusing on FST’s as a means of detecting
outliers, it is also possible to consider the heterozygosity
or some other measure of genetic diversity. Schlotterer

(2002) and Kauer et al. (2003) proposed such an
approach that is suitable for microsatellites markers
because it assumes a strict stepwise mutation model

(SMM). They follow Vitalis et al. (2001) and consider
statistics based on pairs of populations. More precisely,
they proposed to use the ratio R of the genetic diversity
u ¼ 4Nem of two populations, where Ne is the effective
population size and m is the mutation rate. u is estimated
either from the variance V in repeat number of micro-
satellites or from the expected heterozygosity H, leading
respectively to the so-called ln RV and ln RH statistics.
Instead of using coalescence simulations to generate the
expected distribution under neutrality, Schlotterer

(2002) uses the empirical distribution of ln RV and ln
RH statistics and identifies as outliers those loci that fall
outside the 95% confidence interval, under the assump-
tion that the distribution is normal. The drawback of this
method is that the use of an empirical distribution
necessarily leads to a high false-positive rate. In addition,
this approach is also primarily designed for pairs of
populations and is suitable to detect only extreme cases
of natural selection.

As mentioned before, the more recent method pro-
posed by Beaumont and Balding (2004) is based on the
multinomial-Dirichlet likelihood and considers that FST

values integrate effects that are specific to each popula-
tion and to each locus. Thus, a locus is deemed to be
under selection if the equal-tailed 100(1 – P)% posterior
interval for its locus-specific effect excludes zero. Al-
though this method avoids all the above-described
problems it still has the drawback of not providing a
rigorous way of testing the hypothesis that a locus is
subject to selection. To address this problem, Riebler

et al. (2008) extended the method by introducing the
use of a Bernoulli-distributed auxiliary variable, di, to
indicate whether or not a locus is subject to selection.
Then, they classify a locus i as being under selection if
the posterior probability P(di ¼ 1 j data) is larger than a
threshold value that is set by means of a simulation
study. Although this may represent an improvement
over the original method, it still requires the use of a
simulation study. The authors propose to use a cutoff
value of 0.17 on the basis of their simulations but it is
unlikely that this value will be appropriate for all data
sets.

Here we propose a different and more rigorous
approach to develop a test for selection. More specifi-
cally, we directly estimate the posterior probability of a
given locus being under the effect of selection by
defining two alternative models, one that includes the
effect of selection and another that excludes it; we then
estimate their respective posterior probabilities using a
reversible-jump MCMC approach. Additionally, we ad-
dress a common limitation of all the methods described
above (except that of Beaumont and Nichols 1996)
that can be used only with codominant markers. More
specifically, we generalize the method of Beaumont and
Balding (2004) by making it applicable to dominant
markers like amplified fragment length polymorphisms
(AFLPs) and perform a detailed sensitivity study to
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compare the power of the method using AFLP, SNP, and
microsatellite markers.

Another issue that has not been considered in the
past is the extent to which the demographic history of
species and differences in mutation rates among loci
can bias the detection of selection using genome scans.
To address this issue we present the results of a
simulation study that considers the effect of spatial
expansions such as that undergone by humans. Addi-
tionally, we study the effect of not discriminating be-
tween di-, tri-, and tetranucleotide microsatellites when
carrying out genome scans. Finally, we illustrate how
the method can be applied to study particular cases
by analyzing published data sets on humans and
periwinkles.

METHODS

Bayesian model for estimation of locus–population-
specific FST coefficients: The model for genetic differ-
entiation used is based on ideas first introduced by
Balding and Nichols (1995) and that Beaumont and
Balding (2004) later used to detect loci under natural
selection. Strictly speaking, the approach applies to an
island model (Wright 1931) but it has also been used
to describe a fission model (Falush et al. 2003). For
the sake of simplicity we describe the details of our
approach using the terminology of this latter model. We
consider a collection of J subpopulations that evolved
in isolation after splitting from an ancestral population.
The derived subpopulations may have been subject to
different amounts of genetic drift and, therefore, their
allele frequencies will show different degrees of differ-
entiation from the ancestral allele frequency. We con-
sider a set of I loci and let Ki be the number of alleles
at the ith locus. The extent of differentiation at locus i
between subpopulation j and the ancestral population
is measured by F

ij
ST and is the result of its demographic

history. Let pi¼ {pik} denote the allele frequencies of the
ancestral population at locus i, where pik is the frequency
of the allele k at locus ið

P
k pik ¼ 1Þ. We use p ¼ {pi}

to denote the entire set of allele frequencies of the
ancestral population and fpij ¼ ffpijkg to denote the
current allele frequencies at locus i for subpopulation
j. Under these assumptions, the allele frequencies at
locus i in subpopulation j follow a Dirichlet distribution
with parameters uij pi,fpij � Dirð uij pi1; . . . ; uij piKi Þ; ð1Þ

where uij ¼ 1=F
ij
ST � 1. The parameters F

ij
ST are very

closely related to Wright’s (1951) FST parameter and
are interpreted as measures of the shared ancestry
within each of the subpopulations (see Balding 2003,
for a more detailed explanation). The full prior dis-
tribution can be obtained by multiplying across loci and
populations:

pðp̃ jp; uÞ ¼
YI

i¼1

YJ

j¼1

pðfpij jpi; uijÞ: ð2Þ

Hierarchical model for locus- and population-
specific effects: The amount of data available to es-
timate all locus–population-specific FST coefficients is
reduced and this leads to inaccurate estimates, espe-
cially for loci with a small number of different alleles. As
an alternative, Balding et al. (1996) proposed to de-
compose locus–population-specific FST coefficients into
a population-specific component, bj, shared by all loci
and a locus-specific component, ai, shared by all pop-
ulations. We use the model proposed by Beaumont and
Balding (2004) that is based on the following equation:

log
F

ij
ST

1� F
ij
ST

 !
¼ log

1

uij

� �
¼ ai 1 bj : ð3Þ

The advantage of this formulation is that instead of
estimating I � J F

ij
ST coefficients, we have to estimate only

the I parameters ai and the J parameters bj. In the case
of absence of natural selection, all ai coefficients are
excluded, and the above model is equivalent to the one
used by Foll and Gaggiotti (2006), where the term bj is
replaced by a generalized linear model. Note that with
this formulation, F

ij
ST and equivalently uij are no longer

model parameters that need to be estimated because
they are replaced by ai and bj parameters. In what
follows we use uij for the sake of simplicity but note that
it can be replaced directly by uij ¼ exp(– (ai 1 bj)).

Beaumont and Balding (2004) originally proposed
to include a locus–population parameter gij in their
formulation. However, they noted that the posterior
probability for this parameter was very similar to the
prior used. This indicates that there is not enough
information to estimate it and, therefore, we chose here
to exclude the gij’s from the model.

Estimating the probability that a locus is influenced
by selection: To infer which loci are influenced by
selection we focus on the posterior distribution of ai: a
positive value suggests that the locus i is subject to
directional selection, whereas a negative value suggests
balancing selection. However, before deciding on the
type of selection we need to decide whether or not
there is selection at all. In their original formulation,
Beaumont and Balding (2004) focused on the poste-
rior distribution of ai and from this they identified the
locus influenced by selection using an approximate
method (see below). Here we present a rigorous way of
estimating the posterior probability of a given locus
being under the effect of selection. Equation 3 can lead
to two alternative models, one that includes both effects
and another one that does not include the effect of
selection. Thus, we use a reversible-jump MCMC algo-
rithm (Green 1995) to estimate the posterior probabil-
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ity of each one of these models. At each iteration of the
MCMC algorithm, we propose to remove ai from the
model if it is currently present or to add it if it is not
included; this is done separately for each locus i. For
example, if we propose to add ai to the vector a of locus
effects, we draw a proposed value from a distribution q.
Then we accept to add this locus in the model with
probability min(1, A), where

A ¼ pðp̃ jp;a;bÞpðaiÞ
pðp̃ jp;a with ai ¼ 0;bÞqðaiÞ

:

Because we only have two models and we choose them
uniformly, the ratio of prior model probability simplifies
to one. The Jacobian is one because of the canonical
jump function used. To consider the reverse move, we
simply accept the move deleting ai with probability
min(1, 1/A). The proposal distribution q is a normal
distribution with its mean and variance pilot tuned to
improve convergence (see below).

With this method, we have posterior estimates of the
probability that a locus is subject to selection: P(ai

included) corresponds to P(ai 6¼ 0). This probability is
estimated directly from the output of the MCMC by
simply by counting the number of times ai is included in
the model.

Estimating allele frequencies: Beaumont and
Balding’s (2004) original formulation considered co-
dominant markers; here we extend it to dominant ones.
Note that we have to estimate the allele frequency of
each subpopulation and that of the ancestral popula-
tion because they are unknowns. Thus, we present two
different formulations depending of the type of marker
used: codominant (like microsatellites or SNPs) and
dominant (like RFLPs or AFLPs).

Codominant markers: The data consist of allele counts
obtained from samples of size nij. We use aijk to denote
the number of alleles k observed at locus i in the
sample from subpopulation j. Thus, nij ¼

P
k aijk . The

full data set can be presented as a matrix N ¼ faijg,
where aij ¼ faij1; aij2; . . . ; aijKi

g is the allele count at
locus i for subpopulation j. The observed allele
frequencies, aij, can be considered as sampled from
the true alleles frequencies fpij and, therefore, can be
described by the multinomial distribution (Holsinger

1999):

aij � Multinomialfnij ; fpij1; fpij2; . . . ; gpijKi
g: ð4Þ

In principle, we could use as likelihood the multino-
mial distribution (Equation 4) and consider Equation 1
as a Bayesian prior. However, in our case, we can
calculate exactly the marginal distribution of aij because
the Dirichlet distribution is the conjugate prior of the
multinomial. This allows us to eliminate the nuisance
parameters fpij that are not of immediate interest but
are needed by the model. Thus, we obtain the multino-
mial-Dirichlet distribution:

Pðaij jpi;ai ;bjÞ ¼
nij !GðuijÞ

Gðnij 1 uijÞ
YKi

k¼1

Gðaijk 1 uij pikÞ
aijk !Gðuij pikÞ

:

The likelihood is obtained by multiplying across all
loci and populations:

Lðp;a;bÞ ¼
YI

i¼1

YJ

j¼1

Pðaij jpi;ai ;bjÞ: ð5Þ

Since the allele frequencies in the ancestral population
are unknown, we have to estimate them by introducing a
noninformative Dirichlet prior, pi � Dirð1; . . . ; 1Þ, into
our Bayesian model.

Dominant markers: Estimating allele frequencies from
dominant markers is more difficult because of the
inability to distinguish heterozygous individuals from
those that are homozygous for the dominant allele.
Nevertheless, they have became very popular in the last
decade, mostly due to the development of the AFLP
marker, an inexpensive and easy way of obtaining large
number of genetic markers from a wide variety of
organisms (Bensch and Akesson 2005; Meudt and
Clarke 2007). For each individual the information is
‘‘band presence’’ or ‘‘band absence,’’ which can be
viewed as a phenotype. One possible solution is to
suppose Hardy–Weinberg equilibrium to estimate allele
frequencies but this imposes the strong hypothesis of
no inbreeding. Holsinger et al. (2002) first proposed a
general method that includes the estimation of the
inbreeding coefficient FIS.

In the context of dominant markers, the data N
consist of the sample counts of observed phenotypes
instead of allele counts. Let n[A1],ij and n[A2],ij be the
observed number of phenotypes [A1] and [A2] at locus
i for population j. The full data set is presented as a
matrix N ¼ fn½A1�;ij ;n½A2�;ijg and the sample size at locus
i for population j is nij ¼ n[A1],ij 1 n[A2],ij. We can
consider that the number of phenotypes n[A1],ij follows
a binomial distribution with parameters g[A1],ij and nij,
where g[A1],ij is the unknown [A1] phenotype frequency
at locus i in population j:

n½A1�;ij � Binomialðg½A1�;ij ;nijÞ: ð6Þ

Note that the binomial distribution is a particular case
of the multinomial distribution with only two alleles,
and the Dirichlet distribution of Equation 1 reduces to a
beta distribution. The beta distribution is the conjugate
prior of the binomial distribution, but contrary to the
case of codominant markers with the multinomial-
Dirichlet distribution, we cannot calculate exactly the
marginal distribution. This is due to the fact that, in
the case of dominant markers, the parameters of the
binomial distribution are the phenotype frequencies
instead of the allele frequencies. If we assume indepen-
dence we can multiply across loci and populations to
obtain the likelihood function
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Lðp̃;FISÞ ¼
YI

i¼1

YJ

j¼1

Pðn½A1�;ij j g½A1�;ijÞ:

The phenotype frequency g[A1],ij can be linked to
the corresponding frequency pij of allele A1 and the
inbreeding coefficient F j

IS of population j using the
following equations:

g½A1�;ij ¼fpij
2ð1� F

j
ISÞ1 F

j
IS
fpij 1 ð1� F

j
ISÞ2fpijð1�fpijÞ ð7Þ

g½A2�;ij ¼ ð1� F
j
ISÞð1�fpijÞ2 1 F

j
ISð1�fpijÞ ð8Þ

¼ 1� g½A1�;ij : ð9Þ

However, Foll et al. (2008) show that estimates
obtained from this model are strongly influenced by the
ascertainment bias of AFLPs. They proposed an alterna-
tive approximate Bayesian computation (ABC) approach
that gives unbiased estimates of population-specific FST

and FIS coefficients. This solution leads to more un-
certainty on posterior distributions, which precludes the
estimation of locus-specific ai’s. Additionally, the ABC
algorithm cannot be used to estimate the posterior
probability of each hypothesis of the form ai¼ 0. Because
here values of FIS are not of immediate interest, we
propose an intermediate solution: we do not estimate FIS

coefficients but we incorporate the full uncertainty on
FIS by letting it move freely between 0 and 1 during the
MCMC process. This approach has also been proposed
for the software Hickory, implementing the method of
Holsinger et al. (2002), and is described in the online
manual (Holsinger and Lewis 2002). Of course if some
other source of information suggests that inbreeding can
be bounded within a narrower interval it is possible to
restrict it to reduce uncertainty on parameter estimates.
We use the prior on ancestral allele frequencies proposed
by Foll et al. (2008): pi � betaða; aÞ. The parameter a
describes the shape of allele frequencies in the ancestral
population (Wright 1931) and is estimated using a log-
normal positive prior: a � log Normalð0; 1Þ.

Implementation: For codominant markers, the full
Bayesian model represented by the directed acyclic
graph (DAG) in Figure 1A is given by

pðp;a;b jNÞ} Lðp;a;bÞpðpÞpðaÞpðbÞ: ð10Þ

For dominant markers, the full Bayesian model
represented by the DAG in Figure 1B is given by

pðp;FIS; p̃;a;b; a jNÞ} Lðp̃;FISÞpðp̃ jp;a;bÞpðFISÞ
� pðp j aÞpðaÞpðbÞpðaÞ:

ð11Þ

Following Beaumont and Balding (2004), for the
population effects bj, we used a Gaussian prior with
mean �2 and standard deviation 1.8; for the locus
effects, ai, we used a Gaussian prior with a zero mean
and a standard deviation of 1. As explained above, F j

IS’s
are not estimated during the MCMC algorithm but are
used to incorporate the uncertainty on inbreeding in
the model with dominant markers.

The estimation of model parameters is carried out
using a combination of MCMC and reversible-jump
(RJ)MCMC (Green 1995) techniques that are de-
scribed in the supplemental information. We evaluated
the convergence of the method using the diagnostic
tests implemented in the R BOA package (Smith 2005).
The tests indicated that a burn-in of 10,000 iterations
was enough to attain convergence and it has been
implemented as part of the pilot-tuning process (see
below). We used a sample size of 10,000 and a thinning
interval of 50 as suggested by an autocorrelation
analysis. With these parameter values, the total length

Figure 1.—DAG of the models given in Equation 10 (A)
and Equation 11 (B). The square node denotes known quan-
tity (i.e., data) and circles represent parameters to be esti-
mated. Lines between nodes represent direct stochastic
relationships within the model. The variables within each
node correspond to the different model parameters discussed
in the text. N is the genetic data, that is, allele-frequency
counts for codominant markers or phenotype-frequency
counts for dominant data. p̃ and p are, respectively, the allele
frequencies in each local population and in the ancestral pop-
ulation. u is the vector of the genetic differentiation coeffi-
cient for each local population. a and b are, respectively,
the vectors of locus- and population-specific effects of the ge-
netic differentiation. The vector u is represented within a
dashed circle because it is not actually a parameter of the
model: it can be calculated directly from Equation 3, but
we represent it for a better understanding of the diagram.
FIS is the vector of inbreeding coefficients and a is the hyper-
prior determining the shape of the ancestral allele frequencies.
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of the chain was 500,000 iterations. The method has
been implemented in a software written in C11. We
provide a command line version for Linux and a version
with a friendly user graphical interface for Microsoft
Windows.

Proposal distributions have to be adjusted to have
acceptance rates between 0.25 and 0.45. If we propose
values in a very wide interval, most moves will be rejected
because they will correspond to areas of low posterior
probability. On the other hand, if we propose values very
close to the current one, the move will be almost always
accepted but the chain will take a long time to explore
all the parameter space. These values are automatically
tuned on the basis of short pilot runs: we run 2000
iterations, and for each parameter the proposal is
adjusted to reduce or increase the acceptance rate. We
make 10 such pilot runs before starting the sampling,
which also play the role of a burn-in period. At the same
time, we can choose the proposal distribution q for the
reversible jump. Brooks et al. (2003) showed that the
best choice is to take qðaÞ to be the full conditional
distribution of a in the saturated model. Because we do
not know this distribution, we use the pilot run to get
rough estimates of the mean mi and the variance vi for all
ai under the saturated model (in which all parameters ai

are included). Then we propose a new value for ai from
Nðmi ; viÞ that is generally close to the full conditional
distribution.

SIMULATION STUDY

We investigated the performance of our method
under different scenarios using a simulation study and
also compared its performance with that of Beaumont

and Balding’s (2004) approach. This latter approach
has already been shown to perform better in various
scenarios than the previous approaches based on the
same idea (Beaumont and Balding 2004).

Our first simulation approach uses the same statistical
model assumed by our method (the inference model)
and allows us to study the effect of three critical pa-
rameters of the model in the identification of selection:
the sample sizes, the number of populations, and the
level of genetic differentiation. We also use this simula-
tion scheme to compare the power of three different
types of markers: AFLPs, SNPs, and microsatellites. The
first marker is a dominant marker while the two others
are codominant.

We also used a second simulation approach to in-
vestigate the effect of departures from the demographic
model assumed by our method. For this purpose we
generated neutral marker data sets under a population
expansion model that assumes a stepping-stone coloni-
zation process (SPLATCHE, Currat et al. 2004). This
allows us to investigate if the confounding effect of
selection and demographic history can lead the method

to identify as selected loci that are in fact neutral (false-
positive detection of selection).

Basic simulation design: Our initial simulation
scheme assumes 1000 loci of which 100 are under
directional selection and 100 are under balancing
selection. Later on we also considered cases where only
100 loci are influenced by selection (50 balancing and
50 directional). We introduced selection using a ¼ 2
and a ¼ �2 for directional and balancing selection,
respectively. To have an idea of the strength of natural
selection implied by these values, it is necessary to
consider the extent to which a value of FST for a neutral
marker (background FST) is increased when a value of
2 is used for ai in Equation 3. Figure 2 shows the effect of
ai when the background FST is 0.1. Additionally, Figure 2
in Beaumont and Balding (2004) shows FST values for
three different selection coefficients (s¼ 0.02, 0.05, 0.1)
and for the same background FST. From these figures
it is possible to obtain Table 1, which relates the
selection coefficient with the ai-values. Table 1 shows
that an ai ¼ 2 is equivalent to an s slightly .0.05.

To investigate the performance of the method under
different scenarios, we considered a default set of values
for parameters that were common to both codominant
and dominant markers and then changed values of one
parameter at a time. This procedure led to 10 different
data sets that are described in Table 2. The default
values were six populations, a sample size of 30

Figure 2.—Influence of the a-coefficient on FST for a back-
ground cFST ¼ 0:1. On the basis of Equation 3 we calculate the
FST coefficient that a locus under selection with a given ai

would have. For this we first obtain the value of the popula-
tion-specific effect for a chosen background FST from b̂ ¼
logðFST=ð1� FSTÞÞ and then obtain the corresponding value
under selection using FST ¼ expða 1 b̂Þ=ð1 1 expða 1 b̂ÞÞ.
For example, if an initially neutral marker exhibiting ancFST ¼ 0:1 is subject to selection with a ¼ 2, then we expect
that its FST will increase to 0.45 once a new equilibrium is
reached. Dashed lines connect the FST values given in Table
1 with the corresponding ai-values.
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individuals per population, and an FST coefficient
of 0.10.

In the particular case of AFLP markers we also need to
consider the effect of inbreeding so we used a default
value of 0.5 and two additional values (0 and 1;
corresponding data sets are called Fis-0, Fis-0.5, and
Fis-1 in Table 3) leading to a total of 12 different data
sets. Additionally, we included in the simulation the
ascertainment bias process observed for AFLP markers
and described by Foll et al. (2008). The bias we imposed
ensures that at least 2% of the total number of in-
dividuals have a band and that at most 2% do not have a
band. We used default parameters that we modified one
by one to obtain the 12 data sets.

Allele frequencies in the ancestral population for
both AFLPs and SNPs were generated from a U-shaped
beta distribution with both parameters equal to 0.7. As
Wright (1931) showed, at equilibrium, this implies
4Nm ¼ 0.7, where N is the effective population size and
m is the mutation rate. In the case of microsatellites, we
could simply use the noninformative Dirichlet prior
with all parameters equal to 1 assumed by our inference
model for multiallelic markers. However, Pritchard

and Feldman (1996) showed that the stepwise mutation
model describes better the mutation process of micro-
satellites, and Graham et al. (2000) found that the
Dirichlet distribution is not appropriate in that case. In
particular, simulating ancestral allele frequencies from
their prior distribution would lead to a higher variability
than what is generally observed in real data sets, and this
would artificially increase the power of our method. To
take into account this finding and at the same time
evaluate the influence of a violation of the underlying
infinite-alleles model assumption, we follow the ap-
proach of Lockwood et al. (2001) to simulate allele
frequencies similar to those observed in real micro-
satellites. They considered a maximum of seven differ-
ent alleles and fixed the vector of allele frequencies in
the ancestral population at each locus to (0.05, 0.1, 0.2,
0.3, 0.2, 0.1, 0.05). Although Moran (1975) showed that
no equilibrium distribution can be obtained under a
stepwise mutation model, this provides a practical way

to simulate realistic microsatellite data sets. To allow
variability in the ancestral population, we simulate the
vector of allele frequencies at each locus from a
Dirichlet distribution with parameters (10, 20, 40, 60,
40, 20, 10).

For some of the scenarios considered for AFLPs and
SNPs, we observed a true-positive rate of 1 for micro-
satellite data sets. Thus, we decided to enlarge the range
of parameter values considered for this marker and
instead of presenting results for data sets where all 200
loci under selection were correctly identified we simu-
lated additional data sets corresponding to samples of
lower quality. More specifically, we added simulations
with four populations, FST ¼ 0.01, FST ¼ 0.03, 10
individuals in each population, jaj ¼ 0.5, jaj ¼ 1.0,
and jaj ¼ 1.5 (respectively called Pop-4, Fst-0.01, Fst-
0.03, size-10, alpha-0.5, alpha-1.0, and alpha-1.5 in
Table 5).

To decide whether or not a locus i is influenced by
selection, we need to choose a cutoff value for the
posterior probability P(ai 6¼ 0). All loci for which this
posterior probability is larger than the cutoff value are
considered as outliers. Ideally, one should choose a high
value such as 0.95 or 0.99; however, if the purpose is to
compare the performance of different types of markers,
one needs to chose cutoff values that depend on the
quality of the data set considered. For example, retain-
ing only loci with a posterior probability .0.99 using
microsatellites with a large sample size and many pop-
ulations will lead to both a very low false-positive rate
and a very high true-positive rate. By contrast, using the
same cutoff value with the much less informative
dominant markers will not allow us to detect many
markers that are indeed under selection. For this rea-
son, a pragmatic way to compare results between

TABLE 1

Equivalence between ai and selection coefficient

s FST range Mean a

0.02 [0.1; 0.4] 0.25 1.12
0.05 [0.2; 0.6] 0.4 1.8
0.1 [0.5; 0.8] 0.65 2.8

The relationship between the selection coefficients, s, and
locus-specific effects ai for a background FST of 0.1 is shown.
The second and third columns show the FST’s of the loci un-
der selection and were obtained from Figure 2 in Beaumont

and Balding (2004). The fourth column shows the a-values
for a given FST under selection and is obtained from Figure 2.

TABLE 2

Simulation parameters

Name Populations FST Sample size

Pop-2 2 0.15 30
Pop-6a 6 0.15 30
Pop-10 10 0.15 30
Pop-20 20 0.15 30
Fst-0.05 6 0.05 30
Fst-0.10 6 0.1 30
Fst-0.15a 6 0.15 30
Fst-0.25 6 0.25 30
Size-15 6 0.15 15
Size-30a 6 0.15 30
Size-50 6 0.15 50
Size-100 6 0.15 100

Parameters used in data simulated under the inference
model discussed in the text are shown.

a These three parameters are in fact the same data set used
as a reference. In all other data sets, we modified parameters
one by one from this reference.
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different kinds of data sets is to choose cutoff values that
give the same false-positive rate and to compare the rate
of true positives. With a fixed false-positive rate, the true-
positive rate is directly related to the positive predictive
value (PPV, or precision rate) defined as the proportion
of markers detected as being under selection that are
correctly classified. Here we choose to present results
using a cutoff value that leads to a global false-positive
rate of 5% in each of the three sets of simulations (it
corresponds to posterior probabilities of 0.79, 0.86, and
0.85 for AFLPs, SNPs, and microsatellites, respectively).
For AFLPs and SNPs we also show results using a false-
positive rate of 10% that increases the true-positive rate
(it corresponds, respectively, to posterior probabilities
of 0.69 for AFLPs and 0.79 for SNPs). For micro-
satellites, because the true-positive rate is already very
high with 5% of false positives, we also show results with
a false-positive rate of 1% (it corresponds to a posterior
probability of 0.98).

Spatial population expansion model: Currat et al.
(2006) showed that a spatial population expansion can
lead to false-positive detection of selection when using a
simple comparison of haplotype frequencies. Thus, we
use SPLATCHE (Currat et al. 2004) to evaluate the
performance of our method (and also other genome-
scan methods based on FST) when the true evolutionary
model differs radically from the inference model we
used. More specifically, SPLATCHE simulates a popula-
tion expansion from a single origin in a two-dimensional
habitat (strict two-dimensional stepping-stone model)
and generates genetic samples for geographic locations
chosen by the user. Here, we are interested in estimating

the proportion of neutral loci that could be identified as
being under the effect of selection by our method if the
population underwent a recent spatial expansion.

We used the human example as a template and
simulated the population expansion with the origin in
East Africa. We used a growth rate of 0.3, a carrying
capacity of 100 for all demes, and a migration rate of 0.2.
With these settings, the whole world is colonized after
�4000 generations. Because we apply below our method
to the Human Genome Diversity Project–Centre d’Etude
du Polymorphisme Humain (HGDP–CEPH) data set
(Cann et al. 2002), we ‘‘sampled’’ populations at the same
locations using the same sample sizes as in this database.
To study the effect of sampling design, we considered five
sampling scenarios. The first one included all 53 pop-
ulations while the second considered only 26 because it
excluded populations with sample sizes ,20 to minimize
sampling error. The two last scenarios explored the effect
of including populations that underwent a severe bottle-
neck, which can lead to false-positive detection of
selection (Currat et al. 2006). Thus, we considered a
third scenario that excludes the 4 Amerindian popula-
tions, all issued from the same bottleneck, leaving us with
a data set of 22 populations, and a fourth scenario that
also excludes 3 isolated insular populations (Orcadian,
Sardinian, and Papuan), leaving us with only 19 popula-
tions. Finally, we considered a fifth extreme case where we
‘‘collected’’ samples for 36 populations chosen uniformly
on the map (cf. Figure 3 in Foll and Gaggiotti 2006)
with many isolated insular populations (Greenland,
Australia, New Zealand, etc.) Genetic data were gener-
ated with SPLATCHE, using a stepwise mutation model

TABLE 3

AFLP simulation results

True: Balancing selection Neutral Directional selection

Classified: Bal. Neut. Direc. Bal. Neut. Direc. Bal. Neut. Direc.

Pop-2 0 (0) 100 (100) 0 (0) 0 (0) 794 (788) 6 (12) 0 (0) 70 (59) 30 (41)
Pop-6a 37 (60) 63 (40) 0 (0) 20 (61) 758 (702) 22 (37) 0 (0) 29 (28) 71 (72)
Pop-10 72 (81) 28 (19) 0 (0) 21 (45) 755 (721) 24 (34) 0 (0) 21 (19) 79 (81)
Pop-20 95 (97) 5 (3) 0 (0) 26 (50) 749 (709) 25 (41) 0 (0) 14 (10) 86 (90)
Fst-0.05 1 (14) 99 (86) 0 (0) 0 (19) 784 (752) 16 (29) 0 (0) 33 (22) 67 (78)
Fst-0.10 27 (49) 73 (51) 0 (0) 17 (46) 761 (712) 22 (42) 0 (0) 26 (22) 74 (78)
Fst-0.15a 37 (60) 63 (40) 0 (0) 20 (61) 758 (702) 22 (37) 0 (0) 29 (28) 71 (72)
Fst-0.25 51 (67) 49 (33) 0 (0) 23 (47) 763 (724) 14 (29) 0 (0) 30 (29) 70 (71)
Size-15 15 (35) 85 (65) 0 (0) 8 (33) 776 (736) 16 (31) 0 (1) 38 (32) 62 (67)
Size-30a 37 (60) 63 (40) 0 (0) 20 (61) 758 (702) 22 (37) 0 (0) 29 (28) 71 (72)
Size-50 47 (65) 53 (35) 0 (0) 38 (65) 734 (684) 28 (51) 0 (0) 21 (17) 79 (83)
Size-100 61 (73) 39 (27) 0 (0) 40 (66) 732 (688) 28 (46) 0 (0) 19 (18) 81 (82)
Fis-0 39 (59) 61 (41) 0 (0) 23 (50) 760 (722) 17 (28) 0 (0) 29 (24) 71 (76)
Fis-0.5a 37 (60) 63 (40) 0 (0) 20 (61) 758 (702) 22 (37) 0 (0) 29 (28) 71 (72)
Fis-1 37 (57) 63 (43) 0 (0) 25 (60) 755 (703) 20 (37) 0 (0) 25 (21) 75 (79)

Numbers of AFLP loci simulated under (‘‘true’’) balancing selection, neutrality, and directional selection that were classified in
each category using a reversible-jump cutoff of 0.79 (0.69) that give false-positive rates of 5% (10%) are shown. Bal., balancing
selection; Neut., neutrality; Direc., directional selection.

a These data sets represent the same reference data set that is replicated in the table to make comparisons between results.

984 M. Foll and O. Gaggiotti



(SMM). We simulated 1000 independent loci with a
fixed mutation rate of 7.0 3 10�4 under the full sampling
scenario containing 53 populations and then used this
data set to obtain the three others by removing some of
the populations. For the last scenario we generated an
independent data set with the same mutation rate and
number of loci.

The outlier behavior of a locus can be due to selection
but also to a mutation rate that differs from that of most
of the other loci. Thus, we investigated the effect of
mutation rates on the performance of the method using
the scenario with 19 populations (which excludes small
samples and populations that underwent a severe
bottleneck). Here, we also tried to be as close as possible
to the real HGDP–CEPH data set; thus we used different
mutation rates for di-, tri-, and tetranucleotidic micro-
satellites. More precisely, we used the values estimated
by Zhivotovsky et al. (2003) from this same data set:
1.52 3 10�3, 7.0 3 10�4, and 6.4 3 10�4 for di-, tri-,
and tetranucleotides, respectively. We simulated 1000
markers of each type and conducted three separate
analyses and also one analysis containing the 3000
markers at the same time. We also investigated the
influence of variability in mutation rates within each
class of microsatellite following Xu et al. (2005), who
used 5252 dinucleotide markers from the Genome
Database and showed that the distribution of mutation
rates can be approximated by a gamma distribution with
a shape parameter of 1.3327. The scale parameter was
chosen to obtain the mean mutation rates m given above
and we generated a data set with 1000 loci.

Results: Comparison among markers: The detailed
results obtained for AFLPs, SNPs, and microsatellites
are presented in Tables 3, 4, and 5, respectively. Table 7
presents a summary for comparing the power to detect

selection among markers. The first interesting observa-
tion is the very similar results obtained for AFLPs and
SNPs, which indicates that they have similar power to
detect selection. Moreover, the fact of being dominant
does not seem to be a big handicap for AFLPs. The
precision rate is slightly higher for both balancing and
directional selection with SNPs. With microsatellites,
the results are much better than with the two other
biallelic markers. Note that in Table 7 the results for
microsatellites are presented for poor-quality data sets
and are still much better than those of AFLPs or SNPs.
Our study shows that the polymorphism of micro-
satellites is a very strong advantage for the detection of
selection. For example, with only two populations, we
did not identify any loci under balancing selection for
SNPs, but we obtained a true-positive rate of 75% with
microsatellites. We were also able to detect weak effects
of selection (jaj ¼ 0.5) with microsatellites whereas no
loci were detected at this level with SNPs (results not
shown). Beaumont and Balding (2004) concluded
from simulations of biallelic codominant markers that
the method could not distinguish loci under balancing
selection even when the selection coefficient is 20 times
the migration rate. The results we obtained here show
that microsatellites can be used to detect balancing
selection, especially with data sets containing a large
number of populations. Of course, the advantage of
microsatellites over SNPs may disappear if one can
group SNPs that are in complete linkage disequilibrium
and treat them as haplotypes (see discussion).

Influence of data set characteristics: The number of
populations is a key parameter for the identification of
selection, especially for balancing selection. For di-
rectional selection, we observed that for all the data sets
6 populations are enough to have a good true-positive

TABLE 4

SNP simulation results

True: Balancing selection Neutral Directional selection

Classified: Bal. Neut. Direc. Bal. Neut. Direc. Bal. Neut. Direc.

Pop-2 0 (0) 100 (98) 0 (2) 0 (0) 799 (743) 1 (57) 0 (0) 86 (62) 14 (38)
Pop-6a 58 (73) 42 (26) 0 (1) 34 (44) 751 (714) 15 (42) 0 (0) 39 (29) 61 (71)
Pop-10 82 (85) 18 (13) 0 (2) 31 (44) 747 (719) 22 (37) 0 (0) 18 (11) 82 (89)
Pop-20 97 (98) 3 (2) 0 (0) 25 (40) 756 (728) 19 (32) 0 (0) 8 (7) 92 (93)
Fst-0.05 10 (25) 90 (74) 0 (1) 10 (34) 772 (728) 18 (38) 0 (0) 27 (18) 73 (82)
Fst-0.10 33 (49) 67 (50) 0 (1) 22 (39) 763 (720) 15 (41) 0 (0) 38 (28) 62 (72)
Fst-0.15a 58 (73) 42 (26) 0 (1) 34 (44) 751 (714) 15 (42) 0 (0) 39 (29) 61 (71)
Fst-0.25 62 (76) 38 (23) 0 (1) 34 (51) 756 (701) 10 (48) 0 (0) 32 (17) 68 (83)
Size-15 32 (52) 68 (47) 0 (1) 14 (33) 772 (729) 14 (38) 0 (0) 32 (25) 68 (75)
Size-30a 58 (73) 42 (26) 0 (1) 34 (44) 751 (714) 15 (42) 0 (0) 39 (29) 61 (71)
Size-50 61 (78) 39 (22) 0 (0) 31 (51) 741 (710) 28 (39) 0 (0) 22 (17) 78 (83)
Size-100 61 (76) 39 (24) 0 (0) 30 (52) 745 (711) 25 (37) 0 (0) 25 (22) 75 (78)

Numbers of SNP loci simulated under (‘‘true’’) balancing selection, neutrality, and directional selection that were classified in
each category using a reversible-jump cutoff of 0.86 (0.79) that give false-positive rates of 5% (10%) are shown. Bal., balancing
selection; Neut., neutrality; Direc., directional selection.

a These data sets represent the same reference data set that is replicated in the table to make comparisons between results.
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rate. However, for balancing selection, we need 10
populations with AFLPs and SNPs to reach a compara-
ble result. Microsatellites, on the other hand, perform
fairly well even with only 2 populations.

The level of genetic differentiation also plays an
important role for the detection of balancing selection.
Weak genetic differentiation (FST # 0.05) makes it
almost impossible to detect balancing selection with
AFLP or SNP data. On the other hand, with micro-
satellites, even a small amount of genetic differentiation
FST ¼ 0.01 allows us to detect balancing selection. Here
we did not note a negative influence of high genetic
differentiation on the detection of directional selection
but we conducted further simulations (not presented
here) with only two populations, and, in that case,
having a high genetic differentiation (0.25) leads to low
power to detect directional selection.

The sample size is also important for the detection of
balancing selection. The lower false-positive rate ob-
served in cases of small sample size is due to the lack of

power of the method to detect any loci under selection
(being true or false positives). For directional selection,
increasing the sample size is less valuable; it is possible to
obtain a correct true-positive rate with only 15 individ-
uals per population for AFLPs or SNPs and with only 10
individuals per population for microsatellites. Note that
this result is valid only because we used six populations
and FST ¼ 0.15; but, for example, if we had only two
populations and a higher genetic differentiation, it
would be necessary to have larger sample sizes.

In terms of the effect of inbreeding on the power
to detect selection using dominant markers such as
AFLPs, the results are very similar for all the FIS values
considered (Table 3), which suggests that inbreeding is
not an issue for the application of our method.

It is possible that the false-positive rate is influenced
by the proportion of selected loci in the genome. Thus,
we carried out additional simulations with a smaller
proportion (10%) of loci under selection for the default
scenario with six populations for AFLPs and SNPs

TABLE 5

Microsatellite simulation results

True: Balancing selection Neutral Directional selection

Classified: Bal. Neut. Direc. Bal. Neut. Direc. Bal. Neut. Direc.

Pop-2 75 (47) 25 (53) 0 (0) 23 (4) 765 (792) 12 (4) 0 (0) 3 (12) 97 (88)
Pop-4 100 (98) 0 (2) 0 (0) 20 (7) 764 (788) 16 (5) 0 (0) 0 (0) 100 (100)
Fst-0.01 27 (1) 73 (99) 0 (0) 21 (1) 763 (793) 16 (6) 0 (0) 0 (1) 100 (99)
Fst-0.03 90 (67) 10 (33) 0 (0) 35 (12) 744 (782) 21 (6) 0 (0) 0 (0) 100 (100)
Fst-0.05 100 (100) 0 (0) 0 (0) 17 (9) 761 (786) 22 (5) 0 (0) 0 (0) 100 (100)
Size-10 97 (88) 3 (12) 0 (0) 17 (2) 761 (792) 22 (6) 0 (0) 0 (0) 100 (100)
Size-15 100 (100) 0 (0) 0 (0) 20 (6) 766 (791) 14 (3) 0 (0) 0 (0) 100 (100)
Alpha-0.5 31 (13) 69 (87) 0 (0) 25 (4) 755 (792) 20 (4) 1 (0) 49 (69) 50 (31)
Alpha-1.0 92 (79) 8 (21) 0 (0) 15 (3) 762 (791) 23 (6) 0 (0) 7 (14) 93 (86)
Alpha-1.5 100 (97) 0 (3) 0 (0) 22 (4) 761 (792) 17 (4) 0 (0) 0 (2) 100 (98)

Numbers of microsatellites loci simulated under (‘‘true’’) balancing selection, neutrality, and directional selection that were
classified in each category using a reversible-jump cutoff of 0.85 (0.98) are shown. The 0.85 cutoff gives the same false-positive
rate of 5% used for AFLP and SNP data sets. The 0.98 cutoff gives a false-positive rate of only 1%. Bal., balancing selection; Neut.,
neutrality; Direc., directional selection.

TABLE 6

Simulation results when 10% of the loci are subjected to selection

True: Balancing selection Neutral Directional selection

Classified: Bal. Neut. Direc. Bal. Neut. Direc. Bal. Neut. Direc.

AFPLs 10% 18 (31) 32 (19) 0 (0) 11 (49) 861 (802) 28 (49) 0 (0) 17 (15) 33 (35)
AFLPs 20% 37 (60) 63 (40) 0 (0) 20 (61) 758 (702) 22 (37) 0 (0) 29 (28) 71 (72)
SNPs 10% 28 (38) 22 (12) 0 (0) 26 (48) 856 (911) 18 (41) 0 (0) 19 (11) 31 (39)
SNPs 20% 58 (73) 42 (26) 0 (1) 34 (44) 751 (714) 15 (42) 0 (0) 39 (29) 61 (71)
SSRs 10% 50 (50) 0 (0) 0 (0) 22 (5) 866 (891) 12 (4) 0 (0) 0 (0) 50 (50)
SSRs 20% 100 (98) 0 (2) 0 (0) 20 (7) 764 (788) 16 (5) 0 (0) 0 (0) 100 (100)

Numbers of AFLP, SNP, and microsatellite loci simulated under (‘‘true’’) balancing selection, neutrality, and directional selec-
tion that were classified in each category using reversible-jump cutoff values given in Tables 3–5 are shown. The results for the
simulations with 20% of selected loci in the genome are also shown. Bal., balancing selection; Neut., neutrality; Direc., directional
selection.
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and four populations for microsatellites (see Table 2).
The false-positive and false-negative rates are similar to
those observed when 20% of the loci are under selection
(see Table 6). This is another advantage of the model
proposed by Beaumont and Balding (2004) that we
use here over previous approaches. As explained in the
Introduction, this is due to the fact that this model does
not require us to input parameters estimated on neutral
markers that could be biased by the presence of a high
number of selected loci (Beaumont and Nichols 1996;
Vitalis et al. 2001).

Comparison with Beaumont and Balding’s (2004)
method: Instead of using an approach to estimate the
probability that ai is different from 0, such as the one we
propose here, Beaumont and Balding (2004) adopted
a simple informal criterion for identifying values of ai

that are ‘‘significant.’’ More precisely, they define ai to
be ‘‘significant at level P’’ if its equal-tailed 100(1 – P)%
posterior interval excludes zero. For example, if P¼ 5%,
then ai is significantly positive if its 2.5% quantile is
positive and is significantly negative if its 97.5% quantile
is negative. In the former case we would conclude that
the locus is subjected to directional selection while in
the latter we would conclude that it is subjected to
balancing selection. We use the three series of data sets
presented above to compare the two different ways of
detecting selection. We applied the informal criterion
on all these simulated data sets using the same false-
positive rate of 5% (it corresponds, respectively, to a
cutoff value of the informal criterion of 0.95, 0.96, and
0.98 for AFLPs, SNPs, and microsatellites). A summary
of the results is presented in Table 7. The global PPVs
are sightly higher for the reversible jump than for the
informal criterion in seven of the nine cases. The results
are very similar between the two approaches for micro-

satellites and the new method seems to be particularly
useful for AFLPs and SNPs.

Spatial population expansion model: The results of the
simulations show that sampling design can affect the
ability of our method to detect outliers. Indeed, even
though we used a neutral mutation model to generate
the synthetic data, we identified loci that had a posterior
probability .0.99 of being outliers. More precisely, we
observed 3.5, 3.0, 2.2, and 1.7% of false positives for
scenarios based on the HGDP–CEPH data set with
53, 26, 22, and 19 populations, respectively. Addition-
ally, the scenario with uniform sampling led to a false-
positive rate of 10.6%.

Including markers with different mutation rates can
also affect the performance of our method. The analysis
that included all 3000 loci without distinguishing
between di-, tri-, or tetranucleotides led to a false-
positive rate of 2.2%. On the other hand, carrying out
separate analyses for each type of microsatellite and
then pooling the results led to a false-positive rate of
1.6%. Additionally, the simulations allowing for variable
mutation rates within each class of microsatellite led to
4.5% false positives when carrying out a separate analysis
for each type and to 5.6% when analyzing all 3000
markers simultaneously.

Our results are in accordance with those of Currat

et al. (2006), showing that severe population bottlenecks
during a geographic expansion can lead to false-positive
detection of selection. However, this problem can be
avoided by excluding isolated populations from the
analysis. In the case of humans, this is done by consid-
ering only the 19 continental populations of Africa,
Europe, and Asia. It is worth emphasizing that a uniform
sampling design that includes many isolated popula-
tions is likely to lead to a high false-positive rate and,

TABLE 7

Simulation results summary

Marker: AFLPs SNPs Microsatellites

Method used: IC (%) RJ (%) IC (%) RJ (%) IC (%) RJ (%)

Directional selection
False positive 3.2 2.5 2.3 2.1 2.5 2.3
True positive 70.8 70.4 65.6 67.3 94.1 94.0
PPV 73.5 78.0 78.5 80.1 82.4 83.7

Balancing selection
False positive 1.9 2.5 2.8 2.9 2.5 2.7
True positive 33.7 40.2 45.8 49.6 78.7 81.2
PPV 69.4 66.7 67.1 68.2 79.8 79.1

Total
False positive 5.0 5.0 5.0 5.0 5.0 5.0
True positive 52.3 55.3 55.7 58.5 86.4 87.6
PPV 72.2 73.5 73.3 74.6 81.2 81.5

A summary of the results for AFLP, SNP, and microsatellite data sets in Tables 3–5 is shown. The PPV is defined as the proportion
of markers detected as being under selection that are correctly classified. Results are presented using cutoff values that lead to a
5% total false-positive rate for both the reversible-jump (RJ) method introduced here and the informal criterion (IC) originally
proposed by Beaumont and Balding (2004).
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therefore, should be avoided. Finally, we showed that
including in the same analysis loci with different
mutation rates can also increase the false-positive rate.
For microsatellites, performing separate analyses on di-,
tri-, and tetranucleotides solves this problem, but biases
due to variable mutation rate within each class of
microsatellite are difficult to avoid.

APPLICATION

Humans: We use the HGDP–CEPH Human Genome
Diversity Cell Line Panel presented by Cann et al. (2002)
to identify regions of the human genome that may be
influenced by selection. The last version of this data set
consists of 1056 individuals from 53 subpopulations,
which were scored for 835 microsatellites. On the basis
of the results of our realistic simulation study, we chose
to use the same 19 continental populations from Africa,
Europe, and Asia to minimize the false-positive rate. We
kept only microsatellites that were strictly di-, tri-, and
tetranucleotidic, which led us to select 106 dinucleo-
tides, 127 trinucleotides, and 327 tetranucleotides,
leading to a total of 560 markers. To further minimize
the detection of false positives we adopted the best
strategy identified by our simulations and conducted
separated analyses for each of the three types of markers
and grouped the results. We used the same cutoff value
of 0.99 as in the simulated data set. We found 131 loci
under selection: 86 were detected as being under
directional selection and 45 under balancing selection.

This represents 23% of the studied loci and is much
higher than the false-positive rate estimated from the
simulation study that considered similar demographic
and sampling scenarios (4.5%). These results suggest
that a high number of loci have been subject not only to
directional (15%) but also to balancing selection (8%)
in the course of human evolution.

We identified the microsatellite loci that are located
within a gene whose position is well defined, using the
NCBI UniSTS database (http://www.ncbi.nlm.nih.gov/
sites/entrez?db¼unists). We found eight microsatellites
close to known genes under directional selection of
which two were located on the X chromosome and 10
known genes under balancing selection, all located on
autosomes (Table 8). We then used the Online Mende-
lian Inheritance in Man (OMIM) database (ftp.ncbi.
nih.gov/repository/OMIM/morbidmap) to establish
the putative function of the 18 genes identified using
NCBI and established that 15 genes (8 under balancing
and 7 under directional selection) are referenced as
implicated in a genetic disease. These results are in
accordance with those of Clark et al. (2003) who
showed that the genes under selection are overrepre-
sented in this database.

Littorina saxatilis: To present an application to AFLPs,
we reanalyzed the Littorina saxatilis data set of Wilding

et al. (2001), studied also by Grahame et al. (2006). The
data consist of 290 polymorphic AFLP loci, surveyed in
four different rocky shores in Britain: Thornwick Bay,
Flamborough (TH); Filey Brigg (FY); Old Peak (OP);
and Robin Hood’s Bay (RB). In this region L. saxatilis is

TABLE 8

Genes under natural selection

CEPH index Chromosome a FST OMIM Gene

602 3 �1.45 0.00997 No ZPLD1
570 12 �1.42 0.00882 Yes TMEM16B
471 12 �1.09 0.0117 Yes PRMT8
604 6 �1.02 0.015 Yes EPHA7
674 10 �0.981 0.0157 Yes OIT3
234 16 �0.96 0.0213 No RPL3L
600 5 �0.955 0.013 Yes PDE4D
477 3 �0.919 0.0134 Yes GPD1L
433 7 �0.905 0.0136 Yes PRKAG2
532 7 �0.694 0.02 Yes PLXNA4
495 1 0.523 0.0633 Yes C8B
337 X 0.589 0.0551 Yes IL1RAPL1
15 4 0.738 0.0771 Yes SLEB3
739 17 0.865 0.0721 Yes RAB37
351 2 0.945 0.0766 No ARMC9
22 1 1.07 0.103 Yes LYST
265 6 1.08 0.136 Yes PHACTR1
26 X 1.28 0.125 Yes EBM

Genes identified as under balancing (a , 0) and directional (a . 0) selection with the corresponding pos-
terior estimate of FST are shown. Highest absolute values of a suggest a stronger effect of selection. For each
gene, we present the chromosome location and the corresponding marker number in the HGDP–CEPH da-
tabase. We also indicate whether the genes are present in the Online Mendelian Inheritance in Man (OMIM)
database.
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found as two morphological forms (‘‘H’’ and ‘‘M’’) that
show good evidence of partial reproductive isolation.
One set of individuals of each morphological form
was sampled in each shore, with the exception of the
RB shore where two sets of M were sampled. Each
of the eight resulting samples is composed of 43–51
individuals.

In each shore two hypotheses can explain the
observed divergence between the two morphological
forms (Grahame et al. 2006): an allopatric divergence
followed by a secondary contact or a primary parapatric
divergence (Wilding et al. 2001). In both cases pop-
ulations are likely to be exchanging genes only in the
region of contact, and using the eight populations in a
single analysis would lead to a violation of the de-
mographic model assumed by our inference method.
This is also supported by the neighbor-joining tree
constructed by Wilding et al. (2001) from the loci they
identified as neutral: populations were clustered by site
(they also constructed a tree using all loci, which led to a
grouping of populations by morphotypes H and M).

Wilding et al. (2001) used a modified version of the
Fdist model (Beaumont and Nichols 1996) to detect
selection from dominant markers. They analyzed three
data sets, corresponding to the three shores where both
morphotypes were sampled, each one containing two
populations. One potential problem of the Beaumont

and Nichols (1996) method is the necessity to estimate
Nm from the data set to perform simulations with this
target value. However, the estimation of Nm assumes
neutrality and is overestimated in the presence of di-
rectional selection. To avoid this problem, they used an
iterative procedure whereby the mean FST calculated
from the full data set is used as input of a first Fdist run,
and then it is iteratively modified as outlier loci are
removed. After four such steps, Wilding et al. (2001)
retained only loci that were lying above the 0.99 quantile
in all three H–M comparisons and identified 15 loci
under selection.

We made the same three analyses of each two-
population data set using our method. The Bayesian
model we used takes explicitly into account the loci
under selection in the estimation of FST coefficients in
Equation 3 and, therefore, does not suffer from the
problem mentioned above. Beaumont and Balding

(2004) compared the critical P-values between the Bayes-
ian method and Fdist by matching the false-positive rate
of 6800 neutral loci. They showed that a level of 1% for
Fdist is equivalent to a level of 10% for the Bayesian
model. Here, the sensitivity study above indicates that a
10% level for the informal criterion used by Beaumont

and Balding (2004) is equivalent to a cutoff value of 0.7
for the posterior probability estimated by our reversible-
jump version of the method. We identified 13 loci with a
probability .0.7 and they all belong to the list of 15 loci
identified by Wilding et al. (2001). The two missing loci
are named ‘‘A37’’ and ‘‘F11’’ by Wilding et al. (2001)

and, according to our method, both are identified as
outlier in only two of the data sets. More precisely, the
A37 locus has a posterior probability of only 0.53 in the
Filey data set, and the F11 locus has a posterior
probability of 0.65 in the Old Peak data set. These loci
are at the lower tail of the allele-frequency distribution
estimated by Wilding et al. (2001) in two of the three
data sets considered. If we were to use a cutoff value of
0.65 instead of 0.7 we would include the F11 locus in the
list of selected loci but also an additional marker not
found by Wilding et al. (2001).

We also analyzed these three sets of two populations as
a single data set of six populations to investigate the
influence of the violation of the demographic model
assumed by our method. Using a cutoff value of 0.99, all
13 loci found in the pairwise analyses are identified as
outliers, but we also find 4 additional loci. The results of
the simulations of the spatial expansion model suggest
that these loci could be false positives due to the violation
of the demographic model assumed. As was the case for
the human data set, these 4 loci have a posterior estimate
of a situated at the tail of the distribution of a-values for
loci with a posterior probability .0.99. More precisely,
the maximum estimated value of a for these 4 additional
loci is 1.89, while most of the loci identified as outliers
(7 of 13) in the pairwise analyses have a posterior
estimate of a greater than this value.

To establish which of the two approaches is the most
appropriate one, we modified the simulation scheme
presented above to incorporate a different demo-
graphic scenario. More precisely, instead of simulating
the six populations under an island model, we simulated
first three populations from this model (for the three
shores) and then, from each one of them, generated
allele frequencies for two populations (corresponding
to the two different morphotypes). This demographic
history mimics the neighbor-joining tree constructed by
Wilding et al. (2001) from the loci they identified as
neutral. We chose simulation parameters to obtain data
sets close to the real one. We simulated 290 such loci and
50 individuals in each population. We used FST ¼ 0.05
between the ancestral population and the three in-
termediate populations and FST ¼ 0.03 between the
intermediate populations and the six populations sam-
pled. The ancestral allele frequencies were simulated
from a beta distribution with both parameters equal to
0.5 and we chose FIS¼ 0.5. We added selection to 20 loci,
using a ¼ 2.5.

We performed the same analysis on this data set as
with the real one: 17 loci over the 20 loci under selection
had a posterior probability .0.7 in all three pairwise
analyses. We did not detect any false positives and all 3
false-negative loci were identified as outliers in two of
the three analyses. We then carried out an analysis with
the six populations as a single data set and identified all
20 loci as selected with a posterior probability .0.99.
However, we also identified 4 additional false-positive
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loci. The maximum estimated value of a for these 4
additional loci is 2.02, while only 11 of the 20 true outlier
loci have a posterior estimate of a greater than this
value. These results suggest that, under this particular
demographic model, it is better to carry out pairwise
analyses instead of a single global one. Moreover, it
seems that the best strategy is to identify as selected all
loci that are outliers in at least two of the three pairwise
analyses. Indeed, if we use such an approach, then we
retrieve all 20 loci under selection without identifying
any false positives. Note that we can obtain the same
result even if we raise the cutoff probability to 0.78.

Applying this approach to the periwinkle data set of
Wilding et al. (2001), we identify as selected all 15 loci
originally found by them and also 6 additional outliers.
We obtain the same result even if we raise the cutoff
probability to 0.81. Thus, our analyses suggest that a
total of 21 loci are influenced by selection in this species.

DISCUSSION

We present an extension of Beaumont and Balding’s
(2004) method to detect outlier loci that is applicable to
both dominant and codominant markers. Additionally,
we propose a rigorous way of estimating the posterior
probability of a given locus being under the effect of
selection. In their original formulation, Beaumont

and Balding (2004) focus on the posterior distribution
of locus-specific effects, ai, and use an approximate
method to determine if a given locus is significantly in-
fluenced by selection. On the other hand, the RJMCMC
method we implemented is based on the idea that
Equation 3 can give rise to two models, a null model
M0 that includes only population-specific effects and an
alternative model M1 that includes both locus- and
population-specific effects. Thus, it is possible to directly
estimate the posterior probability of each alternative
model and on the basis of them decide which are the loci
subject to selection. The main difference between the
two methods is that the original one uses a cutoff value
based on the false-positive rate that one is willing to
accept. For example, if the threshold value is 99%, we
expect to have 1% of false positives. However, one is not
able to determine what is the probability that a given
locus is or is not influenced by selection. In this sense,
Beaumont and Balding’s (2004) approach uses the
same strategy as that of frequentist methods, where the
objective is to reject a null hypothesis without being able
to estimate what is the probability that this hypothesis is
true. Our method, being fully Bayesian, allows us to
rigorously estimate both P(ai ¼ 0 j data) [from the
posterior probability P(M0 j data)] and P(ai 6¼ 0 j data)
[from the posterior probability P(M1 j data)]. Once a
locus has been identified as being influenced by
selection on the basis of P(M1 j data) we can determine
if it is under balancing or directional selection using the
mode of the posterior distribution P(ai j data); a neg-

ative value indicates the former while a positive value
indicates the latter.

Recently Riebler et al. (2008) presented an approx-
imate method to identify nonneutral loci that is not
based on the posterior distribution of ai. They propose
to introduce a Bernoulli-distributed auxiliary variable, di

to indicate whether or not a locus is subjected to
selection. Then, they classify a locus i as being under
selection if the posterior probability P(di ¼ 1 j data) is
larger than a threshold value that is set by means of a
simulation study. The authors propose to use a cutoff
value of 0.17 based on simulations of a selective sweep
under a Wright–Fisher model. The problem with this
approach is that it is unlikely that this cutoff value is
generally applicable to all data sets and all demographic
scenarios. Additionally, it is clear that P(di ¼ 1 j data)
cannot be interpreted as the probability that the locus is
under selection; the most we can say is that it is
proportional to this probability. Otherwise, it would
imply that we are willing to accept that a locus is non-
neutral even if the probability for this to be true is as low
as 0.17. Our method, on the other hand, directly
estimates this probability and allows us to avoid the
use of simulations to choose a cutoff value. Of course,
our method would still need simulations to adjust this
cutoff value in cases of strong violation of the de-
mographic model assumed, like we did for the human
case.

With our approach, it is clear that for good-quality
data we should choose a stringent criterion such as
P(ai 6¼ 0 j data) $ 0.99, which leaves very little room
for false positives. Of course, as our simulation study
suggests, we may want to choose a somewhat lower
threshold (e.g., 0.95) for dominant markers to take into
account the fact that they are less informative than
codominant ones. The full Bayesian estimation of the
probability that a locus is influenced by selection pro-
vided by our method also allows the consideration of
other factors when choosing a cutoff value. For exam-
ple, if the purpose is to study local adaptation using a
model species for which many genetic resources exist,
we may be willing to use a not very stringent criterion
(e.g., 0.90) because the costs associated with localizing
the position of the candidate loci for subsequent
sequencing may not be too high. On the other hand,
if we are dealing with a nonmodel species, we may want
to use a very restrictive criterion [e.g., P(ai 6¼ 0 j data) $

0.99 or 0.999] for deciding whether or not the species in
question is appropriate for a study of local adaptation,
based on the number of candidate loci found in a
genome scan.

Our simulation study demonstrates that, as expected,
codominant markers are better suited for detecting
selection than dominant ones. More precisely, if we were
to use the same cutoff value for both AFLPs and SNPs,
we would obtain a much lower true-positive rate (pro-
portion of loci that are correctly identified as subject to
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selection) for the former than for the latter. Of course,
the false-positive rate for AFLPs would be lower but
simply because we would identify very few (if any) loci as
being influenced by selection. For this reason we de-
cided to compare performance among markers by
fixing the false-positive rate to 5% by choosing a lower
threshold value for AFLPs than for SNPs and micro-
satellites. Another interesting but also expected result is
that multiallelic markers such as microsatellites are
much more powerful than biallelic markers such as
SNPs (cf. Table 7). Moreover, we note that although
Beaumont and Balding (2004) conclude that the
power of the method to detect balancing selection is
very low, our analyses showed that this is not the case if
we use microsatellites or some other multiallelic marker.
Thus, the degree of polymorphism is one of the most
important factors determining the power to detect
outlier loci. In this regard, we note that the simulation
results indicate that microsatellites seem more informa-
tive than SNPs. However, the latter are much more
abundant and many SNPs may be available for a given
region, in which case, they could be grouped into
haplotypes and be treated in a similar way to micro-
satellites. Of course, this is possible only in the case of
species whose genome is fairly well known, such as
humans and other model species.

We also identified three other parameters that are
particularly important determinants of power: the
sample size, the number of populations, and the level
of genetic differentiation. In general, a sample size of 30
individuals seems enough when the study considers six
or more populations. In terms of the effect of neutral
genetic differentiation, extremely low FST values de-
crease the power to detect balancing selection. On the
other hand, very high values limit the detection of
directional selection. Note, however, that these prob-
lems are avoided by using multiallelic markers.

Foll et al. (2008) showed that the estimation of FIS

from dominant markers is strongly biased by the
ascertainment of markers when assuming the island
model. However, in our case we are concerned only with
the potential bias in the estimation of the locus-specific
effect and our simulation study shows that it suffices to
incorporate the uncertainty about the inbreeding co-
efficient to avoid such a bias. In the present formulation
we let FIS move freely between 0 and 1. It would be
possible to incorporate prior knowledge about the
degree of inbreeding by using a narrower interval for
the prior distribution of FIS.

A common problem in all genome-scan methods
(e.g., Beaumont and Nichols 1996; Vitalis et al. 2001;
Schlotterer 2002), including ours, is the assumption
of independence among loci. Although this may not
be important when considering a limited number of
markers, it may have a large effect in the case of genome
scans that use millions of SNPs, in which case, many
markers will be in linkage disequilibrium. However, it is

not clear what type of bias will be observed. For this it
would be necessary to carry out a detailed simulation
study that considers linked loci, something that falls
outside the scope of this article. In any case, it may be
possible to minimize potential biases using the strategy
mentioned above, namely, the grouping of markers
from the same region into haplotypes.

Another common problem in all genome-scan meth-
ods is the possibility that the outlier behavior of a locus is
due to differences in mutation rates among loci and not
to selection; this is particularly the case when using
microsatellites. Our simulation study shows that this
problem can be avoided by carrying out separate
analyses for each type of marker. For example, in the
case of microsatellites it is best to do separate analyses
for di-, tri-, and tetranucleotides.

We investigated the potential biases that could be
introduced if the demographic history of the species
under study does not follow the model assumed by our
method. For this purpose we generated synthetic data
with SPLATCHE (Currat et al. 2004), using the human
population expansion example as a template. The results
show that including populations that underwent severe
bottlenecks can increase the false-positive rate, particu-
larly for directional selection. However, this problem
disappears if all isolated populations are excluded from
the analysis, in which case the false-positive rate is 4.5%
when mutation rates within each class of microsatellite
vary. Moreover, it can be as low as 1.6% if mutation rates
do not vary within each class of microsatellites (but they
do vary among markers).

As an example of an application of the method with
codominant markers, we analyzed the HGDP micro-
satellite database (Cann et al. 2002) and found that 15%
of the markers are under directional selection and 8%
are under balancing selection. Eighteen of the outlier
loci are located within known genes whose position is
well defined. Interestingly, a total of 15 correspond to
genes implicated in genetic diseases. None of them are
included in the table of the top 50 genes showing
evidence for positive selection presented by Nielsen

et al. (2005). This difference is likely to be due to the fact
that their analysis is based on the comparison of human
and chimpanzee genomes and includes only genes that
are present in both species.

We also present an example of an application with
dominant markers. We analyzed the L. saxatilis data set
published by Wilding et al. (2001) and consisting of two
samples from each of three shores in which two
different morphotypes coexisted. Following Wilding

et al. (2001) we first carried out separate analyses for
each shore, each including a sample from each mor-
photype, and chose to identify as selected only the loci
that were outliers in all three pairwise analyses. Using
this approach we detected only 13 of the 15 loci found
by Wilding et al. (2001). We also conducted an analysis
with all six populations and identified a total of 17
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outlier loci. To decide which of the two approaches was
more appropriate we carried out a simulation study
based on the demographic history of L. saxatilis and
found that the use of the first approach can lead to false
negatives while the use of the second one can lead to
false positives. Thus, we propose a third strategy con-
sisting of identifying as selected all loci that are outliers
in at least two of the three pairwise analyses. Using this
approach on the simulated data recovers all the selected
loci and does not lead to false positives. In the case of the
L. saxatilis data set we identified 21 selected loci, 6 more
than Wilding et al. (2001).

The human and the L. saxatilis data sets are two good
examples of how to deal with the violation of the
demographic model assumed by genome-scan methods
based on the multinomial-Dirichlet distribution. For the
human data set we showed that excluding populations
that underwent a severe bottleneck and identifying as
selected only those loci for which P(a 6¼ 0 j data) $ 0.99
eliminate most of the false positives. For the L. saxatilis
data set, taking into account the demographic history by
carrying out three pairwise analyses, one for each shore,
allows us to avoid all false-positive and false-negative loci
at the same time. Thus, some preliminary information
about the demographic history of the species under
study suffices to come up with an analysis strategy that
minimize biases.

A natural extension of our method would be to
incorporate the full demographic history into the anal-
ysis instead of imposing a simple demographic model.
If the demographic history is known, it may be possible to
simply incorporate it into the estimation process.
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