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Predicting how species distributions might shift as global climate
changes is fundamental to the successful adaptation of conserva-
tion policy. An increasing number of studies have responded to this
challenge by using climate envelopes, modeling the association
between climate variables and species distributions. However, it is
difficult to quantify how well species actually match climate. Here,
we use null models to show that species–climate associations
found by climate envelope methods are no better than chance for
68 of 100 European bird species. In line with predictions, we
demonstrate that the species with distribution limits determined
by climate have more northerly ranges. We conclude that scientific
studies and climate change adaptation policies based on the
indiscriminate use of climate envelope methods irrespective of
species sensitivity to climate may be misleading and in need of
revision.

bioclimatic niche � global change � null models � ornithology �
species distribution

As global climates warm, some species distributions are
moving upward and poleward (1, 2). Predicting how indi-

vidual species respond to climate change allows assessment of
extinction risk and spatial planning of conservation activity (3,
4). Climate envelopes (or the climatic niche concept) are the
current methods of choice for prediction of species distributions
under climate change and their use is growing rapidly in many
areas of ecology (5–7). However, although climate envelope
methods and assumptions have been criticized as ecologically
and statistically naïve (8, 9), there exists no quantitative evalu-
ation of the importance of these criticisms.

Because it is axiomatic that climate influences species distri-
butions (8), the climate envelope approach of matching distri-
butions to climate is intrinsically appealing. However, the use of
such simplistic models is risky on both biological and statistical
grounds: there are many reasons why species distributions may
not match climate, including biotic interactions (10), adaptive
evolution (11), dispersal limitation (12), and historical chance
(13). Although debate began before the current explosion in
climate envelope studies (8, 9), there remains no quantitative
information that would allow assessment of how well, or even if,
species distributions match climate. Here, we quantify the match
of species distributions to environment by generating synthetic
species distributions that retain the spatial structure in the
observed distributions but are randomly placed with respect to
climate.

Ideally, the predictions of climate envelope models would be
verified on an entirely independent dataset (14, 15) and some
attempts have been made at this, both by prediction of the
potential distribution of introduced species in new continents
(16) or through backward prediction (hindcasting) of prehistoric
distributions reconstructed from the fossil record (17). Unfor-
tunately, truly independent data are generally unavailable, so the
usefulness of a climate envelope model is typically measured by
how well it fits a subset of the current species distribution
reserved for evaluation (8). This match is usually assessed by
using the area under the receiver operating curve (AUC) (18) or
other goodness-of-fit measures such as Cohen’s Kappa (19).

Species with current distributions that are not well modeled by
climate envelopes will have low goodness-of-fit scores and are
considered less likely to be limited by climate. Because reported
goodness-of-fit scores are often high, it is widely accepted that
climate does determine many species distributions, suggesting
climate envelope-based predictions of future distribution should
be robust (4, 8, 19). Unfortunately, the most popular goodness-
of-fit statistic (AUC) can be misleadingly high (18), but there has
been no attempt to quantify how often high goodness-of-fit
scores, and hence ostensibly good matches between distribution
and climate, can occur by chance alone. Consequently, the
degree to which species really are constrained by climate remains
unresolved. Probably the main reasons why this has not been
investigated to date are the conceptual and technical challenges
presented by formulating null models for spatially autocorre-
lated patterns (20).

The development of appropriately constrained null models
offers an intuitive method for assessing the scale of this problem:
if climate envelopes fit real species distributions no better than
they do null model distributions, we should conclude that climate
envelopes are misleading (21). Alternatively, if real climate
envelopes are significant improvements on the null models, we
should retain confidence in their predictions. What, then, is an
appropriate null model? An appropriate null model is a pattern
that retains everything in the real pattern, but excludes only the
factor of interest (21): in this case, climate. The null distribution
implicit in the nonspatial statistical methods used in current
climate envelope methodologies is that of complete spatial
randomness: the match between climate and a random scatter of
presence/absence across the survey area. Such a null model is
clearly inappropriate beccause all species distributions show
autocorrelation, potentially attributable to both intrinsic factors
such as dispersal and extrinsic factors such as climate, land use,
and other anthropogenic activities (20). Indeed, even neutral
models predict that species distributions will be autocorrelated
(22).

A better null distribution would be generated by simply cutting
and pasting the true distribution onto a different section of the
map with the new location and orientation selected at random.
This would clearly be identical in autocorrelation structure to the
true distribution, but any causal relationships that limited the
original distribution would be broken. In practice, actual geog-
raphy of the shape of continents makes this cutting and pasting
impossible without imposing unreasonable restrictions on the
new location: parts of the new distribution may otherwise fall
into the sea. Therefore, instead of either a random scatter of
presences or cutting and pasting a real distribution, the simplest
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appropriate null model involves the simulation of distribution
patterns that have the same prevalence and the same spatial
structure as actual distributions, but that have no deterministic
relationship with the covariates of interest (23), in this case,
climatic variables (Fig. 1).

Results
Using data on the European distribution of 100 bird species (24),
we generated 99 synthetic distribution patterns for each species.
For each of the 100 species, we fitted climate envelope models
to both the true distribution and the 99 simulated distributions
by using standard climate variables (1, 14, 19). AUC scores for
the observed species distributions were similar to those in other
published studies (range, 0.71–0.994; median, 0.869; supporting
information (SI) Table S1) (19, 25–27), but these were ranked in
the top five of the 99 simulations for only 32 species (Fig. 2A,
species with significant patterns are identified in Table S1).
These findings are not substantially affected by choice of sig-
nificance level, preferred goodness-of-fit statistic, or choice of
climate variables (number of significant patterns: range, 18–52;
median, 33; Table S2).

Additionally, because climate is widely believed to have
stronger influence in more extreme environments (28, 29), we
predicted that these 32 species would have a more northerly
distribution than those that were not fitted better than null
models: an effect that is clear in our data even after controlling
for potentially confounding effects of the proportion of the
global distribution contained within the study area (Fig. 3;
F1,96 � 10.8, P � 0.001).

These results are potentially of great concern, but before
concluding that �60% of our climate envelopes are misleading,
it is important to assess the power of our null model methods to
identify strongly deterministic patterns. It could be that failure
to detect matches between species distributions and climate is
due to insufficient information and poor statistical modeling
rather than to a true absence of association. Consequently, we
generated 100 simulated distributions that had the same prev-
alence as the 100 real species but a perfect climatic match. Using
these patterns, we repeated our null model procedure, generat-
ing 99 simulations with similar spatial structure and prevalence
for each pattern and fitting climate envelopes to all deterministic
and simulated distributions. We found that 99 of these 100

simulated species perfectly matching climate had AUC scores
ranked within the top five of the null models, demonstrating that
our method correctly identifies the pattern showing a determin-
istic climatic signal in a sample of null European distributions.
Next we generated 100 simulated species distributions with both
a deterministic component and a component of added noise
(the noise component comprised between 80% and 20% of the
distribution) and repeated the process. Here, AUC scores for the
deterministic patterns were ranked in the top five of the 99
distributions with added noise for 72 species (Fig. 2B). Full
details of the power analysis are available as SI Text, but our
method correctly identified patterns that were at least 50%
deterministic signal in 96% of cases (Fig. S1).

Discussion
Our results are a quantitative assessment of the degree to which
widely used climate envelope approaches are fit for purpose.
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Fig. 1. Output from the null distribution algorithm. (A) Real distribution
(Serinus serinus) with presence indicated in black, absence in gray. (B and C)
Two realizations of the null distribution. (D) Semivariograms of the real
distribution (black) and 99 simulations (thin gray): note that the real distri-
bution falls entirely within the null distributions.

Rank of real distribution
F

re
qu

en
cy

0 20 40 60 80 100

0
10

20
30

40

A

Rank of deterministic distribution
0 20 40 60 80 100

0
20

40
60

80

B

Fig. 2. Histograms of ranked climate envelope AUC scores of 100 distribution
patterns among 99 null models. (A) 100 real species distributions. (B) 100
semideterministic patterns used in the power analysis. Black bar indicates the
number of species for which the AUC score for the distribution of interest was
in the top 5% of randomizations: 32 species for real species, 72 for the power
analysis.
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Fig. 3. Boxplot of the mean latitudes of the ranges of species that were
poorly or well fit by climate envelopes. The median is indicated by the black
line and first and interquartile range by the box. Whiskers cover the full range
of the data.
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That we use the same climate and species data that other
high-profile studies have used (3, 4, 26) and find that most
climate models are no better than chance associations is of
considerable concern. Because our power analysis suggests that
our method is highly likely to identify distribution patterns that
are strongly determined by climate, we are confident that the
distributions of most birds in our study are not strongly associ-
ated with the climate variables currently available.

It may be argued that assessing the statistical significance of
climate envelope models is inappropriate: in their simplest form
climate envelopes are widely used in ecology simply as a
descriptive characterization of niche space. However, once used
to make predictions, it is important that the models are falsifi-
able, because predictions from climate envelope models can
influence decisions (7). For example, published predictions for
the Scottish endemic Loxia scotica suggest that the species may
loose all suitable climate space and would need to move to
Iceland to escape global extinction (19). In the face of such
predictions, and given scarce conservation resources, it might be
rational to accept the inevitable extinction of this species.
However, our results suggest that although the goodness-of-fit
for our model of this species’ distribution is extremely high (e.g.,
AUC � 0.988), this model is no better than a chance association:
it is certainly not a model that should inform policy.

Does this mean that the orthodox view that macroscale bird
distributions are driven by climate is wrong? There is growing
evidence that a more cautious approach to predicting climate
impacts is required, inspired by observations that biotic inter-
actions can overwhelm the direct impacts of climate (30) and that
climate change occurs against a complex background of land-use
change and habitat fragmentation that must also be considered
(31). Our observation that northern species are more likely to
have distributions that are significantly determined by climate
could therefore be due to the expected greater influence of
abiotic factors in northern climes, but might also reflect the
greater human footprint on habitats and distributions in more
southern regions (32). Direct persecution of raptor species such
as the red kite Milvus milvus have wiped it out across much of its
native range in western Europe, whereas the distribution of
agricultural specialists such as cirl bunting Emberiza cirlus must
similarly have been quite different before the advent of modern
agriculture (24). Other historical factors may similarly affect
current distribution of European birds. Despite this inherent
uncertainty, it seems likely that there are genuine biological
causes of the differences between species in the degree to which
their distribution is associated with climate: it has been suggested
that wetland species are less well predicted by climate envelopes
than terrestrial species (19), and migrant species are less likely
to be affected by winter conditions than residents (33). Our data,
however, do not show patterns of predictability across either
wetland or terrestrial habitat preferences, or migrant status
(Table S1).

By applying our methods to other taxa in different regions
where larger latitudinal ranges are available it may be possible
to further assess whether climatic limits are genuinely weaker
than has been thought, relative to biotic interactions. Alterna-
tively, climate effects may be hidden behind significant anthro-
pogenic impact. Perhaps also the degree to which species
distributions are subject to climatic limitation is not a global
property of the distribution but varies spatially; poleward dis-
tribution limits have been suggested to be more sensitive to
climate than more equatorial limits (34). It would be relatively
straightforward to adapt our methods to test this hypothesis.

There are a number of possible artefactual reasons that may
also explain why bioclimate envelopes are unable to detect
significant climate associations. It is possible, for example, that
our results are simply a consequence of the data quality currently
available: climate data are based on interpolations of weather

stations potentially far from the location of interest, whereas
organism data may be subject to observer bias. For example, do
the large holes in the distribution of Serinus serinus in eastern
France and southeastern Spain (Fig. 1) represent genuine gaps
that are determined by unsuitable local environmental condi-
tions not shown by current climate surfaces, or are they simply
areas with poor observer coverage? It is difficult to answer these
questions at present. Furthermore, use of a 50 � 50 km grid
replicates most equivalent analyses but is a blunt tool in regions
such as the Alps and the Pyrenees where average climate on this
scale is a poor representation of the conditions experienced
within most of the square (nearly 10% of cells average over
significant altitude variability). It will be interesting to see
whether finer-scale analyses can improve on our current results,
but, whether or not the distributions of birds are truly climate-
driven, we found that by using the best available datasets and one
of the best known taxonomic groups we are currently unable to
build useful distribution models for many species.

Although we fitted climate envelopes that are similar in
goodness-of-fit to those published in the literature, this degree
of model accuracy was also possible for many null distributions
that had no relationship with climate but maintained the prev-
alence and spatial autocorrelation of real species distributions.
Because birds are perceived to be equally strongly associated
with climate as other species groups and trophic levels (26), our
results cast doubt on the predictions of climate envelope models
for all taxa, although it seems likely that further research may
reveal differences between ectotherms and endoterms (35). We
therefore conclude that many, if not most, published climate
envelopes may be no better than expected from chance associ-
ations alone, questioning the implications of many published
studies. We recommend that future work using bioclimate
envelopes take into account the likelihood that many species
distributions may match climate by chance alone.

Materials and Methods
Bird Data. Species data consisted of presence (‘‘probable’’ and ‘‘confirmed’’
breeding records)/absence within 50 � 50 km squares for 100 native bird
species taken from the European Breeding Bird Atlas west of 30°E and
excluding Svalbard and the Azores (24). We chose the 100 species used in this
analysis based on three criteria: first, all European endemics were included.
Second, we included all species with �60% of their world distribution falling
in the study area. Third, remaining species were selected at random (a list of
species is provided in Table S1, together with summaries of their distribution
and analysis results). Reason for inclusion was recorded as a measure of
endemism to be used in later analyses.

Climate Data. We used three climate parameters popular in avian climate
envelope studies (1, 14, 19): annual growing degree days �5°C, mean tem-
perature of the coldest month, and soil water availability. Additionally, be-
cause growing degree days and mean temperature of the coldest month are
highly correlated, we used the coefficient of variation in mean monthly
temperature (K), a measure of continentality. It is unlikely that all of these
variables have direct effects on all bird species, but they are perceived to have
strong indirect effects on birds and other taxa through effects on food
availability or habitat type (1, 19). Alternative climate variables are usually
strongly correlated with one or more of these variables and we found no
substantial differences in our results when using two alternative combinations
of climate variables also sometimes used in avian studies: (i) mean tempera-
ture of the hottest month, mean temperature of the coldest month, mean
number of frosty days, and the ratio of actual to potential annual evapotrans-
piration, and (ii) growing degree days, mean temperature of the coldest
month, seasonal variation in rainfall (coefficient of variation in monthly mean
rainfall), and mean monthly rain (see section on congruence in SI Text where
these datasets are referred to as climate datasets 2 and 3, respectively). Mean
monthly climate variables from 1961 to 1990 were available at 0.5° resolution
for the whole of the study area [dataset CRU CL 1.0 (36)] and were projected
onto the 50-km bird dataset by using ordinary Kriging assuming an exponen-
tial spatial structure. Soil parameters were available globally at 1° resolution
[dataset WISE.AWC (37)], were interpolated onto the 50-km squares and
combined with climate variables (38).
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Null Model Algorithm. Null models of species distributions were built from real
species distributions to preserve both prevalence and autocorrelation struc-
ture building on a published method (23). This method uses ‘‘clumping
statistics’’ that measure of the conditional probability of presence in one
square, given presence/absence in neighboring squares. Starting with a ran-
dom scatter of the required prevalence, the algorithm repeatedly swaps pairs
of squares (one with presence, the other with absence) and compares the
clumping statistics of the simulation with that of the real pattern, gradually
clumping squares until there is sufficient match. Sufficiency is assessed by
using a semivariogram. In documented code (SI Appendix) we extend this
method for larger areas and irregular data. In brief, we also use conditional
probability to assess whether changes improve the match between the sim-
ulation and real datasets, but extend it from squares that are simply first
neighbors to squares in 10 separate distance classes. Our algorithm continues
until either convergence is reached (23), or 10,000 iterations have completed.
Completing 10,000 iterations requires �1 h computer time (Dell Precision
PWS690, 2.66GHz, 3GB RAM) limiting the number of null models to 99 for each
species. Most null model exercises use 999 or even 9,999 simulations to
generate more accurate P values but using fewer does not generate bias.

This method will result in a middomain effect whereby squares in the center
of Europe will more frequently form part of the null distribution than squares
around the edge of the study area (39). Theoretically, this could lead to the
null distributions of species with prevalence close to 0.5 more regularly
overlapping with the true distribution, perhaps making differences between
null and real distributions harder to detect. This, however, is not the case in our
data (detailed in the power analysis below). Although our method preserves
prevalence and spatial autocorrelation, it does not explicitly preserve the
extent of occurrence for null distributions. In practice we found that the area
of the smallest convex polygon enclosing the entire real distribution fell
within the 95% range of the null distributions for all but 14 real distributions.
Because these 14 species showed no difference from the remaining species in
the frequency with which the models of their distribution were better than
the null distributions (�2 � 0.24, df � 1, P � 0.63), any impact of not explicitly
preserving the extent of occurrence is insignificant.

Climate Envelope Methods. All analyses were undertaken by using R v 2.6.0 (40)
(see SI Appendix for code). Climate envelope methods follow BIOMOD (41)
fitting generalized additive models (GAMs), neural networks (ANNs) and
generalized linear models (GLMs) to each dataset. For the real and 99 simu-
lated distributions of each species, we fitted climate envelopes to a random
selection of 70% of data and assessed the match between predicted and actual
distribution in the remaining 30% of data by using AUC and Kappa (�) scores
(41). For each species, we used the rank AUC and � values for the real

distribution among the 99 simulations to assess whether the real distribution
was better fitted than the simulated distributions. Because all three modeling
methods and all four goodness-of-fit measures were congruent (SI Text), we
focus here on ANN models and AUC scores, methods that are regularly
preferred in comparative studies (26, 42).

We used logistic regression to determine the effect of the mean latitude of
a species’ distribution on whether or not the real species distribution was
better fitted than the simulated distributions. To control for possibly con-
founding effects, we included a factor identifying the reason a species was
included in the sample (a measure of endemism) as a nuisance variable,
although this term had no effect on the results.

Power Analysis. For each real species distribution we generated two patterns
with the same prevalence as the real species, one completely determined by
the climate variables, another containing an element of noise. (Full details of
these methods and code for generating these patterns is provided as SI Text.)
To generate deterministic patterns we randomly selected distribution limits
along all climate axes and widened or narrowed the climatic limits until the
required number of presences was achieved. We generated noisy patterns
starting with 100 patterns wholly determined by climate as before. Next, we
allowed the ‘‘species’’ to disperse into all squares neighboring a square with
presence (generating presence in squares that are climatically unfavorable).
We then eroded these larger patterns, sequentially removing presences until
returning to initial prevalence. We selected presences for removal by com-
paring the spatial structure of the pattern with that of the real species by using
conditional probabilities, generating gaps in the distributions that approxi-
mated patterns shown by real species. This is equivalent to a species with
habitat requirements beyond that of climate alone and ensured that these
distributions had gaps in climatically favorable areas. For each of these pat-
terns we recorded the proportion of the original deterministic pattern that
remained in the final pattern as an index of the signal-to-noise ratio. In real
species distributions we have little understanding of the true signal-to-noise
ratio, although for reliable prediction of future distribution from climate
envelopes to be possible the signal must be strong relative to the noise (19).
We used each pattern as if they were real species distributions, building 99
simulations with similar spatial structure and fitting climate envelopes to all as
above.
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