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ABSTRACT Decoys As the Reference State (DARS) is a simple and natural approach to the construction of structure-based
intermolecular potentials. The idea is generating a large set of docked conformations with good shape complementarity but without
accounting for atom types, and using the frequency of interactions extracted from these decoys as the reference state. In principle,
the resulting potential is ideal for finding near-native conformations among structures obtained by docking, and can be combined
with other energy terms to be used directly in docking calculations. We investigated the performance of various DARS versions for
docking enzyme-inhibitor, antigen-antibody, and other type of complexes. For enzyme-inhibitor pairs, DARS provides both excellent
discrimination and docking results, even with very small decoy sets. For antigen-antibody complexes, DARS is slightly better than
a number of interaction potentials tested, but results are worse than for enzyme-inhibitor complexes. With a few exceptions, the
DARS docking results are also good for the other complexes, despite poor discrimination, and we show that the latter is not a correct
test for docking accuracy. The analysis of interactions in antigen-antibody pairs reveals that, in constructing pairwise potentials
for such complexes, one should account for the asymmetry of hydrophobic patches on the two sides of the interface. Similar
asymmetry does occur in the few other complexes with poor DARS docking results.

INTRODUCTION

Structure-based pairwise potentials (also called knowledge-

based or statistical potentials) have emerged as powerful tools

for finding near-native conformations in sets of structures

generated by search algorithms in macromolecular modeling,

and have substantially contributed to improving the accuracy

in protein structure prediction (1–8). Such potentials have also

been used with success in the discrimination stage of protein-

protein docking (9–15). More recently, it was shown that it is

even better to use pairwise potentials as part of the scoring

function directly in the docking, since one can substantially

increase the number of near-native structures found (16,17).

Within the framework of the inverse Boltzmann approach,

a statistical potential between two atoms of types I and J,

respectively, is defined as

eIJ ¼ �RTln
P

nat

IJ

P
ref

IJ

� �
;

where Pnat
IJ is the probability of contact between the two

atoms in the native structure, and Pref
ij is the probability of the

same contact in an appropriate reference state (1). The prob-

ability Pnat
IJ is based on the number nobs

IJ of interactions be-

tween atoms of types I and J observed in a protein complex

database, usually by calculating the frequency, i.e.,

P
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IJ ¼
n
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IJ

+
I;J

n
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IJ

:

However, defining a reference state is more difficult. The

general assumption is that the atom-type related properties

determining the distribution of pairwise interactions should

be removed as much as possible, while retaining all the other

properties of the complexes (4). Since experiments do not

provide us with such random protein complexes, additional

assumptions have to be made, and this is the point where the

various structure-based potentials start to differ (4,8,12).

Decoys As the Reference State, or DARS, is a simple and

natural approach to the construction of structure-based inter-

molecular potentials (16). To obtain protein complex struc-

tures without atom-type specific interactions for the reference

state, we generate a large decoy set of docked conformations

based only on shape complementarity as the scoring function,

and observe the frequency of interactions in these decoys.

Most structure-based potentials have been derived from folded

protein structures (2,3,5,7), and generating a meaningful set

of random structures would be difficult. However, rigid body

protein-protein docking searches only in six dimensions, and it

is completely feasible to obtain large sets of docked confor-

mations that do not depend on specific atomic interactions but

otherwise look like protein-protein complexes, providing a

close to ideal reference state.

The idea of using computationally generated putative de-

coy ligands for the training of scoring functions has been

introduced earlier with applications to virtual screening of

small molecular compounds. Smith et al. (18) selected a

number of noise molecules, in addition to known ligands, and

generated low scoring orientations for both sets of com-

pounds. The parameters of an empirical scoring function for

the virtual screening were selected to optimize the average

ranking of the known ligand crystal structure for each target

within its noise dataset. The method was further developed
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by Pham and Jain (19,20), who used a library of decoy

structures to estimate the value of repulsive terms such as

protein-ligand interpenetration instead of relying only upon

positive data (protein-ligand complexes of known affinity),

again for optimizing screening accuracy. Although DARS

also employs negative training (19), we focus on docking

rather than screening accuracy. In fact, the decoys are used to

obtain a reference state and energy parameters for the optimal

selection of correct (i.e., near-native) poses of ligands that, in

this case, are also proteins.

As will be discussed, for docking we must employ the

DARS potential in combination with other energy terms

(e.g., van der Waals and electrostatics). Therefore, we also

test various versions of the potential for discrimination ac-

curacy (i.e., the ability of finding near-native conformations

in large sets of docked structures). The advantages of the

discrimination are that DARS can be used on its own, and the

different versions of the potential can be quickly evaluated.

However, in this article the discrimination tests are primarily

used as surrogates for determining docking accuracy. In fact,

our results emphasize that generally it is better to use a high

accuracy potential as part of the docking function, rather than

generating conformations first and then ranking them based

on the potential. Therefore, after selecting the DARS version

that provides the best discrimination for a particular class of

complexes, we always combine it with the other energy terms

and test the resulting function for docking.

It is important to note that the problem of protein-protein

docking substantially differs from that of docking small li-

gands to proteins. In protein-small molecule interactions, the

binding pocket of the target is generally known, and due to

the restricted nature of the problem and the small size of the

ligand, the flexibility of the latter usually can be taken into

account. In contrast, in protein-protein docking information

on the interaction site is rarely available, and in most cases it

is necessary to explore all possible interactions, generating

and evaluating billions of putative conformations of the

complex. Due to this enormous search space, protein-protein

docking generally starts with rigid body search, frequently

using simplified protein models and simplified energy func-

tions. The use of rigid protein models requires tolerating

some levels of overlaps, and since the energy functions are

approximate, the structures that are close to the native con-

formation do not necessarily have the lowest energies. Thus,

to avoid losing potentially useful conformations it is neces-

sary to retain a large number (usually 2000–20,000) of low-

energy docked structures for further processing. Thus, the

initial docking yields a long list of candidate structures rather

than a small number of models, and obtaining meaningful

results requires some form of postprocessing, which includes

the refinement of the docked conformations, usually ac-

counting for some level of flexibility (21).

Over the last few years we have developed a multistage

docking method that performs rigid body docking, retains a

number of low energy conformations, clusters them using

pairwise RMSD as the distance measure, and then ranks the

clusters according to their size, i.e., identifying conforma-

tions that have many neighbors within a given clustering

radius (11,22). The method is based on the observation that,

in the free energy landscapes of partially solvated receptor-

ligand complexes, the free energy attractor at the binding site

generally has the greatest breadth among all local minima. It

was shown that the optimal clustering radius is ;10 Å—in

agreement with the maximum distance two proteins effec-

tively interact in solution (22). Since the native state is

identified by clustering, the goal of the rigid body docking is

to generate a substantial number of near-native structures or

hits within 10 Å RMSD from the native state. Although 10 Å

RMSD may appear to be very broad, one has to keep in mind

that the prime aim is finding the region of interest in the

conformational space, and the structures in this region will be

further refined by methods that account for the flexibility of

side chains and possibly for the flexibility of some backbone

regions.

The goals of this article are the testing and the optimization

of DARS potentials for the rigid body docking of enzyme-

inhibitor, antigen-antibody, and other type of complexes. The

tests will be performed on the complexes of the well-known

protein docking benchmark set which, with a few exceptions,

includes unbound structures of protein pairs (23). Selecting

various reference sets and varying the number of decoys, we

have derived and tested many versions of the DARS poten-

tial. It is important that we target medium-range potentials

that, combined with other energy terms, can produce con-

formations within 10 Å RMSD from the native state, rather

than trying to maximize the fraction of higher accuracy (say,

three Å RMSD) structures. The reason is that some side-chain

conformations generally differ between bound and unbound

states, and due to steric clashes the rigid docking can yield

structures with fundamentally correct interactions but with

close to 10 Å RMSD. Although the clashes can be easily

removed during refinement with flexible side chains, an

overly sensitive potential with preference for lower RMSD

structures in the rigid body docking could eliminate these

conformations. Therefore we try to make the potential rela-

tively flat in the 0–10 Å RMSD range, e.g., by restricting

consideration to simple contact potentials rather than devel-

oping potentially more sensitive ones with distance-depen-

dent interaction coefficients.

Our results confirm that, for enzyme-inhibitor pairs, DARS

provides both excellent discrimination and docking, and the

performance remains good even when using very small decoy

sets for calculating the reference probabilities. Although

DARS is much less accurate for antigen-antibody than for

enzyme-inhibitor complexes, it is slightly better than a number

of frequently used interaction potentials. Finally, for most

other types of complexes, DARS provides strong docking

results, substantially better than the ones by the competing

potentials, despite its relatively poor performance in the dis-

crimination tests. However, as already mentioned, our primary
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goal is improving medium-range rigid body docking accuracy,

and discrimination is simply a surrogate to test DARS without

the additional energy terms.

The performance of DARS for enzyme-inhibitor com-

plexes confirms that the approach can provide an excellent

reference state. However, the interpretation of the results for

antigen-antibody and other types of complexes is more dif-

ficult and poses several questions. First, we explore why

pairwise potentials yield worse discrimination and docking

results for antigen-antibody than for enzyme-inhibitor com-

plexes. In particular, we argue that for improving potentials

for antigen-antibody complexes it is necessary to account

for the asymmetry of interactions due to the imperfect com-

plementarity of the hydrophobic patches in the interface.

Second, in view of the good docking accuracy but weak

discrimination by DARS for most other complexes, we show

that discrimination quality is not a valid predictor of docking

performance if the component proteins have limited shape

complementarity.

METHODS

Developing a DARS potential requires the selection of atom types, defining

when two atoms are in contact (i.e., selecting a distance cutoff value), se-

lecting a training set of native protein complex structures, and choosing

another set of complexes to generate decoys for the reference state. A

benchmark set of complexes is also needed for testing the potential.

Here we use the 18 atom types as introduced for the atomic contact

potential (ACP) (24), an atom-level extension of the Miyazawa-Jernigan

potential (5), but note that optimizing atom type selection may improve

performance (e.g., (25,26)). Atoms i of the receptor (usually the larger pro-

tein) and j of the ligand (usually the smaller protein) are considered to interact

if their distance rij is ,6 Å. For training, we use the nonredundant database of

native protein-protein complexes collected by Glaser et al. (27) from the

Protein Data Bank (PDB). The original set includes 621 protein interfaces

from 492 PDB entries. The nonredundant character of this database was

assured by excluding proteins with .30% sequence identity to any other

member. We use the protein-protein benchmark set (23) for testing the

various potentials. The complexes in the benchmark set were removed from

the training set, resulting in 583 interfaces from 466 protein entries. The

benchmark set was partitioned into enzyme-inhibitor, antigen-antibody, and

other type subsets. As well known (21), these three types of complexes

substantially differ from each other in terms of the interface properties, and

hence will be treated separately in all tests.

In addition to exploring various DARS parameterizations, we study the

performance of three closely related atom-level interaction potentials, the

first two based on the same training set of protein complex structures but

involving the use of different reference states. In the mole fraction potential

(MFP), the reference probability Pref
IJ is defined in terms of mole fractions by

Pref

IJ ¼
n

ref

I n
ref

J

+
I;J

n
ref

I n
ref

J

;

where nref
I and nref

J are the numbers of atoms of types I and J, respectively,

occurring in a surface layer of each component protein. Thus, the number of

contacts between atoms of types I and J is assumed to be proportional to the

concentrations of these atoms. This reference state has been used for

constructing a variety of interaction potentials (e.g., (3,12,14)). In the uniform

reference state (URS) potential Pref
IJ ¼ 1 for all I and J, i.e., we assume that all

contacts are equally likely. Finally, the atomic contact potential (ACP) (24) was

used in our earlier work on protein-protein docking (11).

Generating decoys for the reference state

As described, the very essence of the DARS method is selecting a set of

complexes (the reference set), and for each complex generating a number of

docked structures using only shape complementarity as the scoring function.

These decoys are then used for calculating the reference probabilities by

P
ref

IJ ¼
n

ref

IJ

+
I;J

n
ref

IJ

;

where nref
IJ is the number of contacts between atoms of types I and J in the

decoys. This involves selecting both a reference set and the number of decoys

for each complex. We have tested several options, resulting in a large variety

of DARS potentials.

Since we generate up to 20,000 decoys for each complex in the reference

set, the size of the latter should be moderate. The main question here is how

independent the reference set should be from the training and benchmark

sets. One extreme is selecting the benchmark set (23) itself as the reference

set. An interesting choice is using the enzyme-inhibitor complexes in the

benchmark set as the reference set, since this means a complete overlap when

testing DARS on enzyme-inhibitor pairs, but provides complete indepen-

dence in tests involving antibody-antigen and other types of complexes.

Another strategy is selecting proteins that are certainly not homologous to

any complex in the benchmark and training sets, and we choose the first

20 targets of the critical assessment of protein interactions (CAPRI) protein

docking experiment (28). These targets are novel structures that have been

solved after the publication of both benchmark and training sets, which

eliminates the possibility of any overlap.

To generate decoys we applied the rigid body docking program PIPER

(16) to each complex in the reference set. PIPER is based on the fast Fourier

transform correlation approach, and it performs exhaustive evaluation of

simplified energy functions in discretized 6D space of mutual orientations of

the protein partners (16). In this case, only shape complementarity (with a

combination of repulsive and attractive Van der Waals terms) is used for

scoring. The 20,000 best scoring docked complexes are kept as the decoy set

for calculating the reference probabilities. However, to investigate how the

size of the decoy set affects the performance of the potential, the number of

decoys for each complex was reduced from 20,000 to 500 and to 1, gener-

ating different DARS potentials. If interactions for some atom pair do not

occur due to the reduced number of decoys, a large positive interaction po-

tential is assigned.

Discrimination tests

As mentioned, our goal is finding the best DARS potential which, in com-

bination with other energy terms (e.g., van der Waals and electrostatics), will

yield sufficiently large sets of near-native docked structures for most of the

complexes studied. However, it is easier to evaluate the different versions of

DARS first for discrimination accuracy (i.e., the ability of finding near-native

conformations in large sets of docked structures). For such discrimination

tests we dock the unbound component proteins of the complexes in the

benchmark set (23) using only shape complementarity as the scoring func-

tion, and retain the best 20,000 structures for each complex. Although this

step is the same as generating decoys for the reference proteins, the goal is

very different. For each docked structure, we calculate the pairwise energy

Epair ¼ +Nr

i¼1
+Nl

j¼1
eij; where Nr and Nl denote the numbers of atoms in the

receptor and the ligand, respectively. For atoms ai and aj of types I and J,

respectively, eij ¼ eIJ if ai and aj are within the cutoff distance D, and eij ¼ 0

otherwise. We use the Epair values to rank the 20,000 decoys and select the

2000 structures (1000 for enzyme-inhibitor complexes) with the lowest en-

ergies. The quality of these structures is measured in terms of the Ca RMSD

between ligand positions in the docked and the experimentally determined

structures, calculated after superimposing the receptors and considering only

ligand atoms that are within 10 Å from the receptor. This measure, also used

DARS Interaction Potentials 4219
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in the CAPRI docking experiment (28), will be referred to as binding site

RMSD or simply RMSD. A conformation is considered near-native (also

called a hit) if its RMSD is ,10 Å. As noted, although the 10 Å threshold

may appear to be large, the RMSD of such structures can generally be re-

duced by refinement methods that account for side-chain flexibility (29,30).

For enzyme-inhibitor and antibody-antigen complexes in the benchmark

set, the best scoring 20,000 structures generated by PIPER were retained for

the discrimination test. However, this produced too few near-native struc-

tures for other complexes, and hence we used PIPER to generate 70,000

structures and selected the 20,000 with the lowest RMSDs. Since the number

of near-native structures among the 20,000 is known, the quality of dis-

crimination for each complex can be described in terms of the receiver op-

erating characteristic (ROC) curve by providing the area under the curve

(AUC) value (31). To describe the discrimination quality by each method

applied to a set of protein complexes we present both the median and cu-

mulative distribution of the ROC AUC values. The cumulative distributions

for the different methods will be compared using Kolmogorov-Smirnov tests.

Docking tests

In these tests we dock the unbound component proteins of the benchmark set

(23) using our PIPER program with a combined energy function, and count

the number of near-native conformations among the best scoring 2000 (1000

for the enzyme-inhibitor case) structures. The energy function includes terms

representing shape complementarity, electrostatic, and desolvation contri-

butions, the latter described by the pairwise potential to be tested,

E ¼ Eshape 1 w2Eelec 1 w3Epair

Eshape ¼ Eattr 1 w1Erep

Eelec ¼ +
Nr

i¼1

+
Nl

j¼1

qiqj

r
2

ij 1 D
2
exp

�r
2

ij

4D
2

 ! !1
2

Epair ¼ +
Nr

i¼1

+
Nl

j¼1

eij;

where Nr and Nl denote the numbers of atoms in the receptor and the ligand,

respectively. The shape complementarity term Eshape is a stepwise imple-

mentation of the van der Waals energy, with Eattr and Erep representing its

attractive and repulsive components, respectively. Eelec is the Coulombic

electrostatic energy, and Epair denotes the pairwise potential defined in the

previous section. The implementation of these energy terms on grids has

been described previously (16).

The pairwise potential Epair we consider in the docking tests is either

DARS or the atomic contact potential (ACP (24)). To assess how the indi-

vidual energy contributions affect the results, we perform docking calcula-

tions with scoring functions that include only the shape complementarity

term Eshape, the electrostatic term Eelec, the combination of the two (Eshape 1

w2Eelec), the combination of the shape complementarity term with the pairwise

potential (Eshape 1 w3Epair), and finally all three terms (Eshape 1 w2 Eelec 1 w3

Epair). The performances of the highest scoring DARS and ACP potentials

were compared. The w3 coefficients in the energy expression are optimally

selected for the particular potential, and hence are different for DARS and ACP.

Since the number of near-native structures over the entire (discretized)

conformational space is not determined, no ROC AUC values can be defined

for the docking test. However, for any particular set of complexes we can

directly compare the numbers of near-native structures provided by two

different methods by using the Wilcoxon matched-pair signed-rank test (32),

which can be considered as a nonparametric alternative to the paired t-test.

The same test can also be used for comparing the number of near-native

conformations among the best-scoring 1000 structures from the discrimi-

nation test and the number of near-native conformations in the best-scoring

1000 structures obtained directly by docking, where the latter is based on the

use of a scoring function that combines DARS with other energy terms.

RESULTS

Enzyme-inhibitor complexes

Table 1 shows discrimination results for 22 enzyme-inhibitor

complexes, including the total number of hits among the

20,000 structures generated by PIPER and the number of hits

retained in the 1000 best scoring structures selected using

DARS, MFPs, URS potentials, and ACPs. The reference

probabilities for DARS were obtained using 20,000 decoys

for each complex in the CAPRI set. The mole fractions for

MFP were extracted from the training set (27). Fig. 1 shows

the cumulative distributions of the ROC AUC values for

the four methods. Based on the Kolmogorov-Smirnov test,

DARS is significantly better (p , 10�5) than any of the three

other methods. URS is somewhat better than MFP (p ,

0.05), and both URS and MFP are better than ACP (p ,

0.01). Since DARS, MFP, and URS are based on the same

training set (27) but use different reference states, this result

emphasizes the importance of the latter. Table 1 also shows a

hydrophobicity score, to be described in the Discussion.

Table 2 compares the overall discriminatory performance

of the different potentials, including the various parameteri-

zations of DARS, in terms of the median ROC AUC values.

The table starts with the worst performers, i.e., the ACP, MFP

using CAPRI for calculating the mole fractions, MFP with

mole fractions derived from the entire training set (27), and

TABLE 1 Discrimination results for

enzyme-inhibitor complexes

Number of hits in top

1000 decoys selected by

Complex

Number of

hits in 20,000

decoys DARS MFP* URSy ACPz

Hydrophobicity

score

1ACB 261 214 0 100 5 �106.901

1AVW 59 48 49 0 0 �114.456

1BRC 3384 401 439 198 320 �43.752

1BRS 1330 270 0 208 50 �41.276

1CGI 943 364 32 127 105 �168.231

1CHO 273 250 1 28 39 �51.798

1CSE 523 86 0 21 7 �32.692

1DFJ 522 116 40 14 2 �42.782

1FSS 2 2 0 1 0 �104.730

1MAH 3 3 0 3 0 �118.081

1PPE 3145 838 152 480 284 �108.031

1STF 160 102 0 37 0 �116.980

1TAB 871 76 131 147 89 �29.751

1TGS 2180 595 96 385 448 �80.820

1UDI 37 37 17 11 0 �116.158

1UGH 63 63 46 21 0 �133.291

2KAI 104 0 39 3 2 �6.454

2PTC 1070 154 84 11 20 �57.769

2SIC 223 97 0 28 18 �106.294

2SNI 112 35 9 1 0 �107.537

2TEC 432 95 0 15 58 �49.554

4HTC 390 261 0 6 8 �287.830

*Mole fraction potential.
yUniform reference state potential.
zAtomic contact potential.
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the URS potential. The remainder of the table shows the

performance of DARS potentials with different reference sets

and/or different numbers of decoys generated for each

complex. According to the last five rows, DARS performs

reasonably well for enzyme-inhibitor complexes regardless

of the specific choice of the reference set as long as the latter

comprises of a wide range of complexes such as the 20

CAPRI targets. In the latter case, the quality of discrimination

is completely independent of the number of decoys, and

DARS performs very well even with a single decoy for each

complex.

Table 3 shows docking results for the enzyme-inhibitor

subset of the benchmark set obtained using different com-

binations of energy function terms, including the best scoring

DARS potential for the enzyme-inhibitor set as shown in

Tables 1 and 2. With the exception of 1TAB, where it has a

slight negative effect, adding DARS to shape complemen-

tarity and electrostatics greatly increases the number of hits

generated. The combination of shape complementarity and

DARS terms performs better than the combination of shape

complementarity and electrostatics, and the best scoring

function to capture hits includes all three terms. The only

complex where the combined potential does not generate any

near-native structures is 2KAI. The most likely origin of this

problem is the steric clash of side chains when the unbound

proteins are superimposed over their structures in the com-

plex. Table 3 also shows the docking results obtained with

the ACP in place of DARS in the scoring function. Based on

the Wilcoxon matched-pair signed-rank test (32), the com-

bined potential with DARS is significantly better (p ,

0.0003). In fact, apart from the complexes 1TAB and 2KAI,

adding ACP to shape complementarity and electrostatic

terms is substantially less favorable than adding DARS.

Antigen-antibody complexes

For antigen-antibody complexes, both discrimination and

docking are generally more difficult than for enzyme-inhib-

itor complexes, and hence we retain the 2000 (rather than the

1000) best scoring conformations. As shown in Table 4,

discrimination by DARS substantially varies among the

complexes. According to the cumulative distributions of the

ROC AUC values (Fig. 2), the discrimination results for

DARS and MFP do not significantly differ (p � 0.2). Both

FIGURE 1 Cumulative distributions of the ROC AUC values for the

discrimination of near-native structures of enzyme-inhibitor complexes.

TABLE 2 Overall discrimination for enzyme-inhibitor

complexes by various potentials

Potential Reference set Number of decoys ROCy

ACP — — 0.464

MFP CAPRI — 0.585

MFP Training — 0.645

URS — — 0.718

DARS (clustered) CAPRI 20000 0.775

DARS Benchmark (E-I)* 20000 0.811

DARS Benchmark 20000 0.843

DARS CAPRI 1 0.854

DARS CAPRI 500 0.853

DARS CAPRI 20000 0.854

*Enzyme-inhibitor subset of the benchmark set.
yMedian ROC AUC.

TABLE 3 Number of hits in the top 1000 docked structures for

enzyme-inhibitor complexes

DARS ACP

Complex V* Ey VEz VP{ VEP§ VP{ VEP§

1ACB 14 0 51 346 436 15 36

1AVW 0 0 0 42 75 0 0

1BRC 286 178 465 389 566 304 432

1BRS 34 0 111 133 164 18 99

1CGI 78 0 102 376 327 78 100

1CHO 43 0 85 73 127 49 99

1CSE 0 0 0 39 52 0 0

1DFJ 67 237 237 136 382 74 245

1FSS 0 23 0 1 30 0 0

1MAH 0 1 0 63 107 0 0

1PPE 417 0 414 847 899 411 411

1STF 33 0 41 153 168 29 37

1TAB 199 0 249 133 120 195 257

1TGS 300 0 303 506 478 317 325

1UDI 0 14 10 206 353 0 10

1UGH 11 0 22 279 352 10 18

2KAI 2 0 3 0 0 3 3

2PTC 79 0 103 220 243 62 82

2SIC 28 0 40 332 291 32 39

2SNI 7 0 7 59 65 5 7

2TEC 5 0 17 159 197 4 19

4HTC 74 0 26 252 201 56 19

*Eshape.
yEelec.
zEshape 1 w2 Eelec.
{Eshape 1 w3Epair..
§Eshape 1 w2Eelec 1 w3Epair.

DARS Interaction Potentials 4221
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DARS and MFP are significantly better than URS or ACP (p ,

0.05) by the Kolmogorov-Smirnov test, but the differences

are not significant (p � 0.2) by the Wilcoxon test. As shown

in Table 5, discrimination results are weakest for ACP and

URS. In terms of the median ROC AUC values, MFP with

mole fractions based on the CAPRI set is slightly better than

the best DARS. However, as discussed, the difference is not

significant. The docking results for antigen-antibody pairs are

generally also worse than for enzyme-inhibitor complexes

(Table 6). Shape complementarity alone captures very few

hits. Adding DARS to Evdw improves the result to a certain

degree. The combination of shape complementarity, elec-

trostatics, and DARS provides the best performance, better

than the energy function that includes ACP (p , 0.01 based

on the Wilcoxon test).

Other complexes

We recall that, for the other complexes, the 20,000 PIPER-

generated structures with the best shape complementarity do

not provide enough hits, and hence we selected the 20,000

structures with the lowest RMSD values to obtain a more

meaningful decoy set for the discrimination test. Although

we retain the best scoring 2000 structures, there are very few

hits in Table 7, which was derived using the enzyme-inhibitor

subset of the benchmark set as the reference. As shown in

Fig. 3, DARS provides worse discrimination than the other

three potentials, and the differences are significant by both

the Kolmogorov-Smirnov and Wilcoxon tests (p , 0.01).

The best discrimination is achieved by ACP, which is sig-

nificantly better than the other three by the Kolmogorov-

Smirnov test (p , 0.01), but not better than MFP or URS by

the Wilcoxon test. Discrimination by DARS is poor using

any reference set, and the other potentials perform better than

DARS (Table 8). However, as shown in Table 9, in a com-

plete reversal the docking results are significantly better using

DARS than using ACP (p , 0.05 by the Wilcoxon test), with

DARS producing a substantial number of hits for seven of the

10 complexes.

DISCUSSION

Enzyme-inhibitor complexes

Developing DARS potentials we compare the frequency of

contacts between two specific atom types in the x-ray struc-

tures of protein complexes to the frequency of contacts in the

decoys that are devoid of specific interactions. Since in dis-

crimination tests the goal is finding complex conformations

close to the native among the many structures that all have

good shape complementarity, this scoring scheme is very

natural, as it rewards the occurrence in the interface of the

atom pairs that are frequently seen to interact in the native

TABLE 4 Discrimination results for

antigen-antibody complexes

Number of hits in top

2000 decoys selected by

Complex

Number of

hits in 20,000

decoys DARS MFP* URSy ACPz

Hydrophobicity

score

1AHW 194 3 13 0 1 �17.579

1BQL 140 0 49 0 0 �54.895

1BVK 206 81 4 2 3 �36.090

1DQJ 111 15 75 0 9 �7.955

1EO8 41 40 40 0 0 �142.676

1FBI 141 0 0 0 0 �33.439

1IAI 136 72 63 9 7 �151.531

1JHL 243 9 1 5 0 �43.759

1MEL 464 407 72 218 134 �150.946

1MLC 48 4 35 48 48 �16.247

1NCA 147 1 1 0 3 �61.264

1NMB 0 0 0 0 0 �29.297

1QFU 247 206 1 7 3 �142.245

1WEJ 947 208 226 3 3 �29.742

2JEL 327 134 134 6 0 �64.268

2VIR 120 39 25 5 12 �90.544

*Mole fraction potential.
yUniform reference state potential.
zAtomic contact potential.

FIGURE 2 Cumulative distributions of the ROC AUC values for the dis-

crimination of near-native structures of antigen-antibody complexes.

TABLE 5 Overall discrimination for antigen-antibody

complexes by various potentials

Potential Reference set Number of decoys ROCy

URS — — 0.453

ACP — — 0.376

MFP CAPRI — 0.716

MFP Training — 0.619

DARS CAPRI 20000 0.610

DARS (clustered) CAPRI 20000 0.599

DARS Benchmark 20000 0.675

DARS Benchmark (E-I)* 20000 0.656

*Enzyme-inhibitor subset of the benchmark set.
yMedian ROC AUC.
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complexes. Thus, we expect excellent results both in dis-

crimination and docking, and the results for enzyme-inhibitor

complexes shown in Tables 1–3 fully support this expecta-

tion. DARS performs much better than the other potentials

considered here (MFP, URS, and ACP).

Two important factors are likely to contribute to this suc-

cess. First, docking enzyme-inhibitor complexes is relatively

easy (21). The affinity is generally high, with DG values

ranging from �17.5 kcal/mol to �13.0 kcal/mol. The con-

vex-concave interface has good geometric complementarity,

and it is largely desolvated, with crystallographic water

molecules visible only around the perimeter (33,34). It will

be important for our discussion that there is generally very

good complementarity of hydrophobic patches on the two

sides of the interface, favorably contributing to the binding

free energy. The second factor is that the current training set

is very good for developing potentials for enzyme-inhibitor

complexes. In fact, of the 621 interfaces, 404 are from ho-

modimers that, similarly to enzyme-inhibitor complexes,

have excellent pairing of shapes and hydrophobic patches on

the two sides of the interface. In addition, the set also includes

a number of enzyme-inhibitor pairs.

Due to these favorable conditions, testing DARS on en-

zyme-inhibitor complexes provides the best opportunity to

explore the fundamental properties of the approach. First, re-

sults show that DARS performs reasonably well regardless of

the specific choice of the reference set as long as the latter

includes a wide range of complexes. Second, the performance

remains excellent even when using very small decoy sets for

calculating the reference probabilities. As shown in Table 2,

the 20 complexes in the CAPRI set provide an adequate

number of contacts for most atom pairs even with a single

decoy structure for each complex. We think that this inde-

pendence of the number of decoys is due to the clustering of

TABLE 6 Number of hits in the top 2000 docked structures

for antigen-antibody complexes

DARS ACP

Complex V* Ey VEz VP{ VEP§ VP{ VEP§

1AHW 5 251 70 44 103 3 34

1BQL 0 0 0 0 0 2 0

1BVK 15 0 16 65 60 54 56

1DQJ 0 0 0 15 14 2 0

1EO8 0 0 0 26 30 0 0

1FBI 3 0 11 0 0 0 3

1IAI 10 0 8 135 135 45 46

1JHL 28 0 27 12 11 17 14

1MEL 30 0 14 260 241 74 72

1MLC 0 0 1 3 20 5 19

1NCA 5 0 12 0 0 4 8

1NMB 0 0 0 0 0 0 0

1QFU 16 0 23 99 111 0 0

1WEJ 118 5 226 79 241 105 167

2JEL 10 0 35 56 83 9 20

2VIR 10 0 11 16 17 11 11

*Eshape.
yEelec.
zEshape 1 w2 Eelec.
{Eshape 1 w3Epair.
§Eshape 1 w2Eelec 1 w3Epair.

TABLE 7 Discrimination results for other type of complexes

Number of hits in top

2000 decoys selected by

Complex

Number of

hits in 20,000

decoys DARS MFP* URSy ACPz

Hydrophobicity

score

1AVZ 117 25 20 60 30 �62.695

1L0Y 104 7 15 47 33 �7.092

1A0O 86 0 41 7 18 �80.814

1ATN 17 0 1 7 8 �124.488

1GLA 4 0 0 3 0 �105.213

1IGC 51 1 1 25 14 �45.924

1SPB 362 34 38 76 84 �87.611

2BTF 200 20 53 39 35 �67.276

1WQ1 366 7 62 121 106 �102.925

2PCC 79 1 4 20 18 �28.573

*Mole fraction potential.
yUniform reference state potential.
zAtomic contact potential.

FIGURE 3 Cumulative distributions of the ROC AUC values for the

discrimination of near-native structures of other complexes.

TABLE 8 Overall discrimination for other type of complexes

by various potentials

Potential Reference set Number of decoys ROCy

DARS CAPRI 20,000 0.364

DARS Benchmark 20,000 0.362

DARS Benchmark (E-I)* 20,000 0.399

DARS (clustered) CAPRI 20,000 0.361

MFP Training — 0.611

MFP CAPRI — 0.608

ACP — — 0.666

URS — — 0.723

*Enzyme-inhibitor subset of the benchmark set.
yMedian ROC AUC.
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the ligand positions at a few locations on the receptor surface

(35). Therefore, increasing the number of decoys yields al-

most no new interactions. This observation also explains why

clustering of the decoys with a given clustering radius and

selecting a single representative from each cluster performs

worse than its unclustered counterpart (Table 2). In fact, since

only a few clusters are well populated, with this strategy we

force a number of outliers into the decoy set with the same

weights as the representatives of the meaningful clusters.

As already mentioned, the primary goal of developing

DARS potentials is to improve docking results, but the dif-

ferent DARS versions and other methods are also compared

in substantially simpler discrimination tests. In these tests, a

large number (20,000) structures are generated by shape com-

plementarity alone, and ranked by one of the pairwise poten-

tials. The number of near-native conformations among the best

scoring 1000 structures can be compared to the number of near-

native conformations among the top 1000 structures generated

by docking using Eshape 1 w3 Epair. For enzyme-inhibitor

complexes discrimination and docking perform equally well,

with no significant difference (p . 0.1 by the Wilcoxon test).

However, adding electrostatics to the docking potential, i.e.,

using Eshape 1 w2 Eelec 1 w3 Epair makes the docking results

significantly better (p , 0.001) than the discrimination results.

Antigen-antibody complexes

It is well known that docking antigen-Fab complexes is more

challenging than docking enzyme-inhibitor complexes (21).

The complexes are generally weaker, with DG values ranging

from �13.0 kcal/mol to �6.5 kcal/mol. Since the interfaces

are close to planar, shape complementarity provides limited

information for docking. The interface is generally less hy-

drophobic than in enzyme-inhibitor complexes (33,34). Ac-

cording to Tables 4–6, both discrimination and docking

results are relatively poor. We note that not only DARS but

all four pairwise potentials (DARS, MFP, URS, and ACP)

have difficulties with antigen-antibody complexes.

Since we assume that more accurate DARS potentials can

be developed specifically for antigen-antibody complexes, it

is important to explore the problems that reduce performance.

As shown in Table 5, the selection of the reference set had no

major impact on the results. A potentially more important

factor is the training set. As noted, the current training set is

biased toward homodimers and enzyme-inhibitor complexes

that have excellent pairing of hydrophobic patches on the two

sides of the interface. Therefore, interactions between hy-

drophobic atoms contribute very favorably to the energy

function (16). It is easy to show that such a potential works

for some but not for all antigen-antibody complexes. In fact,

one can raise antibodies against virtually any region of an

antigen surface, with some of the epitopes being fairly polar.

For example, Fig. 4, a and b, shows complexes of lysozyme

with the variable domain of Fab fragments from two different

antibodies (PDB codes 1BQL and 1MLC, respectively). In

both figures the Fab fragment is shown as the white solid

model, with teal patches representing the regions with max-

imum hydrophobicity. The lysozyme is shown as a brown

cartoon, with light brown patches as regions with maximum

hydrophobicity. The CDRs are oriented upward, the teal

hydrophobic patch sitting among the hypervariable loops,

directly interacting with the lysozyme. However, the two

most hydrophobic regions of the lysozyme do not directly

interact with the CDRs in either of the antibodies. We un-

derstand that the interface on the lysozyme must exhibit some

level of hydrophobicity, or otherwise binding would become

highly unfavorable. However, according to Fig. 4, a and b,

these interface regions are far from being the most hydro-

phobic ones on the lysozyme.

To demonstrate the importance of hydrophobic interac-

tions, we calculated the pairwise hydrophobicity score

Ehyd ¼ +Nr

i¼1
+Nl

j¼1
eij; where the sum is restricted to hydro-

phobic atoms on the two sides of the interface, i.e., interaction

energies among all other atoms types are set to zero. As

shown in Table 4, the Ehyd values vary substantially for an-

tigen-antibody complexes, and a favorable (large negative)

Ehyd generally implies good discrimination. The correlation

coefficient between the Ehyd values in Table 4 and the cor-

responding enrichment factors is r¼�0.88. This correlation

is highly significant (p , 0.0001), confirming that good

complementarity of hydrophobic patches on the two sides of

the interface is required for successful discrimination, but this

occurs only in some of the antigen-antibody complexes.

The presence of hydrophobic complementarity in enzyme-

inhibitor complexes (see Table 1) and the lack of it in antigen-

antibody pairs could simply indicate that the current DARS

potential is overtrained on a set that does not properly rep-

resent the interactions specific to antigen-antibody com-

plexes. However, training the potential on antigen-antibody

structures (36) did not improve discrimination, and hence the

TABLE 9 Number of hits in the top 2000 docked structures

for other type of complexes

DARS ACP

Complex V* Ey VEz VP{ VEP§ VP{ VEP§

1AVZ 0 5 1 0 0 0 0

1L0Y 0 0 0 0 0 0 0

1A0O 0 873 12 0 198 0 30

1ATN 0 0 0 105 196 0 0

1GLA 0 0 8 323 434 0 8

1IGC 0 0 0 0 0 0 0

1SPB 105 0 107 440 487 100 96

2BTF 0 0 7 21 71 0 0

1WQ1 248 27 436 192 429 291 430

2PCC 0 35 50 0 166 0 44

*Eshape.
yEelec.
zEshape 1 w2 Eelec.
{Eshape 1 w3Epair.
§Eshape 1 w2Eelec 1 w3Epair.
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results are not shown here. We argue that the accuracy of

pairwise potentials for antigen-antibody complexes is re-

duced by the usual, and so far unquestioned, assumption that

eIJ ¼ eJI, where I and J denote the atom types in the antigen

and in the antibody, respectively. Due to this assumption of

symmetry, the current pairwise potentials are unable to dis-

tinguish between atoms on the antibody and on the antigen.

Therefore, any docked conformation that aligns the hydro-

phobic patches well is considered favorably, resulting in false

positives for antibodies that recognize relatively polar epi-

topes. We currently explore several potential solutions to this

problem, including the use of one-side hydrophobicity terms

in the scoring function and the construction of asymmetric

DARS potentials.

Other complexes

As shown in Table 9, the scoring function Eshape 1 w2 Eelec 1

w3 Epair with DARS as the pairwise potential generates ad-

equate numbers of hits for seven of the 10 other complexes,

but no hits for three complexes (PDB codes 1L0Y, 1AVZ,

and 1IGC). According to Table 7, these complexes have

weak pairwise hydrophobic complementarity. As discussed

for antigen-antibody complexes, this generally implies rela-

tively poor discrimination. Hydrophobic complementarity

also impacts the quality of docking: the correlation coeffi-

cient between Ehyd values and the number of hits obtained by

the combined potential for the other complexes is r¼�0.67,

which is significant at p , 0.02. We note that one of the

component proteins in each of the complexes 1L0Y, 1AVZ,

and 1IGC is a recognition domain which can bind to a variety

of proteins. The interface in each complex has a strong hy-

drophobic patch on the side of recognition domain, which

presumably contributes to the promiscuous binding; how-

ever, this patch does not interact with any of the most hy-

drophobic regions of the partner protein, and this results in

poor hydrophobic complementarity.

Based on the experience with enzyme-inhibitor com-

plexes we expect that the quality of discrimination and that

of docking are similar. However, for other complexes the

docking results are significantly better (p , 0.03 by the

Wilcoxon test) than discrimination by DARS. The main

difference between the enzyme-inhibitor and the other

complexes is that shape complementarity provides infor-

mation for the first, but almost none for the second. In fact,

for the other complexes the 20,000 PIPER-generated

structures with the best shape complementarity include so

few hits that we had to select the 20,000 structures with the

best RMSD values for the discrimination test. Thereby we

force a number of low RMSD structures into the test set

(Table 7), but apparently these structures include too few of

the native contacts, and ranking them by DARS fails to

improve discrimination. In contrast, the direct use of the

combined potential Eshape 1 w2Eelec 1 w3Epair for docking

selects near-native structures that are not present in the

discrimination test set. Thus, we conclude that the quality of

discrimination is not necessarily a valid predictor of dock-

ing performance if the component proteins have limited

shape complementarity.

FIGURE 4 Patches of maximum hydrophobicity in antigen-antibody com-

plexes. (a) Hyhel-5 Fab antibody fragment in complex with chicken lysozyme

(PDB code 1BQL). (b) Monoclonal antibody Fab D44.1 in complex with

chicken lysozyme (PDB code 1MLC). In both panels the antibody fragment is

shown as the white solid model, with teal patches representing the regions with

maximum hydrophobicity. The lysozyme is shown as a brown cartoon, with

light brown patches as regions of maximum hydrophobicity. In both figures

the antibody CDRs are oriented upward, showing that the CDR regions

include strongly hydrophobic patches, but these do not interact with regions of

maximum hydrophobicity on the lysozyme.
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Comparison of potential functions

In the Supplementary Material, Table S1, Table S2, and

Table S3 list the pairwise interaction coefficients for the

DARS, MFP, and URS potentials. The current version of the

ACP potential has been implemented as a server (37) that also

provides the ACP coefficient matrix. In all four potentials we

used the 18 atom types defined by Zhang et al. (24), based on

considerations of chemical properties. The principle used in

the atom type selection was to group all atoms that behave

similarly in interactions. For example, Cb atoms of all amino

acids were grouped as a single class, apart from those of Ser

and Thr that have nonnegligible partial charges. Side-chain

atoms were also grouped if they behaved similarly, e.g., both

Ce and Nz atoms of the Lys side chain belong to the KNz

group. Most hydrophobic side-chain atoms are in the FCz and

LCd categories. In contrast, the backbone atoms are consid-

ered as separate atom types N, CA, C, and O. A detailed

description of the 18 atom types is given in the original ACP

article (24).

It is far from simple to compare the four 18 3 18 tables of

interaction coefficients, and here we restrict consideration to

atom types for which the coefficients substantially differ. The

interaction energies among hydrophobic side-chain atoms

FCz and LCd are negative in all four potentials, with some-

what more favorable values for LCd in DARS than in the

other three. There are substantial differences for interactions

among backbone atoms. In ACP and URS these are relatively

large and attractive, indicating that such interactions fre-

quently occur in the interface; in MFP, the coefficients are

similarly large, but repulsive, clearly because of the high

mole fractions of backbone atoms. In contrast, in DARS all

backbone-backbone interactions are close to zero for non-

Gly residues, indicating that such interactions occur with

similar frequency in the complexes and in the random docked

decoys. The four potentials also substantially differ in the

interaction coefficients between charged side-chain atoms. In

ACP, all such coefficients are positive. In fact, as described

previously (16), ACP does not represent well the electrostatic

interactions, and was always used in conjunction with a

Coulombic potential. In DARS, most interaction coefficients

are reasonable: e.g., DOd-DOd is strongly repulsive, whereas

DOd-RNh and DOd-RNe are strongly attractive. RNh-RNh is

close to zero, most likely due to the interactions between the

hydrophobic parts of the arginine side chains compensating

for the unfavorable charge interactions. The only somewhat

unexpected observation is that the interactions between Lys

side-chain atoms and any other atom are repulsive, indicating

that Lys is more frequently seen in the interfaces of docked

decoys than in the interfaces of protein complexes. The co-

efficients for Lys are also positive in the URS potential, in-

dicating that Lys is quite rare in the interface. Both URS and

MFP present some coefficients that are more difficult to ex-

plain, such as the favorable DOd-DOd self-interaction. Since

DARS, URS, and MFP are based on the same interaction

data, these differences demonstrate the substantial impact of

the reference state on the interaction coefficients.

CONCLUSIONS

DARS is a very natural approach to the construction of

structure-based intermolecular potentials. The idea is gen-

erating a large set of docked conformations with only shape

complementarity in the scoring function (i.e., without ac-

counting for any atom-type specific property), and deter-

mining the frequency of atom pairs in these decoys for the

calculation of interaction probabilities in the reference state.

The motivation for this article has been to test and possibly

to optimize DARS potentials for docking enzyme-inhibitor,

antigen-antibody, and other complex-types of a well-known

benchmark set for protein-protein docking (23). Selecting

various reference sets and varying the number of decoys we

have derived many versions of the potential and tested them

both for discrimination (i.e., finding near-native confor-

mations in large sets of docked structures) and for docking

(in combination with van der Waals and electrostatics en-

ergy terms). Considerations were restricted to the simple

case of contact (rather than distance-dependent) type po-

tentials.

Results for enzyme-inhibitor complexes confirm that the

DARS approach can provide an excellent reference state, and

that the performance does not heavily depend on the selection

of complexes used for generating the decoys and on the

number of decoys generated. We have also shown that dis-

crimination and docking yield similarly good results. For an-

tigen-antibody complexes all four potentials considered in this

article are less accurate than for enzyme-inhibitor complexes.

Finally, DARS provides strong docking results for almost all

other types of complexes, substantially better than the ones by

the competing potentials. However, docking does not yield

any near-native structures for a few other complexes. In ad-

dition, for all complexes in the other category, the discrimi-

nation results are generally much weaker than the docking

results, and we have argued that discrimination tests are not

appropriate surrogates for docking tests if the component

proteins have limited shape complementarity.

Further analysis of our antigen-antibody results reveals that

neither discrimination nor docking can be accurate for com-

plexes in which the hydrophobic patches on the two side of the

interface do not properly align with each other. Calculating a

pairwise hydrophobicity potential we have shown that many

antigen-antibody and some of the other complexes are in this

category, resulting in poor docking and discrimination results.

We suggest that the problem may be avoided by allowing for

the asymmetry of the potentials, e.g., in antigen-antibody

complexes, considering the hydrophobic atoms to be more

favorable for interactions if they are located on the antibody

rather than on the antigen. Since accounting for the asymmetry

is independent of the reference state, our results are likely to

help in the development of improved DARS or other structure-
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based interaction potentials, especially for antigen-antibody

docking.
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