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ABSTRACT GABA is the major inhibitory neurotransmitter in the nervous system and acts at a variety of receptors including
GABAC receptors, which are a subclass of GABAA receptors. Here we have used molecular dynamics simulations of GABA docked
into the extracellular domain of the GABAC receptor to explain the molecular interactions of the neurotransmitter with the residues
that contribute to the binding site; in particular, we have explored the interaction of GABA with Arg104. The simulations suggest that
the amine group of GABA forms cation-p interactions with Tyr102 and Tyr198, and hydrogen-bonds with Gln83, Glu220, Ser243, and
Ser168, and, most prominently, with Arg104. Substituting Arg104 with Ala, Glu, or Lys, which experimentally disrupt GABAC receptor
function, and repeating the simulation revealed fewer and different bonding patterns with GABA, or the rapid exit of GABA from the
binding pocket. The simulations therefore unveil interactions of GABA within the binding pocket, and explain experimental data,
which indicate that Arg104 is critical for the efficient functioning of the receptor.

INTRODUCTION

GABAC receptors, which are a subfamily of GABAA re-

ceptors, are members of the Cys-loop superfamily of ligand-

gated ion channels (LGICs), an important group of receptors

involved in rapid synaptic transmission and whose mal-

function can result in a variety of neurological disorders;

hence, understanding their mechanism of action is of con-

siderable pharmacological interest. GABAC receptors are

mostly located in retinal neurons where they play a role in

retinal signaling and may be involved in diseases such as

macromolecular degeneration (1). The receptors are activated

by the binding of GABA, the main inhibitory neurotrans-

mitter in the central nervous system. GABAC receptors have

distinct pharmacological properties from GABAA receptors,

e.g., they are not inhibited by bicuculline, the classic GABAA

receptor antagonist (2,3).

Like all the LGICs belonging to the Cys-loop superfamily,

GABAC receptors are composed of five subunits arranged in

a pentagonal array around a central ion-permeant pore. Each

subunit has an extracellular N-terminal domain (ECD), a

transmembrane domain composed of four a-helices, and an

intracellular domain. Three subunits (r1–3) have been iden-

tified; these can all form functional homomeric or hetero-

meric receptors (4). Our study is focused on the homomeric

receptors consisting of r1 subunits.

Due to the lack of detailed structural information for

GABAC receptors, homology models of its ECD have been

computer-generated using, as a template, the structures of the

acetylcholine binding protein (AChBP), a protein homo-

logous to the ECD of LGICs of the Cys-loop superfamily

(5–8).

GABA binds in its zwitterionic form, with the negative

charge localized in the carboxylate group and the positive

charge in the amine group (9). The alleged GABA binding

site, shown in Fig. 1, is at the interface between subunits and

is constituted by residues associated with several noncon-

tiguous loops (A–F), including several aromatic residues

(Tyr102 in loop D, Tyr198 in loop B, and Tyr241 and Tyr247 in

loop C), which form the classic Cys-loop receptor aromatic

‘‘box,’’ and polar and charged residues (Gln83, Arg104 in

loop D, Arg158 and Ser168 in loop E, Glu220 in loop F, and

Ser243 in loop C). Docking studies indicate that the amine

group of GABA is inside the tyrosine-made aromatic cage,

while the GABA carboxylate group is likely to be located in

between the positively charged Arg104 and Arg158 (5,6).

Mutagenesis experiments, combined with Hartree-Fock

calculations, confirmed the amine orientation by identifying

a cation-p interaction with Tyr198 (10). The roles of the

charged and hydrophilic residues located in or close to the

alleged binding site were also investigated by mutagenesis

experiments: the results showed that two arginines, Arg104

and Arg158, are crucial for the binding of GABA and/or for

receptor function (6). In fact, the substitution of Arg104 with

either Ala or Glu resulted in .10,000-fold increases in

EC50s, while the substitution with Lys resulted in nonfunc-

tional receptors; the substitution of Arg158 with Ala, Glu, and

Lys resulted in nonfunctional receptors.

Experimental data suggest that the orientation of GABA in

GABAC receptors is subtly different from that in GABAA

receptors, where the neurotransmitter has been shown to have
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a cation-p interaction with an A-loop (rather than a B-loop)

residue (11). In the GABAC receptor, both Arg104 and Arg158

have been shown, experimentally, to be important for bind-

ing and/or function, while in the GABAA, receptor aArg66,

the residue equivalent to Arg104, has been shown to be im-

portant for receptor function (12,13) and is proposed to form

a part of a crown of arginines that stabilize the carboxylate

group (14).

To explore the interactions of GABA in the binding site,

we performed molecular dynamic (MD) simulations of a

homology model of the GABAC receptor ECD in water to

validate the homology model and assess the interactions of

GABA inside the alleged binding site. We then focused on

the role of Arg104 by mimicking previous mutagenesis ex-

periments that evaluated how substitution with Ala, Glu, and

Lys affected receptor function (6).

METHODS

For the classical molecular dynamics simulations we used the AMBER2003

force field (15) and the AMBER simulation package (16). The initial

structure was the homology model for the GABAC receptor ECD with the

neurotransmitter GABA docked in.

Briefly, using FUGUE (17), the sequence of the r1 subunit of the human

GABAC receptor was aligned to the AChBP sequence, based on the 2.7 Å

resolution structure from Lymnaea stagnalis (18), as shown in Fig. 2. This is

considered to be a ligand-bound structure and therefore is an appropriate

template for ligand binding studies.

The three-dimensional models of the extracellular domain of the GABAC

receptor were then built using MODELLER (19) by threading the aligned

sequence over the crystal structure of AChBP. The most energetically fa-

vorable models were selected from the MODELLER output file using the

ModelList program (http://www-cryst.bioc.cam.ac.uk/) and violations of the

Ramachandran plot were checked using RAMPAGE (21). The homology

model is similar to those previously reported for GABAC receptors (5–8),

and also similar to GABAA receptor models (11,12).

Docking was performed using FLExX (BioSolveIT, Sankt Augustin,

Germany). In particular, the docking model chosen is consistent with ‘‘ori-

entation 3’’ in Harrison and Lummis (5), where GABA has its amine close to

Tyr198, its carboxylate close to Arg104, and is within 5 Å from Arg158; this

was subtly different to the orientation of GABA obtained using a different

docking program, where the carboxylate group was within 3 Å of Arg158 (6).

Docking models are frequently inaccurate due to many simplifications used

in their implementation, whereas MD simulations can provide considerably

more accurate data as to the location of a ligand in a binding pocket by

refining initial docking structures (22,23).

The use of classical molecular dynamics allowed us to simulate the whole

extracellular domain; mutations with natural amino acids are also adequately

described by the use of available classical force fields, while mutations with

unnatural amino acids or unusual residues may require a treatment with ab

initio techniques (24).

We used the program H11 (25) to evaluate the protonation state of the

protein ionizable groups by calculating their pKa shift with respect to the

standard pKa at neutral pH. After the protonation procedure, the total number

of atoms was 16,915 and the total charge of the system was neutral. The

GABA atomic partial charges were the ESP partial charges (26) calculated at

a density functional theory level with the CPMD code (27), using the PBE

gradient corrected functional for the exchange and correlation potential (28)

and norm conserving Martins-Troulliers pseudopotentials (29), with a kinetic

energy cutoff for the wavefunction expansion in plane waves of 70 Ry. The

GABAC receptor ECD was surrounded by 18,314 TIP3P water molecules in

a periodically repeated truncated octahedral box. To reproduce physiological

conditions, 0.15 M dissociated KCl was added (equivalent to 49 K1 ions and

49 Cl� ions in our system). The electrostatic contributions were evaluated

with the particle mesh Ewald method (30) using a cutoff for the direct space

sum of 10 Å. We used an integration time step of 2 fs and constrained the

bonds’ length involving hydrogens with the SHAKE algorithm (31).

After a preliminary minimization, we equilibrated the system at constant

temperature and pressure. First, we thermalized the solution at 310 K for 60

ps with a Langevin thermostat (32) with a collision frequency g ¼ 1 ps�1.

Then we performed a 5 ns molecular dynamics simulation with the system

coupled to a Berendsen thermostat at 310 K and a Berendsen barostat at 1 atm

with coupling constants tT ¼ 2 ps and tP ¼ 2 ps, respectively (33). During

the first nanosecond, we restrained the 20 (out of 209) amino acids closest to

the transmembrane domain of each subunit to mimic the presence of the

transmembrane domain. We then decreased the number of restrained resi-

dues from 20 to 10 for each subunit, to avoid restraints close to the GABA

binding site, and equilibrated the system for further 4 ns. Finally we started a

production run, which ran for 3.75 ns.

We analyzed the trajectory by evaluating the occurrence of the hydrogen

bonds and cation-p interactions involving GABA. To identify the hydrogen

bonds, we used as a criterion the distance between donor and acceptor (,3.5 Å)

and the donor-hydrogen-acceptor angle (.120�). To identify the cation-p

interactions, we used as a criterion the distance between the GABA amine

nitrogen and the center of mass of the phenyl ring (,5 Å) and the angle

between the normal to the phenyl ring and the vector pointing from the ring

center of mass to the GABA amine nitrogen (,45�).

RESULTS AND DISCUSSION

Stability of the homology model and binding of
GABA to the GABAC receptor

The root-mean-square displacement (RMSD) of the protein

backbone (calculated with respect to the initial minimized

FIGURE 1 Two adjacent GABAC receptor sub-

units showing the orientation of GABA in the

binding site after the initial minimization of the

docked structure in the homology model. The ligand

binding site consists of residues from loops A–C of

one subunit and loops D–F of the adjacent subunit

(left). A closeup of the binding pocket showing the

residues referred to in this study (right); the residue

labels are colored as the loops they belong to.
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structure) is shown in Fig. 3 (top) together with the RMSD of

the backbone of the residues in the binding pocket (bottom).

These were defined as the residues within 10 Å from GABA in

the minimized structure. The RMSD value stabilized at ;3 Å

for both the protein and the binding site with only 10 out of

209 residues per subunits restrained. The homology model is

therefore stable. Similar RMSDs were also calculated for the

mutated receptors (34).

GABA remained bound to the GABAC receptor for the

whole MD simulation. Its carboxylate group was always

hydrogen-bonded to Arg104, but the amine group was more

mobile. During the first 2 ns of the production run, the amine

group formed a cation-p interaction with Tyr102, then GABA

rapidly rotated ;100� to form a cation-p interaction with

Tyr198, as in the initial configuration. Two MD snapshots

representative of the two orientations are shown in Fig. 4.

Translations and rotations of GABA are shown in Fig. 5,

where we monitored the distance between the position of the

GABA center of mass at the beginning and at a generic time

of the production run and the modulus of the angle between

the lines passing through the center of mass and the amine

nitrogen at the beginning and at a generic time of the pro-

duction run. Very similar trends were found for the angle

involving the carboxylate carbon rather than the amine ni-

trogen (34). Besides interacting with GABA, Arg104 formed

on average 1.53 hydrogen bonds with Asp81 (equivalent to

the sum of the time occurrence percentages of the hydrogen

bonds between Arg104 and Asp81 divided by 100), of which

0.74 were as acceptor and 0.79 as donor.

Further binding partners of GABA were also identified in

the two stable orientations. These were: Ser168, which formed

hydrogen bonds with the carboxylate group; Gln83 and

Glu220, which formed hydrogen bonds with the amine group,

when GABA performed the cation-p interaction with Tyr102;

Ser243, which formed hydrogen bonds with the carboxylate

group; and Tyr198, which formed hydrogen bonds with the

amine group, when GABA performed the cation-p interac-

tion with Tyr198. Further details of the time occurrences of

FIGURE 2 Multiple sequence alignment

of representative GABAC, AChBP, GABAA,

glycine, and 5-HT3A receptor subunits

(GABAC r1 receptor subunit numbering).

The binding loops A–F are indicated by

lines above the alignment. The residues in

the binding pocket shown in Fig. 2 are

in solid boxes. Based on the secondary

structure of AChBP, residues belonging

to a-helices, b-sheets, and 310-helices are

labeled with a, b, and n, respectively.
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these interactions are shown in Fig. 6. On average, the car-

boxylate group formed 1.67 hydrogen bonds with Arg104,

0.53 with Ser243, and 0.50 with Ser168, while for the amine

group the data show 0.34 with Gln83, 0.33 with Tyr198, 0.29

with Glu220, 0.20 with Ser242, and 0.14 with Tyr241 giving a

total of 3.82 hydrogen bonds. GABA formed on average 0.31

cation-p interactions with Tyr102 and 0.41 with Tyr198, giv-

ing a total of 0.72 cation-p interactions. These results suggest

a possible conflict with the experimental data, which indicate

a cation-p interaction only with Tyr198. Tyr102 is clearly

important, but has been proposed to be involved predomi-

nantly in gating but not binding (7). However, it may be that

the interaction with Tyr102 is nonproductive, i.e., cannot re-

sult in gating, but is perhaps important for allowing GABA to

interact with other residues, e.g., Ser168, which has been

shown to be important for binding (6,10).

We did not observe any bond of GABA with the other

critical binding pocket arginine, Arg158, during the whole

simulation. In our initial configuration from the docking, both

Arg104 and Arg158 were initially within 5 Å from GABA

(considering any atom of the residues), which remained in the

binding pocket for all the simulations, although the carbox-

ylate group was closer to Arg104 and remained too far from

the side groups of Arg158 to form hydrogen-bond interac-

tions. While we cannot completely exclude some influence of

the initial conditions, GABA was free to reorient itself and

the system was equilibrated for a sufficiently long time to

show whether Arg158 was a better binding partner than

Arg104 for GABA. Thus we can infer that Arg104 has a more

important role in binding GABA than Arg158, although the

latter does have a number of interactions as discussed below.

During the production run, Arg158 formed hydrogen bonds

with other residues: on average 0.96 with Gln160, 0.92 with

Leu166, and 0.18 with Ala199. To test the effects of Arg158

mutations, we performed molecular dynamics simulations of

the Arg158Ala, Arg158Glu, and Arg158Lys mutant receptors,

with the same simulation protocol used for the wild-type

receptor. The hydrogen bond between the NH group of

Leu166 and the oxygen of the carboxylic group of the residue

at position 158 was maintained in all cases, with fairly high

occurrences (92% for Arg158, 96% for Ala158, 80% for

Glu158, and 99% for Lys158, which also acted as a donor

through its NH group for another hydrogen bond with Leu166

with 61% occurrence). The side chain of the positively

charged Arg158 and Lys158 formed a rather infrequent (18%

in both cases) hydrogen bond with Ala199, but only Arg158

interacted with Glu160, with the three nitrogens of its side

group acting, in turn, as donors for an average of 0.96 hy-

drogen bonds. The two oxygens of the negatively charged

carboxylate group of Glu158 formed hydrogen bonds with

Ser243 with an occurrence of 62% each, while the neutral side

chain of Ala158 did not interact with any residue. The muta-

FIGURE 3 Root mean-square displacement of the protein backbone

atoms (top) and of the backbone of the residues of the binding pocket

(bottom) during the molecular dynamics. The residues of the binding pocket

were defined as those with a distance of 10 Å from the initial position of

GABA. The dotted line at 1 ns indicates when the restrained residues were

reduced from 20 to 10 per subunit; the dashed line at 5 ns indicates the start

of the production run.

FIGURE 4 Two representative MD snapshots showing

the two orientations of GABA during the simulation: on the

left GABA forms hydrogen bonds with Arg104 and Ser168

and cation-p interactions with Tyr102, while on the right it

forms hydrogen bonds with Arg104 and Ser243 and cation-p

interactions with Tyr198.
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tions also indirectly affected the binding of GABA, in dif-

ferent ways for the different mutations. Specifically in the

Arg158Lys receptor, the GABA carboxylate group did not

bind to Arg104. It formed, on average, 0.21 hydrogen bonds

with Lys158, 0.34 with Ser242, 0.15 with Ser243, and 0.09 with

Ser168; the GABA amine group maintained on average 0.32

cation-p interactions with Tyr198 and 0.49 hydrogen bonds

with Tyr198, 0.26 with Met156, and 0.48 with Ser168. In the

Arg158Glu receptor, the GABA carboxylate group did in-

teract with Arg104 (with an average of 1.37 hydrogen bonds,

plus 0.89 and 0.96 hydrogen bonds with Ser168 and Ser242,

respectively), but the amine group did not form any cation-p

interaction with Tyr198 or any other residues. It did, however,

form hydrogen bonds with Glu158 (with an occurrence of

52%) and very infrequently with Ser243 (6%) and Glu168

(6%). In the Arg158Ala receptor, the GABA carboxylate

group interacted with two of the nitrogen groups of the side

chain of Arg104 (forming on average 2.50 hydrogen bonds),

and with the two serines Ser168 and Ser243, forming on av-

erage 0.97 and 0.14 hydrogen bonds, respectively; the

GABA amine group also maintained a cation-p interaction

with Tyr198 for 60% of the production run, and was also in-

volved in, on average, 0.42 and 0.91 hydrogen bonds with

Tyr247 and Leu166, respectively. Thus our data suggest that

the lack of function in the Arg158 mutant receptors is due to

changes in the hydrogen-bond network, which could affect

the binding of GABA and/or the links between the binding

site and channel opening.

There has been a previous MD investigation of the extra-

cellular domain of the GABAC receptor (8), based on a ho-

mology model built on a different structure of AChBP (from

Aplysia californica at 2.02 Å resolution (35)). In this study,

the chosen orientation of GABA from a docking procedure

has similarities with ours: the GABA carboxylate group

FIGURE 5 The distance of the GABA center of mass from its position at

the beginning of the production run (top) in the GABAC receptor; the

modulus of the angle u between the lines passing through the GABA amine

nitrogen and the GABA center of mass at the beginning and at a generic time

of the production run (bottom).

FIGURE 6 Time occurrences with the corresponding percentages over the

production run of the bonds formed by GABA in the GABAC receptor: (a)

Hydrogen bonds involving the GABA carboxylate group; the solid and

shaded colors indicate the two oxygen atoms in the carboxylate group. (b)

Hydrogen bonds involving the GABA amine group. (c) Cation-p interac-

tions involving the GABA amine group. The labels used to indicate the

atoms involved in the hydrogen bonds correspond to the atom types used in

the AMBER package.
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forms a salt-bridge with Arg104 and the amine group interacts

with Tyr198 and Tyr241. A molecular dynamics study was

performed for 7 ns on this structure, with partial solvation

limited to sphere of 20 Å radius around the neurotransmitter,

with the AMBER simulation package; it was found that

GABA was very unstable in the binding site and interactions

with important amino acids disappeared. In an additional

simulation, where the docking procedure was performed on a

structure obtained by a molecular dynamics equilibration,

GABA was more stable with recorded interactions between

the carboxylate group and Arg104, although no quantitative

information is available for comparison with our data.

Mutations of Arg104 with Ala, Glu, and Lys

To further test the role of Arg104 and to mimic previous ex-

perimental studies, we substituted Arg104 in each subunit in

turn with Ala, Glu, and Lys in the homology model, and

performed a new set of classical molecular dynamics simu-

lations of the whole GABAC receptor extracellular domain in

aqueous solution. The computational details, including the

minimization and equilibration procedures and initial posi-

tion of the ligand, were the same as for the wild-type receptor.

The substitution of the positively charged Arg with the

neutral Ala produced a receptor with a total charge of �5e;

hence, we added five positively charged (Na1) counterions to

neutralize the system. However, GABA was not stable in the

binding pocket, and indeed, it completely exited the protein

4.6 ns into the equilibration. During the first ;3 ns of the

equilibration, the GABA carboxylate group bound to Arg158,

confirming that this group preferred to bind to a positively

charged residue. However, these hydrogen bonds were not as

stable or as frequent as those previously formed by GABA

and Arg104, and indicate that Arg158 is a less favorable

binding partner than Arg104. The carboxylate group also

formed infrequent bonds with Thr201 and Ser242. The GABA

amine group formed a cation-p interaction with Tyr198 and

also a hydrogen bond with the carboxylic oxygen of Tyr198.

There were also infrequent hydrogen bonds with Met156,

Tyr200, and Ser197. After 3 ns of equilibration GABA oscil-

lated inside the binding site for ;1 ns with very infrequent

interactions and then left the binding site and the whole ECD.

In the 4.6-ns equilibration MD simulation before GABA

exited, the GABA carboxylate group formed, on average,

0.61 hydrogen bonds with Arg158, 0.12 with Thr201, and

0.06 with Ser242; the GABA amine formed 0.33 hydrogen

bonds with Tyr198, 0.09 with Met156, 0.12 with Tyr200, and

0.11 with Ser197. Ala104 formed, on average, 1.36 hydrogen

bonds with Asp81, of which 0.37 were as acceptor and 0.99

as donor.

The experimental data revealed a very large increase

(;10,000-fold) in EC50 when Arg104 was substituted with

Ala (6). These data are consistent with our simulation, which

indicates that the stability of GABA inside the ECD dra-

matically decreased when Arg104 is replaced with Ala; indeed

the decrease was so dramatic that GABA rapidly exited the

binding site.

We then substituted the five subunits of the homology

model with Glu at position 104. Glu has a negative charge of

–e, hence the total charge of the system was �10e, and we

added 10 counterions (Na1) to neutralize the total charge.

During the production run, GABA underwent large dis-

placements and rotations, as seen in Fig. 7, which shows the

distance between the positions of the GABA center of mass

at the beginning and at a generic time of the production

run (top), and the modulus of the angle between the lines

passing through the center of mass and the amine nitrogen at

the beginning and at a generic time of the production run

(bottom).

In this simulation, the GABA carboxylate group found a

new binding partner: Arg249. Hydrogen bonds between the

GABA carboxylate group and Arg249 (0.91 in the production

run) were present intermittently for much of the simulation;

however, these bonds were considerably less frequent than

those with Arg104 in the wild-type receptor. The carboxylate

group also formed, on average, 0.31 hydrogen bonds with

Tyr241, and the amine group formed infrequent hydrogen

bonds with Tyr102 (0.15 on average) and Asp219 (0.16). In

FIGURE 7 The distance of the GABA center of mass in the Arg104Glu

GABAC receptor from its position at the beginning of the production run

(top); the modulus of the angle u between the lines passing through the

GABA amine nitrogen and the GABA center of mass at the beginning and at

a generic time of the production run (bottom).
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summary, an average of 1.47 hydrogen bonds were formed.

There were no cation-p interactions. Details of the time oc-

currences of these bonds can be seen in Fig. 8. Glu104 also

formed, on average, 3.17 hydrogen bonds with Asp81 (0.96 as

acceptor and 1.00 as donor), with Lys211 (1.13 as acceptor)

and with Ser168 (0.08 as acceptor).

The experimental data revealed another large increase

(;40,000-fold) in EC50 when Arg104 was substituted with

Glu (6). Again the simulation indicates that the stability of

GABA inside the ECD dramatically decreased when Arg104

was replaced with Glu; GABA formed, on average, signif-

icantly fewer bonds with the surrounding residues (1.47

hydrogen bonds and no cation-p interactions) than in the

wild-type receptor. Interestingly, as in the previous simula-

tion, GABA appeared to prefer to interact with another Arg,

but in this case it was Arg249, perhaps because this was more

distant from the unfavorable negatively charged Glu.

Finally, we substituted Arg104 with Lys, which has the

same positive charge; hence the total charge of the protein was

neutral and we did not add any counterions. The distance

between the position of the GABA center of mass at the be-

ginning and at a generic time of the production run, and the

modulus of the angle between the lines passing through the

center of mass and the amine nitrogen at the beginning and at a

generic time of the production run are shown in Fig. 9. GABA

underwent relatively small rotations and overall remained

reasonably close to its initial position. Unexpectedly, it only

formed very infrequent (0.07) hydrogen bonds with Lys104. It

also formed 1.17 hydrogen bonds with Ser243, 0.52 with

Ser168, 0.07 with Thr244, and 0.07 with Ser242. The amine

group formed, on average, 0.30 and 0.22 hydrogen bonds with

Tyr198 and Thr244, and 0.32, 0.52, and 0.20 cation-p inter-

actions with Tyr198, Tyr241, and Tyr247, respectively. Details

of the time occurrences of these bonds can be seen in Fig. 10.

The average number of hydrogen bonds (2.42) is significantly

smaller than for the wild-type receptor, while the number of

cation-p interactions (1.14) is larger. Lys104 formed, on

average, 2.13 hydrogen bonds with other residues of the

GABAC receptor, of which 1.34 are with Asp81 (0.94 as accep-

tor and 0.40 as donor) and 0.79 are with Gln83 (as donor).

The experimental data showed that the receptor was in-

sensitive to GABA up to a concentration of 30,000 mM when

Arg104 was substituted with Lys. Our simulations suggest

that the decrease in the number of hydrogen bonds and/or the

FIGURE 9 The distance of the GABA center of mass in the Arg104Lys

GABAC receptor from its position at the beginning of the production run

(top); the modulus of the angle u between the lines passing through the

GABA amine nitrogen and the GABA center of mass at the beginning and at

a generic time of the production run (bottom).

FIGURE 8 Time occurrences with the corresponding percentages over the

production run of the bonds formed by GABA in the Arg104Glu GABAC

receptor: (a) Hydrogen bonds involving the GABA carboxylate group; the

solid and shaded colors indicate the two oxygen atoms in the carboxylate

group. (b) Hydrogen bonds involving the GABA amine group. No cation-p

interactions were formed. The labels used to indicate the atoms involved in

the hydrogen bonds correspond to the atom types used in the AMBER

package.
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lack of interaction with Lys104 renders GABA incapable of

interacting sufficiently in the binding pocket to open the

channel.

In conclusion, the data from the simulations strongly

support the experimental data in suggesting a critical role for

Arg104. The simulation with the wild-type receptor revealed

hydrogen bonds between this residue and GABA for much of

the simulation, but GABA formed extremely infrequent

(,1%) bonds when this residue was mutated to Lys and no

bonds at all when it was mutated to Ala or Glu.
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