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ABSTRACT A theoretical framework is elaborated to account for the effect of a transmembrane potential in computer simula-
tions. It is shown that a simulation with a constant external electric field applied in the direction normal to the membrane is equivalent
to the influence of surrounding infinite baths maintained to a voltage difference via ion-exchanging electrodes connected to an
electromotive force. It is also shown that the linearly-weighted displacement charge within the simulation system tracks the net flow
of charge through the external circuit comprising the electromotive force and the electrodes. Using a statistical mechanical
reduction of the degrees of freedom of the external system, three distinct theoretical routes are formulated and examined for
the purpose of characterizing the free energy of a protein embedded in a membrane that is submitted to a voltage difference. The
W-route is constructed from the variations in the voltage-dependent potential of mean force along a reaction path connecting two
conformations of the protein. The Q-route is based on the average displacement charge as a function of the conformation of the
protein. Finally, the G-route considers the relative charging free energy of specific residues, with and without applied membrane
potentials. The theoretical formulation is illustrated with a simple model of an ion crossing a vacuum slab surrounded by two
aqueous bulk phases and with a fragment of the voltage-sensor of the KvAP potassium channel.

INTRODUCTION

The transmembrane potential across the cellular membrane

is a fundamental driving force affecting the translocation of

permeating ions and the opening and closing transitions of

voltage-gated channels (1). Although it is possible to impose

a potential difference across a membrane using ion-exchanging

electrodes and an electromotive force (EMF) (2), the potential

difference in living cells arises from the unequal distribution of

ions on both sides of the membrane. In both cases, the bulk

ionic solutions remain electrically neutral and the potential dif-

ference across the membrane arises from a very small charge

imbalance distributed in the neighborhood of the membrane-

solution interface.

In the ideal case of a perfectly planar geometry, the trans-

membrane electric field is expected to be constant (3,4). A

constant field is, however, probably unrealistic in the neigh-

borhood of an embedded protein, where there can be aqueous

pores and crevices of irregular shapes. It is thus necessary to

develop general computational approaches to model the mem-

brane potential for these more complex situations. Much insight

can be gained from a continuum electrostatic Poisson-Boltzmann

theory modified to account for membrane voltage (PB-V) (3).

Calculations based on the PB-V theory have been used to

simulate ion permeation (5–7), the voltage-dependence of pore

blockers (8,9), and illustrate fundamental principles about the

coupling between the conformation of voltage-gated potassium

channels and the transmembrane voltage (10–13). Nevertheless,

while the PB-V continuum electrostatic theory is useful, it is not

designed to permit a realistic implementation of the membrane

potential in simulations with explicit solvent molecules.

Achieving a realistic representation of the transmembrane

potential in the context of all-atom computer simulations of

biological membrane systems, although highly desirable, is

not as straightforward as it may seem. For instance, a trans-

membrane potential cannot be naively controlled by impos-

ing a physical charge imbalance across the bilayer in typical

all-atom simulations where conventional periodic boundary

conditions are applied in all directions (i.e., the two solutions

across the membrane are actually one and the same). One of

the simplest approaches to implement a transmembrane po-

tential is to apply a constant external electric field E, per-

pendicular to the membrane plane (14–17). The external

electric field drives a voltage difference over the whole sys-

tem V¼ LE, where L is the length of the simulation box in the

direction of the applied field. The external constant field

method is convenient and easy to implement and has been

widely used in a wide range of simulations (see (18–23) for a

few recent examples). It has, however, a certain appearance

of artificiality that is cause for some concerns (24,25). In

particular, it is understood that the transmembrane potential

arises from charge distributions at the microscopic level. Yet,

the external force qiE in the constant field method adds a

constant force acting on all the charge qi in the system, re-

gardless of their position.

Alternative approaches have been sought, in part to cir-

cumvent those concerns. For example, Sachs et al. (24) de-

veloped a strategy to simulate a realistic Nernst potential

based on a twin phospholipid bilayer system that included

explicitly two bulk phases with unequal ion distributions.

While the results were fascinating, the computational over-

head associated with the twin bilayer system was significant.

A reformulation of the charge imbalance strategy, using a

reduced simulation system with a single-bilayer and an air-
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solvent interface, has been recently proposed to decrease the

computational cost (25).

An important drawback of methods based on unequal ion

distribution is that the potential may vary significantly (by

hundreds of millivolts) upon a single permeation event (25).

Similarly, large potential variations can also occur if an em-

bedded membrane protein carrying charged residues un-

dergoes a significant conformational change. For example,

limiting the variations in the transmembrane to ,;50 mV

during the opening of one voltage-gated potassium channel

(;15 unit charge) would require a simulation system com-

prising a bilayer of nearly 16,000 lipids and covering an area

of 712 3 712 Å2. In that sense, it is very difficult to maintain a

constant potential difference using a charge imbalance strat-

egy with a finite simulated system—the same way in which it

is difficult to maintain a constant pressure in simulations

carried out at constant volume. In contrast, the external con-

stant field is introduced as an invariant boundary condition on

the simulation system, even though it is regarded as being

somewhat unphysical (see discussion in (24,25)).

A first goal of this article is to clarify the physical signifi-

cance of the external constant field in membrane simulations.

A second goal of this article is to elaborate a theoretical for-

mulation of the influence of the transmembrane potential on

the configurational free energy of an intrinsic protein. The

reduction of a thermodynamic system with applied potential

to a finite simulation subsystem is discussed in the next sec-

tion. This is followed by a theoretical development where

several concepts associated with the transmembrane potential

are introduced. From this analysis emerge three formal routes

for characterizing the free energy of a charged protein system

embedded in a membrane that is submitted to a voltage dif-

ference. Those three different approaches are illustrated with

simulations of simple model systems. The article is concluded

with an outlook on the various advantages of those different

approaches.

THEORETICAL DEVELOPMENTS

Reduction to finite subsystem

Let us consider a system in thermodynamic equilibrium,

comprising a protein embedded in a lipid membrane sur-

rounded by two infinite aqueous salt solutions that are sub-

mitted to an electrostatic potential difference V. The potential

difference between sides I and II is applied via ion-exchange

electrodes (e.g., AgCl) that are connected through an elec-

tromotive force (EMF). Furthermore, it is assumed that the

electrode on side II is grounded (V ¼ 0) and that the mem-

brane is centered at z ¼ 0 and extends in the xy plane. The

system is illustrated schematically in Fig. 1, A and B. For the

sake of simplicity, it is assumed that the EMF and the elec-

trodes are ideal and that one ionic species can be transported

directly from one side to the other by going through the

circuit. In a realistic system, e.g., with AgCl electrodes, the

chloride anion is chemiabsorbed at the surface of the elec-

trode on one side, releasing one electron that is transported by

the EMF to the other side to yield a chloride anion on the

other side (2). However, the exact details of the chemiab-

sorption process are unimportant in this treatment and will be

ignored. The potential difference across the membrane arises

from a small charge imbalance between the two bulk aqueous

phases, which is transferred by the EMF via the electrodes

(located far away in solution). This suggests that it should be

possible to describe the situation realistically without having

to treat explicitly all the details about the electrodes ion-ex-

change process (see discussion in (3)).

The total potential energy of the system is [U – QextV],

where U is the microscopic potential energy of the system,

and Qext is the net charge that transits through the external

circuit. The extensive variable Qext and the intensive variable

V are thermodynamically conjugated (26). There is a minus

sign in front of the QextV contribution because the energy of a

charge q going through the EMF from side I to side II is�qV.

Yet, the accumulated net charge Qext is very small and the salt

solutions remain globally neutral because any macroscopic

charge imbalance in the bulk region would yield a prohibi-

tively large energy.

To make progress, we choose to separate the complete

system into two regions: a microscopic subsystem (inner

region), embedded in the surrounding baths held at the po-

tential difference V (outer region) (27,28). The separation is

illustrated schematically by the box drawn with dashed lines

in Fig. 1, A and B. The subsystem comprises the protein as

well as the membrane and bulk solution in its neighborhood,

while the outer bulk region corresponds to the rest of the

system, including the electrodes and the EMF. The degrees of

freedom of the inner and outer regions are denoted by X and

Y, respectively. A formal thermodynamic reduction to the

finite subsystem requires integrating out all the Y degrees of

freedom of the outer region. This yields the effective poten-

tial energy function F sðXÞ;

e
�bF sðXÞ}

Z
9dY e

b½U�QextV�; (1)

which formally incorporates the influence of the surrounding

baths, including the applied voltage V (the prime on the

integration symbol means that the Y degrees of freedom are

restricted to the outer region). The concept of the inner

subsystem embedded in the surrounding baths shown sche-

matically in Fig. 1 B, and the statistical mechanical reduction

expressed by Eq. 1 underlie the physical picture that is used

throughout the rest of the article.

Assuming that the aqueous ionic solutions surrounding the

subsystem can be approximated using continuum electro-

statics, it has been shown previously that F sðXÞ can be

written as

F sðXÞ ¼ UsðXÞ1F npðXÞ1F rfðXÞ1
1

2
CV

2
1QdðXÞV;

(2)
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where Us is the microscopic potential energy of the subsys-

tem, F np is the nonpolar confinement acting on the subsys-

tem from the surrounding baths, F rf is the electrostatic

reaction field energy arising from the polarization of the

surrounding baths, C is the capacitance of the subsystem, and

Qd is the displacement charge. The first three terms are

actually independent of any applied voltage and are typical of

the influence of an infinite bath surrounding a finite subsys-

tem (27). The last two terms in Eq. 2 represent more spe-

cifically the coupling to the applied voltage. The capacitance

C is independent of the internal configuration of the subsys-

tem. In contrast, the displacement charge is highly sensitive

to all charge movement within the subsystem. It may be

expressed as (3)

QdðXÞ ¼ +
i

qifmpðriÞ; (3)

where the dimensionless function fmp(r) represents the

fraction of the membrane potential at position r in the

subsystem (i.e., the ratio between the potential induced by

the transmembrane potential at r and the value of the

transmembrane potential V itself), and qi is the i-th charge.

The function fmp is defined from the Poisson-Boltzmann

(PB) equation modified to account for the transmembrane

potential V (3),

= � eðrÞ=fmpðrÞ
� �

� �k
2ðrÞ½fmpðrÞ � V QðrÞ� ¼ 0; (4)

where Q(r) is a step function equal to 1 for z . 0 and e(r) and

�k2ðrÞ0 represent the dielectric constant and ionic screening,

respectively. At all points inside the subsystem where the

surrounding bulk is explicitly excluded, e(r)¼ 1 and �k2ðrÞ ¼
0; however, in the outer region they assume bulklike values.

It is particularly noteworthy that there are no source charges

in the PB-V Eq. 4, showing that the dimensionless field

fmp(r) is independent of the charge density rs(r) inside the

subsystem.

The function fmp embodies the coupling between the

charges in the subsystem and the transmembrane voltage

applied by the EMF via the electrodes in the outer aqueous

salt solutions. The significance of fmp, however, runs deeper

because it also transduces the microscopic charge movement

in the subsystem into observable charge movement in the

external circuit (see below). This can be made explicit by first

considering the general solution to the PB-V equation,

= � eðrÞ=fðrÞ½ � � �k
2ðrÞ½fðrÞ � VQðrÞ� ¼ �4prsðrÞ; (5)

which is expressed formally as the sum of two separate terms,

f(r;V) ¼ Vfmp(r) 1 frf(r), with

fmpðrÞ ¼ �
Z

dr9 Gðr; r9Þ�k2ðr9ÞQðr9Þ; (6)

frfðrÞ ¼ �
Z

dr9 Gðr; r9Þ4prsðr9Þ; (7)

using the Green’s function defined by

= � ½eðrÞ=Gðr; r9Þ� � �k2ðrÞGðr; r9Þ ¼ dðr� r9Þ: (8)

FIGURE 1 Schematic representation of the reduction to a

finite system and Poisson-Boltzmann calculation. (A) A

thermodynamic membrane system with a transmembrane

potential is separated into a microscopic subsystem (inner
region) and its surrounding baths (outer region). The inner

region (delineated by the dashed box) comprises the protein

as well as the membrane and bulk solution in its neighbor-

hood, while the outer region includes the aqueous salt so-

lutions, the electrodes, and the EMF. The membrane is

centered at z ¼ 0 and extends in the xy plane. The electrode

on side II is grounded (V ¼ 0). (B) Representation of the

same system with the degrees of freedom of the outer region

integrated out and their influence on the inner region

approximated using a continuum electrostatic Poisson-

Boltzmann theory based on Eq. 4. (C) The effect of the

transmembrane potential from an infinite thermodynamic

system onto the finite subsystem is illustrated using a

continuum electrostatic calculation based on the modified

Poisson-Boltzmann theory (3). At the top is shown the

dimensionless function fmp acting on a cubic central inner

region of 80 Å on the side (indicated by the dashed line

box). The dimensionless function fmp varies from 0.0 of the

left (white) to 1.0 on the right (red); the contour levels

indicated by colors and dashed lines are set to 0.0 (white),

0.20 (yellow), 0.35 (green), 0.50 (blue), 0.65 (purple), 0.80 (violet), and 1.0 (red). The variation of f along the z axis cutting through the center of the box is

shown at the bottom. The function f was calculated by solving Eq. 4 numerically. In the inner region, the dielectric constant is set to 1 and the ionic screening

constant is set to zero. For the aqueous phase of the outer region, a dielectric constant of 80 and an ionic concentration of 150 mM were assumed. The thickness

of the membrane slab in the outer region is 20 Å and its dielectric constant is set to 2. The continuum electrostatic calculations were carried out using the PBEQ

module of CHARMM using a cubic grid of 201 points spaced by 1 Å. The equation was solved by using the overrelaxation method and ;500 iterations were

required to reach convergence.

Membrane Potential 4207

Biophysical Journal 95(9) 4205–4216



A net variation in the total charge in the ionic solution on one

side of the membrane implies that a charge Qext must have

transited through the external circuit. Charge movements in the

subsystem are actually detected because they induce a reorga-

nization of the ions in the surrounding salt solution Ærions(r)æ.
For example, assuming an imposed zero potential (V¼ 0), the

total ionic charge on the side I of the membrane (z . 0), is

QextðV ¼ 0Þ ¼
Z

drQðrÞÆrionsðrÞæðV¼0Þ

¼
Z

drQðrÞ ��k
2ðrÞ

4p

� �
frfðrÞ

¼
Z

drQðrÞ ��k2ðrÞ
4p

� �Z
dr9Gðr;r9Þð�4pÞrsðr9Þ

¼�
Z

dr9fmpðr9Þrsðr9Þ

¼�+
i

qifmpðriÞ

¼�QdðXÞ; (9)

where the property G(r, r9)¼G(r9, r) of the Green function has

been exploited (note the ion density Ærionsæ ¼ �ð�k2ðrÞ=4pÞfrf

in the linearized PB-V theory when the transmembrane poten-

tial is zero). Using similar arguments, it can be shown that the

total charge induced in the solution at nonzero V is (3)

Qext ¼�ðQd 1CVÞ; (10)

at nonzero voltages. This relation implies that any atomic

charge movements in the explicit subsystem gives rise

directly to a detectable current going through the electrodes

and the EMF. The latter are part of a virtual circuit, since

those degrees of freedom have been integrated out and do not

appear explicitly anymore in the reduced simulation system.

The minus sign implies that, on average, when a microscopic

charge q crosses the membrane from side I to side II, it pushes

a charge q in the opposite direction through the virtual circuit.

According to these general considerations, a reasonable

approach to simulate a finite subsystem of arbitrary shape

under the influence of a membrane potential might be to

generate the configurations according to the Boltzmann prob-

ability, exp[�F s(X)]. Rigorously speaking, this would require

some grand canonical Monte Carlo scheme allowing particle

insertion and annihilation to properly simulate the finite sub-

system in open equilibrium with the buffers on side I and II of

the membrane (28,29). Rather than pursuing these ideas at this

point, we wish to discuss the overall shape of the function fmp

for the particular case of a subsystem chosen with a simple

cubic geometry. This is illustrated in Fig. 1 C. Although there

are some local variations near the edges of the boundary, it is

clear that the dimensionless coupling field fmp is nearly linear

across the center of the subsystem (Fig. 1 C, bottom). Obvi-

ously, as the size of the subsystem is increased, the field be-

comes constant over most of the central region. Alternatively,

if multiple copies of the subsystem were tilled together to form

a two-dimensional periodic array parallel to the membrane,

then the function fmp would be exactly linear by symmetry,

and the displacement charge would then be rigorously

Qd ¼+
i

qi

zi 1Lz=2

Lz

� �
; (11)

where Lz is the length of the box along the z axis (the offset

constant is chosen to be consistent with the grounded elec-

trode at z / N). The coupling termQdV then gives rise to a

force equivalent to that of a constant electric field E ¼ V/Lz,

applied in the direction perpendicular to the membrane and

acting on all the charges qi in the subsystem.

As mentioned above, a correct simulation of such a sub-

system in open equilibrium with its surrounding baths would

still require a grand canonical Monte Carlo scheme (28,29).

In practice a simpler and practical approach to ensure con-

tinuity and avoid the need to account for particle number

fluctuations, is to impose periodic boundary conditions in the

z direction. Furthermore, periodic boundary conditions alle-

viate the need to include the contributions from F np and

F rf required in simulations of finite systems with solvent

boundaries (27). Additional considerations, however, are re-

quired to account correctly for the energy associated with the

movement of ions wrapping around the central cell of the

periodic system. For example, this occurs when an ion with

net charge qi leaves the cell at z¼ Lz/2 to reenter at z¼�Lz/2.

In an open ensemble simulation, such a process requires the

annihilation of the ion i on side I of the system, followed by

the immediate reinsertion of the ion on side II of the system.

The probability for annihilating the ion i by an exchange with

the buffer on side I is governed by the energy difference

½F sðN � 1Þ1Dm
ðIÞ
i 1qiV� � ½F sðNÞ�; where Dm

ðIÞ
i 1 qiV is

the excess chemical potential of the ion on side I (3,29).

Similarly, the probability for inserting the ion i by an ex-

change with the buffer on side II is governed by the en-

ergy difference ½F sðNÞ� � ½F sðNÞ � Dm
ðIIÞ
i �; where Dm

ðIIÞ
i

is the excess chemical potential of an ion on side II (3,29).

Thus, accounting for the movement of ion i wrapping around

the periodic boundary, ziðtÞ ¼ Lz=2� 01/ziðt1DtÞ ¼
�Lz=2 101; requires a change in the total effective energy

equal to 1qiV (the sign is negative if the ion wraps around in

the opposite direction). This implies that the configurational

probabilities in the periodic system are governed by the

effective potential energy ½Us1VQd1+
i
n9i qiV�; where n9i is

the net number of times that the charge qi has wrapped around

the periodic coordinate system. Because of the linearity ofQd

in Eq. 11, this expression may be written equivalently as

QdðXðuÞÞ ¼+
i

qi

 
zi 1Lz=2

Lz

1n9i

!

¼+
i

qi

z
ðuÞ
i 1Lz=2

Lz

 !
; (12)

where X(u) and z
ðuÞ
i represents unwrapped coordinates. Using

Eq. 12 with unwrapped coordinates is essential when mobile
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ions carrying a net charge are part of the bulk solution

(though this makes no difference for the neutral species such

as water molecules).

This analysis leads us to conclude that a simulation with

periodic boundary conditions in all directions, using the ef-

fective potential energy ½Us1VQd� with Qd given by Eq. 12,

finds its roots directly in a proper reduction of a thermodynamic

membrane system at voltage V by integrating out the external

degrees of freedom of the infinite baths (including the elec-

trodes and the EMF). In other words, applying a constant ex-

ternal electric field E ¼ V/Lz in the direction perpendicular

to the membrane, despite its apparent artificiality, correctly

incorporates the influence of the surrounding infinite baths

together with the transmembrane voltage applied via the elec-

trodes and the EMF. In addition, Eq. 10 shows that the dis-

placement charge in such system tracks the charge movement

through the (virtual) external circuit. Although this conclusion

was reached via an analysis based on the linearized PB-V Eq. 4

to describe the aqueous salt solution in the outer region, the

physical interpretation of the constant external field should not

be limited by a continuum electrostatic approximation.

To avoid the artifacts caused by truncation of the Coulomb

potential, the resulting three-dimensional periodic array must

be treated according to a Ewald lattice sum technique with

standard conducting boundary conditions assumed at infinity

to exclude the self-energy of the total dipole of the unit cell

from the total energy (30,31). The widely used particle-mesh

Ewald method developed by Essmann et al. (32), which relies

on the fast-Fourier transform techniques to compute the pe-

riodic electrostatic potential by resolving Poisson’s equation

in reciprocal space, fulfills those conditions. The molecular

electrostatic potential arising from the explicit charges han-

dled by the lattice sum is periodic, Fmol(x, y, z 1 nLz) ¼
Fmol(x, y, z). The additional external constant field Ftot(x, y,

z 1 nLz) ¼ Ftot(x, y, z) 1 nV, breaks the periodicity of the

total electrostatic potential, though the total electric field

(spatial derivative) is periodic and continuous everywhere.

Thus, the total electrostatic forces comprises the lattice sum

for the explicit charges together with the additional forces

arising from the constant external field applied in the z di-

rection. Although the electrostatic forces used to generate a

MD trajectory are unambiguous, the results extracted from

the periodic three-dimensional system must, however, be in-

terpreted carefully. It is helpful to recall the original reduction

to the inner region shown in Fig. 1 B to ensure that the results

are interpreted in a physically meaningful way. At the edge of

the inner region (the box drawn in dashed lines in Fig. 1 B),

the total electric field should decay to zero and there is an

offset V in the electrostatic potential between the aqueous salt

solutions on sides I and II. In the periodic simulation system,

those limits are replaced by z¼�Lz/2 and z¼1Lz/2, and Lz

must be sufficiently large to avoid size artifacts.

It shall be noted that, in the effective potential energy

½Us1VQd�; the displacement charge Qd; an extensive vari-

able, and the applied voltage V, an intensive variable, are

thermodynamically conjugated. Interestingly, one can draw

from the analogy of simulations at constant-volume (exten-

sive) or constant-pressure (intensive) to contrast simulations

generated with the constant external field or with the finite

unequal distribution of charge. It is worth noting that simu-

lations generated with a constant-pressure algorithm also have

some elements of artificiality, even though they correctly yield

time-averaged configurations in the isobaric ensemble (33).

From this point on, we consider a molecular subsystem for

MD simulations comprising a protein embedded in a fully

solvated membrane, which is simulated with periodic bound-

ary conditions and a constant electric field acting on all the

charges qi. The total potential energy of the system is ½Us1

VQd�; where Us is the microscopic potential energy of the

simulated system, and Qd is the total displacement charge

given by Eq. 12 in terms of unwrapped coordinates. In the

following we examine the statistical mechanical conse-

quences of this construct.

Free energy and voltage coupling

For the sake of concreteness, let us consider the case of a

voltage-activated protein with two conformational states,

‘‘a’’ and ‘‘b’’. The normalized voltage-dependent probability

for state ‘‘a’’ is

PaðVÞ ¼
R

a
dXe

�b½Us1QdV�R
dXe�b½Us1QdV� ¼

e
�bGaðVÞ

e�bGaðVÞ1e�bGbðVÞ; (13)

where the subscript implies that the configurational integrals

are restricted to a given conformation (i.e., ‘‘a’’ or ‘‘b’’). In

Eq. 13, Ga(V) represents the total free energy of the config-

urational state ‘‘a’’,

e
�bGaðVÞ}

Z
a

dXe
�b½UsðXÞ1QdðXÞV�; (14)

with a similar expression for Gb(V) (the total free energy of

the states is determined within an arbitrary constant).

It is useful to define the state-dependent excess free energy

DGa(V) arising from the applied membrane voltage:

e
�bDGaðVÞ ¼

R
a
dXe

�b½Us1QdV�R
a
dXe

�b½Us� : (15)

Thus, the voltage-dependent probability of the state ‘‘a’’ is then

PaðVÞ ¼
e�bDGaðVÞ R

a
dXe�bUs

e
�bDGaðVÞ R

a
dXe

�bUs 1e
�bDGbðVÞ

R
b
dXe

�bUs

¼ e
�b½Gað0Þ1DGaðVÞ�

e
�b½Gað0Þ1DGaðVÞ�1e

�b½Gbð0Þ1DGbðVÞ�

¼ e
�bDQgðV�V1=2Þ

e
�bDQgðV�V1=2Þ11

; (16)

where DQg is the gating charge for the two-state system,

DQg¼
1

V
DGaðVÞ�DGbðVÞ½ �; (17)
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and V1/2 is the midpoint equilibrium of the two-state system,

V1=2¼
Gað0Þ�Gbð0Þ½ �

DQg

: (18)

These expressions describing the voltage-dependent equilib-

rium population of a two-state system are familiar in the field

of voltage-gated potassium channels (34–37).

Displacement charge and voltage coupling

The key quantities that relate the coupling between the pro-

tein conformation and the applied voltage are the excess free

energies, DGa(V) and DGb(V). A particularly simple relation

exists between the excess free energies and the average of the

displacement charge. Starting from Eq. 15, the excess free

energies can be expressed as a thermodynamic integration

over V,

DGaðVÞ ¼
Z V

0

dV9 ÆQdæða;V9Þ; (19)

where ÆQdæða;V9Þ is the average displacement charge of the

(entire) subsystem with applied membrane voltage V9, restricted

to the protein conformation a. Based on general linear response

considerations, the average displacement charge is given by

ÆQdæða;V9Þ � C0V91 ÆQdæða;0Þ; (20)

where C0 is the apparent solvent-averaged capacitance of the

subsystem (the subscript 0 means V ¼ 0), which can be

expressed in terms of the equilibrium fluctuations of the

displacement charge at zero voltage (26). C0 should not be

confused with the capacitance C appearing in Eq. 2, which

does not depend on the internal configuration of the sub-

system and has little impact on the analysis. In principle, the

apparent solvent-averaged C0 depends on the shape and con-

formation of a protein embedded into the membrane. However,

as shown previously in Roux (3), the dependence of C0 upon

changes in the protein conformation is negligible and can be

safely ignored because the magnitude of C0 is largely domi-

nated by the membrane area A, thickness d, and permittivity

e0em (e.g., for an ideal parallel plate capacitor, C0 � e0emA=d).

Proceeding from Eqs. 19 and 20, the dominant effect of

voltage on the excess free energy DGa(V) can be expressed as

DGaðVÞ ¼
1

2
C0V

2
1VÆQdæða;0Þ (21)

(the argument is similar for DGb(V)). Relying on Eqs. 14, 15,

and 17, the voltage-dependent free energy difference be-

tween the states a and b can be expressed as

GaðVÞ�GbðVÞ ¼Gað0Þ�Gbð0Þ1VDQg; (22)

and the gating charge defined in Eq. 17 is

DQg¼ ÆQdæða;0Þ � ÆQdæðb;0Þ: (23)

This relation can be used to extract the gating charge DQg of a

protein directly from MD simulations by calculating the

average of Qd for each of the two conformations at a given

voltage V (the voltage must be the same for the two states a
and b). The above analysis assumes that the total gating

charge is independent of the applied voltage V, which is a

valid assumption as long as V is sufficiently small.

It should be noted that DQg¼ –DQext by virtue of Eq. 10. This

points to the fundamental relationship between the total charge

flowing through the external circuit comprising the electrodes

and the EMF when the protein makes a transition from the

conformation a to the conformation b (DQext) and the effective

charge that couples the protein to the applied membrane voltage

and controls the relative free energy of the two states (DQg) (35).

Potential of mean force and voltage coupling

The above analysis showed that the applied membrane po-

tential couples to the energetics of the microscopic system via

the average displacement charge. A similar analysis can be

extended to the solvent-averaged potential of mean force

(PMF) of a protein embedded in a system with membrane

potential V. The PMF is a central concept in modern discus-

sion of the conformational free energy of a protein (38). The

PMF can be expressed as a ratio of configurational integrals,

e
�b½WðXp ;VÞ�WðX9p;VÞ� ¼

R
dXr e�b½UsðXp ;XrÞ1QdðXp ;XrÞV�R
dXr e

�b½UsðX9p ;XrÞ1QdðX9p ;XrÞV�; (24)

where Xp and Xr values represent the coordinates of the

proteins and of the remaining atoms (i.e., water, ions, and

membrane lipids), respectively. Alternatively, it can be

expressed from the reversible work

WðXp;VÞ ¼WðX9pÞ�
Z X9p

Xp

dXp½s� � ÆFðXp½s�ÞæðVÞ; (25)

where X9p is some reference configuration of the protein, and

Xp[s] represents the pathway for the conformational transi-

tion (i.e., the reaction coordinate). A complete conformational

transition pathway can be determined using sophisticated

computational methods (see (39,40) and references therein).

With these definitions, it can be shown that the W(Xp;V)

relative to the PMF at zero potential,

DWðXp;VÞ ¼WðXp;VÞ�WðXp;0Þ; (26)

is related to the variations in the average displacement charge

ÆQdðXpÞæð0Þ;

DWðXp;VÞ�DWðX9p;VÞ ¼V½ÆQdðXpÞæð0Þ � ÆQdðX9pÞæð0Þ�:
(27)

Furthermore, the voltage-dependentprobability of the state ‘‘a’’

expressed in Eq. 16 can also be written in terms of the PMF,

PaðVÞ ¼
e
�bDGaðVÞ R

a
dXe

�bWðX;0Þ

e
�bDGaðVÞ R

a
dXe

�bWðX;0Þ
1e

�bDGbðVÞ
R

b
dXe

�bWðX;0Þ:

(28)
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Residue-based fractional field and
voltage coupling

While the total gating charge is important, it is often of in-

terest to have the ability to characterize individual contribu-

tions from specific residues of the protein. In this regard, it is

useful to consider the free energy difference,

DDGaðiÞ ¼DGaðV;qiÞ�DGaðV;qi¼ 0Þ
¼ ½GaðV;qiÞ�GaðV;qi¼ 0Þ�
� ½Gað0;qiÞ�Gað0;qi¼ 0Þ�

¼�kBTln

R
a
dXe

�b½UsðqiÞ1QdðqiÞV�R
a
dXe

�b½Usðqi¼0Þ1Qdðqi¼0ÞV�

"

3

R
a
dXe

�bUsðqi¼0ÞR
a
dXe

�bUsðqiÞ

#

¼ qiVfaðiÞ; (29)

where fa(i) represents the coupling of the charge qi to the

transmembrane potential. The significance of fa(i) may be

clarified from a straightforward linear response argument.

Introducing the thermodynamic coupling parameter qi /
lqi, the charging electrostatic free energy is

GðV;qiÞ�GðV;0Þ ¼
Z 1

0

dl

�
@ðUs 1QdVÞ

@l

�
ðV;lÞ

¼
Z 1

0

dlqi FtotðV;lÞ

�
Z 1

0

dlqi½VFmp 1lFrf �

� qiVFmp 1
1

2
qiFrf ; (30)

where Ftot is the total average electrostatic potential felt by

the charge qi (the subscript ‘‘a’’ is omitted for simplicity). It

comprises two contributions: VFmp arising from the applied

membrane potential (linearly proportional to V and indepen-

dent of l), and lFrf arising from the reaction field (linearly

proportional to l, and independent of V ). In the context of a

linearized continuum electrostatic theory Frf and Fmp are

independent from one another [3], and Frf cancels out in the

difference in Eq. (29), yielding fa(i) ¼ Fmp. This analysis

shows that fa(i) corresponds to the fraction of the membrane

potential acting on the charge qi when the protein is in con-

formation a. It may actually be possible to estimate fa(i) directly

as an end-point average at l ¼ 1, without performing any free

energy perturbation (FEP) calculation (although the accuracy

of this approximation would have to be tested for specific

cases). In this limit, @Ga=@l � qiFtot, and faðiÞ � @Ftot=@V.

In practice, the value of fa(i) can be obtained more accu-

rately as the finite difference between two free energy

perturbation calculations performed at two different trans-

membrane voltages V1 and V2, i.e.,

faðiÞ¼
½GaðV1;qiÞ�GaðV1;lqi¼0Þ��½GaðV2;qiÞ��GaðV2;lqi¼0Þ�

qiðV1�V2Þ
:

(31)

The total displacement charge for the state ‘‘a’’, including the

contribution of all residues, may be expressed from individ-

ual residue contributions as

ÆQdæða;0Þ ¼+
i

qi faðiÞ: (32)

A similar expression holds for ÆQdæða;0Þ. It follows that the

individual contribution of a given residue to the total gating

charge is qi[fa(i) – fb(i)], the difference in the residue-based

fractional field for the two conformations, ‘‘a’’ and ‘‘b’’.

COMPUTATIONAL DETAILS

For the sake of clarity, we considered a simple system

comprising two aqueous phase regions separated by a vac-

uum slab of 20 Å meant to represent a low dielectric nonpolar

membrane region. The water molecules were prevented from

entering the slab region by using a flat-bottom harmonic

potential with a force constant of 10 kcal/mol/Å2 imposed

using the GEO module of CHARMM (41). The initial system

was constructed using a preequilibrated water system and

contains a total of 1000 water molecules. The size of the

simulation box is Lx ¼ 31.1032009 Å, Ly ¼ 31.1032009 Å,

and Lz ¼ 51.1032028 Å. Periodic boundary conditions were

applied in all directions.

The simulation systems are shown in Fig. 2, A and B. The

first simulation system (Fig. 2 A) includes a single K1 ion at

different locations along the z axis. The second simulation

system (Fig. 2 B) includes a 41-residue segment from the

voltage-sensing domain of the KvAP bacterial channel,

starting from Pro99 (near the center of the S3 helix) to Ser139

(near the C-terminus of the S4 helix) (42). The S3-S4 seg-

ment, taken from the x-ray structure of the isolated voltage

sensor (PDB id 1ORS), was oriented with the residue Arg117

near the membrane-solvent interface and the C-terminus of

the S4 helix on the other side of the membrane, as proposed in

a number of previous models (43,44). Nonetheless, the pur-

pose of these calculations is only to be illustrative of the

methodology. The protein segment was held fixed during all

the simulations with the KvAP fragment.

All the configurational sampling was generated using

Langevin dynamics at constant volume. A friction of 10 ps�1

was used for all nonhydrogen atoms. The SHAKE algorithm

was used to keep the geometry of the water molecules rigidly

fixed (45), and a timestep of 2 fs was used to integrate the

equation of motion. The nonbonded interactions were trun-

cated at 12 Å and all electrostatic interactions were treated with

the particle mesh Ewald method (32), using a fourth-order

spline, 0.30k, and a 32 3 32 3 64 grid for the fast-Fourier

transform. The transmembrane potential V was implemented

by introducing an external constant electric field applied
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along the z axis according to Eq. 12. The TIP3P potential was

used for the water molecules (46). The all-atom CHARMM

force field was used for the K1 (47) and the protein (48). All

computations were performed using the CHARMM simula-

tion program (41).

The voltage-dependent potential of mean force (PMF) for

a K1 along the z axis was calculated by integrating the av-

erage force acting on the ion held fixed at 103 positions,

going from z ¼ �20 to 120 Å and spaced by 0.5 Å. The

system is shown in Fig. 2 A. For each position, the configu-

rational sampling was generated from 100 ps of simulation.

Results for –5.0, �1.0, �0.5, 0.0, 0.5, 1.0, and 5.0 V are

analyzed, though the results for –5.0, �1.0, and �0.5 were

reconstructed from the results with 5.0, 1.0, and 0.5 V by

symmetry (i.e., using the property that W(z;V) / W(�z;

�V) 1 B, where B is an offset constant). A free energy

perturbation (FEP) for charging the K1 ion held fixed at five

specific locations along the z axis (�20, �10, 0, 10, and

20 Å) was carried out at 0 V and 1 V (49). Five forward and

backward FEP simulations were generated with the thermo-

dynamic coupling parameter l ¼ 0.0, 0.25, 0.50, 0.75, and

1.00 using the PERT module of CHARMM, and then post-

processed using the weighted histogram analysis method

(50,51). The total simulation for each FEP calculation is

250 ps.

To further illustrate the method, a similar charging free

energy calculation was carried out at 0 and 1 V for the seven

charged residues that are part of the fragment of the KvAP

voltage sensor (Glu107, Arg117, Arg120, Arg123, Arg126,

Arg133, and Lys136). The protein fragment was held fixed

during the FEP simulations in the orientation shown in Fig.

2 B. Five forward and backward simulations for the ther-

modynamic coupling parameter l ¼ 0.0, 0.25, 0.50, 0.75,

and 1.00 were generated using the PERT module of

CHARMM, and then postprocessed using the weighted his-

togram analysis method. The total simulation time for each

FEP calculation was 250 ps.

RESULTS AND DISCUSSION

We first illustrate the effect of the transmembrane potential

on a charged particle translated along an axis perpendicular to

the membrane plane. In Fig. 3 (top) is shown the voltage-

dependent PMF of a K1 ion along the z axis. The PMF at zero

membrane potential is symmetric and displays a high free

energy barrier of ;70 kcal/mol, which is typical of the hy-

dration free energy of K1. At different applied membrane

potentials, the large central barrier remains although the

symmetry is broken. An offset appears between the two sides

of the membrane. While the voltage-dependent PMFs retain

the original complexity observed at zero potential, the dif-

ferences [W(z;V) – W(z;0)] display a much simpler structure.

The difference of those PMFs with the PMF at zero voltage is

shown in Fig. 3 (bottom). In fact, the coupling between the

charged ion and its membrane environment with applied

voltage can be summarized largely by a single dimensionless

function f(z). Three different formal routes for characterizing

f(z) are accessible for characterizing the coupling and are

compared in Fig. 4. In Fig. 4 (top), the dimensionless cou-

pling f(z) has been extracted from the variations in the PMF of

the K1 ion along the z axis as

f ðzÞ ¼W�route Wðz;VÞ�Wðz;0Þ
qV

: (33)

In Fig. 4 (middle), the coupling is extracted from the varia-

tions of the total displacement charge calculated for the K1

ion along the z axis at a different voltage as

f ðzÞ ¼Q�route ÆQdðzÞæð0Þ
q

: (34)

FIGURE 2 (A) Simulation systems. Simulation system with a K1 ion

solvated by water. To mimic the effect of a nonpolar membrane region, the

water molecules are prevented to enter between�10 and 110 Å using a half-

harmonic potential. (B) Simulation system with a 41-residue fragment of the

voltage sensor of the KvAP channel, starting from Pro99 (near the center of the

S3 helix, shown in red) to Ser139 (near the C-terminus of the S4 helix, shown in

blue). To mimic the effect of a nonpolar membrane region, the water

molecules are prevented to enter between �10 and 110 Å using a half-

harmonic potential. The structure of the S3-S4 segment is directly taken from

the x-ray structure of the voltage sensor (PDB id 1ORS). The important

charged residues are displayed as sticks and the position of their center of

charge are (z ¼ 0 is at the center of the membrane): Glu107 (10.8 Å), Arg117

(14.1 Å), Arg120 (9.7 Å), Arg123 (10.0 Å), Arg126 (4.4 Å), Arg133 (�4.2 Å),

and Lys136 (�12.7 Å).
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The offset in the displacement charge at nonzero voltage (Fig.

4, middle) is the buildup of capacitive charge in the system,

C0V; according to Eq. 20. Fig. 4 (bottom) shows the coupling

extracted from the variations of the voltage-dependent sol-

vation free energy of the K1 ion along the z axis relative to

zero voltage (plotted as dots),

f ðzÞ ¼G�route DDGðV;qÞ
qV

: (35)

It is observed that the character of f(z) from the three differ-

ent routes is essentially identical, although the results appear

to have different convergence efficiencies. For instance, the

end-point estimator ÆFtot(z)æ(V)/qV, shown in Fig. 4 (bottom,

solid line), is very noisy when the charging free energy from

0.5 V is used, whereas the finite charging free energy

perturbation (Fig. 4, symbols) appears to be more accurate.

For the particular system considered, the least noisy results

are apparently obtained via the Q-route, by monitoring the

average displacement charge according to Eq. 34. The

fluctuations of Qd are related to the effective capacitance

C0; which is roughly equal to e0emA/d. Thus, the Q-route

converges rapidly in this case because the membrane area A
of the simulation system is modest. One may expect that

obtaining accurate averages ofQd could be more challenging

in the case of a very large simulation system.

In the case of a single charged particle, the three different

routes to characterize the dimensionless fraction of the field,

f(z), yield essentially equivalent results and can be directly

compared. Such a straightforward comparison cannot be

carried out in the case of more complex molecular structures.

Fig. 5 shows the dimensionless coupling f(i) calculated from

the voltage-dependent solvation free energy DDG(V;q)/qV

FIGURE 3 Potential of mean force analysis. (Top) Calculated PMF

W(z;V) for a K1 ion along the z axis of the system shown in Fig. 2 at

various transmembrane potentials. The PMFs were calculated by integrating

the mean force acting on the K1 held fixed at a series of positions along the z

axis. All the PMFs were offset to be equal to zero at z ¼ �20 Å. The results

for �5.0, �1.0, and �0.5 were reconstructed from the results with 5.0,

1.0, and 0.5 V by symmetry (i.e., using the property that W(z;V) /
W(�z; �V) 1 B, where B is an offset constant). (Bottom) Perturbative effect

of the applied voltage obtained by subtracting the PMF at zero voltage from

all the other PMFs, DW(z;V) ¼ W(z;V) – W(z;0). The color legend is 5.0 V

(orange), 1.0 V (cyan), 0.5 V (magenta), 0.0 V (black), �0.5 V (blue),

�1.0 V (red), and �5.0 V (green).

FIGURE 4 The dimensionless coupling of the K1 to the applied trans-

membrane voltage deduced from three different routes is shown. The W-route:

voltage-dependent PMF technique is based on Eq. 33. The Q-route: average of

the displacement charge based on Eq. 34; the offset in the displacement charge

is caused by the apparent capacitance of the system according to Eq. 20. The

G-route: relative charging free energy based on Eq. 35 (squares). The end-

point averaging technique based on Eq. 30 is also shown (solid lines). The color

legend is 5.0 V (orange), 1.0 V (cyan), 0.5 V (magenta),�0.5 V (blue),�1.0 V

(red), and �5.0 V (green).
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for the seven charged residues of the fragment of the KvAP

voltage sensor held in the fixed configuration shown in Fig.

2 B. The coupling extracted for the K1 from Fig. 4 (bottom) is

shown as a dashed line for reference. While these calculations

are not meant to reproduce experimental data about voltage-

gating, they are useful to illustrate this methodology.

Consistent with the view suggested by Eq. 30, the results

show that the coupling is essentially equivalent to the fraction

of the transmembrane voltage, f(i), felt by each residue i in its

environment. For this reason, the extracted values are fairly

insensitive to the thermodynamic coupling l (Fig. 5, bottom).

Lastly, as shown by the close relationship between the results

for the KvAP voltage sensor fragment and those from the K1

ion system (where the low dielectric region of the fixed pro-

tein is absent), the results are not exquisitely sensitive to the

microscopic details of the interface. This is the main reason

why a continuum electrostatic calculation based on the mod-

ified Poisson-Boltzmann Eq. 4 offers a useful approximation

to analyze and dissect the gating charge of voltage-gated po-

tassium channels (10,12,13). It should be noted that only the

G-route, based on the excess free energy, can provide an ab-

solute estimate of the voltage coupling of a single site in a

single configuration, because the reference potential fmp is

chosen to be zero at the edge of the box by virtue of Eq. 12.

This confers a special advantage to this method in dealing with

complex molecular structures, such as the voltage-gated po-

tassium channel, because it can be applied even when a single

conformational state is available. From this point of view, it

permits a more incisive analysis of the contribution of each

residue in a given conformational state. It may also be noted

that the residue-based dimensionless voltage couplings f(i)
calculated from the excess free energy method with explicit

solvent are analogous to the results previously calculated using

the PB-V theory on the Kv1.2 channel (see Fig. 8 c in (13)).

Some practical issues deserve special attention concerning

an analysis based on the Q- and G-routes. Concerning the

G-route, it should be noted that the results are sensitive to the

position of the zero potential reference along the z axis. For

example, some simulation programs set the energy arising

from the constant field to be V+
i
qizi=Lz; where the electro-

static potential is set relative to the center rather than at the

edge of the simulation box. As a consequence, usage of Eq.

35 will yield the value of the dimensionless fraction of the

field relative to the center of the simulation box, rather than

relative to the ground reference value in the aqueous salt

solution on side II (at the lower edge of the simulation box).

In this case, the resulting charging free energy must be shifted

by an offset constant to recover the convention used here. To

clarify any formal ambiguity, it is advisable to return to the

original construction with the inner region surrounded by

bulk salt solutions, as illustrated in Fig. 1 B. Concerning the

Q-route, it is essential to utilize Eq. 12, with unwrapped

coordinates (particularly if there are mobile ions in the bulk).

This is necessary to extract physically meaningful results for

the average displacement chargeQd based on Eq. 34 and the

gating charge between different protein conformation based

on Eq. 23. While the Q-route was illustrated here for a simple

simulation system comprising two aqueous phase regions

separated by a vacuum slab, additional tests demonstrate that

this analysis is also valid when the bulk phase includes mo-

bile ions (results not shown).

In closing, a few comments concerning size effects and

dynamical properties are in order. This theory was elaborated

for a system in thermal equilibrium. Under such conditions,

the applied potential can affect the equilibrium properties of

the system, but does not generate any steady-state current.

Historically, a constant electric field has been frequently used

to simulate nonequilibrium ion fluxes through membrane

channels (14,15,17,18,22,23,25). The analysis shows that

simulations with periodic boundary conditions based on the

effective energy ½Us1VQd�; where Qd is given by Eq. 12,

offers a proper representation of the influence of the sur-

rounding bulk with applied transmembrane potential onto the

FIGURE 5 KvAP voltage sensor. Illustration of the charging FEP tech-

nique based on Eq. 29 to determine the fraction of the field for specific

residues for the fragment of the voltage sensor of the KvAP bacterial

channel. (Top) The fraction of the field felt at each of the charged residues is

shown with the position of their center of charge along the z axis: Glu107

(10.8 Å); Arg117 (14.1 Å); Arg120 (9.7 Å); Arg123 (10.0 Å); Arg126 (4.4 Å);

Arg133 (�4.2 Å); and Lys136 (�12.7 Å). (Bottom) The variation of the

fraction of the field extract at different values of the thermodynamic

coupling parameter l during the FEP calculations. The position assigned

to each residue along the z axis is based on the geometric center of charge

Ri ¼ +
i
qiri=qtot.
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finite system. The results with the simple system shown in

Fig. 4 illustrate that the average behavior can actually be

maintained, even up to 5 V. In practice, it remains important

to construct a system that is sufficiently large to avoid ob-

vious size effects. It is also worth pointing out that a realistic

simulation of the transmembrane potential should not only be

concerned by thermodynamics, but also by fluctuations. For

the sake of concreteness, let us consider the case of a per-

meating ion in the lumen of a channel. Let us assume that

the size L of the simulation system is sufficiently large to

generate the correct total mean force on the ion, ÆFtotæ ¼
ÆF(MD)æL 1 qV/L. According to the fluctuation-dissipation

theorem, the time correlation function of the force acting on a

tagged ion is related to the friction (the memory function) in a

generalized Langevin equation dynamic description (52).

The quantity Æ(Ftot – æFtotæ)2æ could be underestimated even if

the mean force ÆFtotæ is accurate, because the time-indepen-

dent force arising from the constant field, qV/L, does not

contribute to the fluctuations. This will happen when the

magnitude of qV/L approaches that of ÆF(MD)æL. An under-

estimated friction will unavoidably lead to an artificially

enhanced rate of transport at high voltage (53–56), a phe-

nomenon that has been observed in a recent study of ion

conduction (25). Therefore, while a given system size may be

sufficient to yield an accurate PMF, it is possible that a suf-

ficiently large system is needed to accurately simulate

transport properties such as permeation.

CONCLUSION

It has been shown that the familiar constant external electric

field applied in the direction normal to a membrane corre-

sponds to a proper reduction of the influence of an infinite bath

imposing a membrane voltage via electrodes connected to an

electromotive force (EMF). Furthermore, the linear dis-

placement charge consistent with the external field tracks all

external charge movements through the (virtual) electrodes-

EMF circuit. The reduction of the bath influence onto the

subsystem leads to a statistical mechanical formulation that

helps clarify the nature of the free energy of a charged system

embedded in a membrane submitted to a voltage difference.

This analysis led to the formulation of three formal ap-

proaches, the W-, Q-, and G-routes, for characterizing the

voltage coupling were formulated. The theoretical formula-

tion was illustrated with simple models of a charged ion and a

fixed fragment of the voltage sensor of the KvAP channel.

The W-route considers the variations in the potential of

mean force (PMF) along a reaction path connecting two

conformations of the system. This is the most physical, since

it deals directly with the concept of the free energy surface

associated with the protein conformation changes. From this

point of view, it allows a direct computation of the gating

charge controlling the voltage-dependent population equi-

librium of a protein. However, this approach also puts the

highest demand on simulations since one is required to pro-

vide more than a single conformational state of the protein,

and also a path linking those conformations to compute the

reversible work between them.

The Q-route considers the average displacement charge as a

function of the conformation of the system. This approach is

perhaps the most straightforward to use. The only requirement

is to perform end-point averages of the displacement charge at

various voltages and in different conformational states of the

protein. This is less demanding than the PMF-route since the

pathway linking the various conformations is not needed,

although the Q-route also requires a comparison between

protein conformations. One disadvantage, however, is that it

yields only the value of the total gating charge, with no simple

way of achieving a residue-by-residue analysis.

The G-route considers the charging free energy of specific

residues to extract the residue-based fractional field. This

technique is slightly more involved because it requires FEP

simulations for each residue, performed at two different

membrane voltage V. It might be possible to extract rough

estimates of the dimensionless coupling per residue by per-

forming only end-point averages of the total electrostatic

potential, although these tests suggest that the accuracy is

better with FEP simulations. An important advantage of the

G-route is that it allows a detailed decomposition of the

contribution from each residue to the total gating charge.

Furthermore, this technique makes it possible to extract the

coupling of individual residues in a single protein confor-

mation. Therefore, this technique can be used even when

only a single conformation of the protein is available (i.e., the

open-activated state of a potassium channel).
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