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The complete nucleotide sequence of the neuraminidase (NA) gene of WSN/33
(H1N1) virus was determined. The entire sequence was derived from the insert
of cDNA clones, except the last 20 nucleotides, which were determined by primer
extension. The WSN NA gene contained 1,409 nucleotides beginning at the 5’ end
(sense strand), with an untranslated region of 19 nucleotides followed by 1,359
nucleotides coding for 453 amino acids and finally ending with a 31-nucleotide
sequence of untranslated region at the 3’ termini. The amino acid sequence of
WSN NA, as deduced from the DNA sequence, showed the presence of a stretch
of 29 amino acids (7 to 35) enriched in hydrophobic amino acids, which may
anchor the protein into the viral or cellular membrane. When compared with the
PR8 NA sequence, WSN NA appeared to possess a similar structure, including
the identical location of all cysteine and proline residues. However, WSN NA
contained only three of the five potential glycosylation sites present in PR8 NA.
Additionally, WSN NA contained a substitution of a five-amino acid sequence for
a six-amino acid sequence in PR8 NA. The possible significance of these sequence
changes in the primary structure of WSN NA in the unique role of WSN NA as a

virulence factor in mouse brain and MDBK cells is discussed.

Influenza is an important disease, against
which there is as yet no effective prophylaxis.
Because of the antigenic shift and drift of the
two surface antigens, hemagglutinin (HA) and
neuraminidase (NA), influenza virus can evade
the immunity against the existing virus and
cause frequent epidemics and infrequent world-
wide pandemics. Recently, a great deal of atten-
tion has been paid to the study of HA. For
example, the complete nucleotide sequences of
the HA gene of each human subtype (H1, H2,
and H3) (9, 11, 185, 25), as well as the complete
amino acid sequence of the HA protein of the H3
subtype (22) and the partial amino acid sequence
of the H2 subtype (23), have been determined.
DNA clones of influenza HA have been ex-
pressed in both eucaryotic and procaryotic sys-
tems (3a, 4, 10, 13). Monoclonal antibody stud-
ies have identified the major antigenic epitopes
involved in drift (8). Finally, a three-dimensional
structure of HA has helped enormously in un-
derstanding the topological relationship among
the different domains of HA protein involved in
antigenic drift, receptor binding, and the infec-
tious process (24).

However, a similar detailed understanding of
the structure and function of NA, the other
envelope protein which also undergoes antigenic
drift and shift and plays a critical role in the

infectious process, virulence, and cell-virus fu-
sion (12, 18, 21) is lacking. Influenza NA is a
glycoprotein with a molecular weight ranging
from 48,000 to 63,000, including 20% carbohy-
drate, and is present as a homotetramer spike on
the viral envelope (2). NA spikes constitute
about 10% of the total envelope spikes. In an
effort to contribute to the understanding of the
nature of influenza NA, including its biological
role and the nature of antigenic drift and shift,
we cloned the WSN NA gene with recombinant
DNA technology and determined its complete
nucleic acid sequence. WSN NA was further
considered important because of its contribution
as a virulence factor to the growth of WSN virus
in MDBK and neuroblastoma cells (16, 18) and
neurovirulence in mice (21). In this report, we
present the complete nucleotide sequence and
the deduced amino acid sequence of WSN NA.

The procedures involved in cloning influenza
viral RNA have been described previously (3).
Briefly, viral RNA (VRNA) was isolated from
gradient-purified virus particles. A synthetic do-
decamer primer (5’ AGCAAAAGCAGG 3') was
used to make cDNA which was size selected and
converted into double-stranded DNA with the
Klenow fragment of Escherichia coli DNA poly-
merase. Double-stranded DNA was then treated
with S1 nuclease, size selected in neutral agar-
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ose gels, and cloned into the PstI site of the
pBR322 plasmid with G:C linkers. The clones
were then characterized for insert size, cleavage
by restriction enzymes, and hybridization to a
specific VRNA probe. With this procedure, a
number of clones were shown to contain a
nearly full-size insert of the WSN NA gene. Two
of these clones, 3-1 and 3-14, were subjected to
detailed restriction analysis and sequencing with
the Maxam and Gilbert procedure of DNA se-
quencing (14). Twenty nucleotides appeared to
be missing from the 5’ termini of VRNA and
were determined by the reverse transcription of
WSN NA vRNA by extending a primer isolated
from the WSN NA clone (11).

Figure 1 shows the important restriction sites
and the strategy used to determine the sequence
of the WSN NA insert. We sequenced through
all restriction sites. Nearly the entire sequence
was confirmed by overlapping gels, and more
than 50% was confirmed by sequencing both
DNA strands. The insert was checked for meth-
ylated cytosine with BstN1, an isochizomer of
EcoRIl1, and was found to be negative. Thus, no
ambiguity in the sequence was left unresolved.
Clone 3-1 was missing an A residue around
positions 35 to 39. The correct sequence was
obtained by sequencing clone 3-14 since the loss
of an A residue would switch the coding poten-
tial to a different reading frame with numerous
stop codons and would be completely different
from that of PR8 NA. We have also observed an
occasional omission of an A residue in some of
the DNA clones obtained from defective inter-
fering VRNA segments (D. P. Nayak, unpub-
lished data).

Figure 2 shows the complete nucleotide se-
quence of cDNA and the deduced amino acid
sequence of WSN NA. The amino acid sequence

BamHI
Pstl Pst! Pst |
Haell Taq)
—Ag
—d Aval| +— (.
Haelll Dde |
. W'N 'r Al ﬁ'
2 4 6 8 O 12 1
NUCLEOTIDES X100

FIG. 1. Strategy used in sequencing cloned WSN
NA. DNA with the 5’ end of the sense strand is on the
left. Arrows (« —) show composite sequence infor-
mation obtained from multiple gels. The restriction
sites (| ) used for sequencing are PstI (5’ and 3' ends
and nucleotide 924), BamHI (nucleotide 1099), Haell
(nucleotide 383), Tagl (nucleotide 869), Alul (nucleo-
tides 452 and 469), and Avall (nucleotide 363). The
primer (®) from Haelll (nucleotide 1344) to Ddel
(nucleotide 1356) was used for extension.
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of PR8 NA recently determined from the DNA
sequence (5) is also included for comparison.
The noncoding region at the 5’ end of the sense-
strand DNA consisted of 19 nucleotides com-
pared with 20 nucleotides in PR8 NA (5) and was
identical to that of NWS/33 (1). A single change
at the common 5’'-end sequence (position 4, G —
A) was observed and was due to the primer used
in cDNA synthesis. The open reading frame
started at positions 20 to 22 (ATG) and terminat-
ed at positions 1382 to 1384 (TAG). This was
followed by a sequence of 28 nucleotides at the
3’ end of cRNA, which also contained a poly-
adenylic acid addition site (AAAAAA) at posi-
tions 1392 to 1397 (17). This 3’ untranslated
sequence was different by a single nucleotide
from that of PR8 NA at position 1386 (T — C).
The coding region consisted of an open frame of
1,359 nucleotides (positions 20 to 1381) coding
for 453 amino acids, compared with 1,362 nucle-
otides coding for 454 amino acids in PR8 NA.

WSN NA contained only three potential gly-
cosylation sites, compared with five potential
glycosylation sites in PR8 NA (Fig. 3). Of these,
the sites beginning at amino acids 44, 72, and 220
were identical. The loss of the glycosylation site
at amino acid 131 was due to the conversion of
Asn — Arg, involving a single-base change (G —
A) in position 2 of the codon. The loss of the
glycosylation site at amino acid 58 was due to a
change in this part of the molecule, involving a
stretch of 15 nucleotides in WSN NA in place of
18 nucleotides in PR8 NA, beginning at nucleo-
tide 191 (see below).

Like PR8 NA, WSN NA contained one
stretch of a major hydrophobic region consisting
of 29 amino acids (amino acids 7 to 35) that are
likely to be embedded in the viral (or cellular)
lipid bilayer (5). Two changes in this region (Leu
— Met, Leu — Ile) did not alter the hydropho-
bicity of WSN NA. The first six amino acids
(amino acids 1 to 6) that are believed to be
involved in an interaction with a hydrophilic
milieu inside the membrane were identical to
those of PR8 NA (5). The other major uncharged
stretch of the molecule consisted of 16 amino
acids (amino acids 420 to 435) but contained
fewer hydrophobic amino acids and, therefore,
is unlikely to be anchored in the membrane.

When compared with PR8 NA, WSN NA
contained a total of 32 amino acid changes
(excluding the 5 amino acid changes beginning at
amino acid 58) scattered throughout the mole-
cule. As in PR8 NA, these changes did not
greatly alter the property of the molecule. For
example, 21 amino acids were replaced by ami-
no acids with similar properties without affecting
the net charge. Six neutral or basic amino acids
were replaced by acidic amino acids, and five
neutral or acidic amino acids were changed to
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FIG. 3. Positions of 19 cysteine residues (S) and

the potential glycosylation sites (A) of WSN NA and
PR8 NA.

basic amino acids. Again, none of these changes
were clustered; instead, they were scattered
throughout the molecule. Therefore, the basic
structures of WSN NA and PR8 NA are essen-
tially the same. This was further confirmed by
the fact that no change was observed in any of
the 19 cysteine or 21 proline residues which are
believed to be important in maintaining the
structure of a protein molecule. In fact, the
overall amino acid sequence, as well as the
nucleotide sequence of both WSN NA and PR8
NA (both belonging to the N1 subtype), is very
similar despite the fact that these viruses were
independently isolated nearly 50 years ago and
since then may have been subjected to different
growth conditions and selective pressure. Only
65 nucleotides (4.7%) and 32 amino acid residues
(7.1%) were different in WSN NA and PR8 NA.
Nearly half of the base substitution (30 of 65) did
not cause any amino acid alteration. The major-
ity of amino acid changes (29 of 32, or 91%) were
due to a single-base substitution, and only three
(9%) required a two-base substitution.

PR8/34 and WS/33 (the parent virus of WSN)
are both the HIN1 subtype, isolated from hu-
man influenza by the inoculation of ferrets and
possessing similar biological properties, includ-
ing growth behavior and host range (6, 19).
However, WSN virus was deliberately selected
by passaging WS virus many times in mouse
brain, whereas similar attempts to select neuro-
virulent strains of PR8 virus have failed (7). The
WSN virus selected by this procedure acquired
new properties, despite retaining the similar
antigenic determinants of the parent virus. For
example, WSN is the only virus that can grow in
MDBK cells as well as cause neurovirulence in
mice (18, 21). WSN NA has been shown to play
an important role in the virulence of WSN virus
in both of these host systems (16, 18, 21). A
comparison of the primary structure of WSN
NA and PR8 NA showed an important differ-
ence at amino acids 58 to 63. In this region, there
was a substitution of six amino acid residues in
PR8 NA by a completely different five-amino
acid residue in WSN NA. These amino acid
changes cannot be explained by the usual single-
base, or even the infrequent two-base, mutation

NOTES 733

observed in the rest of the WSN NA gene, but
may possibly require substitution of a stretch of
the nucleic acid involving deletion and insertion.
However, we have no data as yet for either the
source of this sequence or the mechanism in-
volved in substitution. Alternatively, this site
may be a “hot spot” of mutation which can only
be ascertained by determining the sequence of a
number of NA genes. Furthermore, we cannot
rule out the possibility that this sequence is
present in the parent WS virus (19). A compara-
tive sequence determination of WS virus as well
as NWS, another neurotropic variant of WS
virus (20), may help to determine whether this
sequence was acquired later.

The data presented here show that the pri-
mary structures of WSN NA and PR8 NA are
essentially the same except for a major differ-
ence near amino acids 58 to 63. In the absence of
a three-dimensional structure of NA, it is diffi-
cult to predict the role of these residues in the
specificity of WSN NA or to define the structur-
al domains and antigenic determinants of NA.
However, since it is now possible to express the
cloned influenza HA gene in eucaryotic systems
(10, 13), similar experiments, including a specif-
ic base substitution in this region, may elucidate
the role of these and other sequences in the
function and specificity of influenza NA.
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