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The fosfomycin resistance protein FomA inactivates fosfomycin
by phosphorylation of the phosphonate group of the antibiotic in
the presence ofATP andMg(II).We report the crystal structure of
FomAfromthe fosfomycinbiosynthetic geneclusterofStreptomy-
ces wedmorensis in complexwith diphosphate and in ternary com-
plex with the nonhydrolyzable ATP analog adenosine 5�-(�,�-im-
ido)-triphosphate (AMPPNP),Mg(II), and fosfomycin, at 1.53 and
2.2 Å resolution, respectively. The polypeptide exhibits an open
��� sandwich fold characteristic for the amino acid kinase family
of enzymes. The diphosphate complex shows significant disorder
in loops surrounding the active site. As a result, the nucleotide-
binding site is wide open. Binding of the substrates is followed by
the partial closure of the active site and ordering of the �2-helix.
Structural comparison with N-acetyl-L-glutamate kinase shows
several similarities in the site of phosphoryl transfer: 1) preserva-
tion of architecture of the catalytical amino acids of N-acetyl-L-
glutamatekinase(Lys9,Lys216,andAsp150 inFomA);2)goodsuper-
position of the phosphate acceptor groups of the substrates, and 3)
good superposition of the diphosphate molecule with the �- and
�-phosphates ofAMPPNP, suggesting that the reaction couldpro-
ceed by an associative in-linemechanism. However, differences in
conformations of the triphosphatemoiety ofAMPPNPmolecules,
the long distance (5.1 Å) between the phosphate acceptor and
donor groups in FomA, and involvement of Lys18 insteadof Lys9 in
binding with the �-phosphate may indicate a different reaction
mechanism. The present work identifies the active site residues of
FomA responsible for substrate binding and specificity and pro-
poses their roles in catalysis.

Phosphorus-carbon bond-containing natural products
(phosphonates and phosphinates) are of great medical impor-

tance because they exhibit a wide spectrum of antibacterial,
antiviral, and antiparasitic activities in addition to high chemi-
cal stability. Fosfomycin ((1R,2S)-1,2-epoxy-propylphosphonic
acid) (Fig. 1), a natural product of several species of Pseudomo-
nas (1) and Streptomyces (2), is one of the best known represen-
tatives of the class. Since its introduction by Merck in 1969 (2,
3), the antibiotic has successfully been used for treatment of
lower urinary tract infections (4). It is also very effective against
methicillin- and vancomycin-resistant strains of Staphylococ-
cus aureus (5, 6). In addition fosfomycin has the capacity to
favor phagocystosis, act as an immunomodulator, and protect
human cells from cisplatin, cyclosporine, aminoglycoside, van-
comycin, amphotericin B, and polyximin toxicity (7). Although
new, and in some instances better, urinary tract infection drugs
have become available, fosfomycin remains a very useful drug.
Studies of antibiotic prescribing patterns for cystitis during the
period 1999–2002 show that fosfomycin trometamol (Monu-
rol�) use increased dramatically, becoming the first choice for
any type of cystitis (8). Fosfomycin trometamol is still the only
drug approved by the Food and Drug Administration for treat-
ment of acute cystitis during pregnancy (9).
Bactericidal activity of fosfomycin is based on inhibition

of UDP-N-acetyl-glucosamine-3-O-enolpyruvyl-transferase,
MurA, the enzyme responsible for the first stage of peptidogly-
can biosynthesis (10). Fosfomycin irreversibly inactivates
MurA by alkylating an active site cysteine (10, 11). Upon intro-
duction into the clinic, resistance to fosfomycin emerged rap-
idly and wasmainly attributed tomutations affecting antibiotic
transport (12, 13) or tomutations in theMurA target itself (14).
Later, a plasmid-relatedmechanismof resistancewas identified
in clinical isolates (15, 16).
Three different fosfomycin resistance genes, fosA, fosB, and

fosX, have been extensively described in the literature (16–19).
All of the corresponding proteins open the epoxide ring of the
antibiotic during the catalysis, but each in a distinct way. FosA
utilizes the tripeptide glutathione as a thiol donor, Mn2� and
K�; FosB subgroup members perform a similar reaction using
L-cysteine and Mg2�, whereas FosX produces a diol product,
1,2-dihydroxypropylphosphonic acid, with the addition of
water, which is assisted by Mn2�. Despite the fact that FosA,
FosB, and FosX proteins share modest (23–40%) sequence
identity between the subgroups and performdifferent chemical
reactions, they all belong to the vicinal oxygen chelate super-
family of metalloenzymes and share a commonmolecular fold.
Two additional fosfomycin resistance genes, named fomA and
fomB, that confer high level fosfomycin resistance on Esche-
richia coli have recently been discovered in the fosfomycin bio-
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synthetic clusters of Streptomyces wedmorensis (20) and Strep-
tomyces fradiae (21). The fomA and fomB genes encode 29- and
37-kDa proteins, respectively. In contrast to previously known
types of fosfomycin resistance proteins, these novel proteins
have partial homology to the Mg-ATP-binding domains of
some eukaryotic kinases, and therefore they represent a novel
mechanism of resistance to the antibiotic. FomA catalyzes
phosphorylation of fosfomycin to fosfomycin monophosphate,
and FomB, phosphorylation of fosfomycin monophosphate to
fosfomycin diphosphate in the presence of ATP and magne-
sium ions (20) (Scheme 1). Fosfomycin monophosphate and
fosfomycin diphosphate have not been shown to alkylate an
active site cysteine of MurA.
Fosfomycin resistance kinases FomA and FomB are encoded

in the fosfomycin biosynthetic gene clusters of different species
of Streptomyces and Pseudomonas. The fomA and fomB genes
are required for the production of fosfomycin (21), although
their particular role in the biosynthesis still remains unclear. As
is true for other antibiotic- producing organisms, fosfomycin
producing bacteria must protect themselves from the lethal
effect of the antibiotic. It is suggested that FomA and FomB
proteins are responsible for the self-resistance of bacteria (20).
Both proteinswere also proposed to participate in the transport
of the antibiotic (20).
The growing threat of antibiotic-resistant microorganisms

accentuates the importance of understanding the mechanism
of resistance to design effective inhibitors to combat the anti-
biotic resistance and reduce the further spread of resistant bac-
teria. ATP-dependent fosfomycin resistance has already been
detected in Pseudomonas aeruginosa clinical isolates (22).
However, it is not clear whether it is connected to the fomA and
fomB genes, because an enzyme characterization was not per-
formed. The understanding of the precise mechanism of the
fosfomycin phosphorylation by FomA and FomB proteins will
lead to the development of inhibitors specifically targeting
FomA-dependent antibiotic resistance. In this paper we report
high resolution crystal structure of the fosfomycin resistance
kinase FomA from S. wedmorensis in complex with diphos-
phate and in ternary complex with the nonhydrolyzable ATP
analog AMPPNP,3 Mg2�, and fosfomycin. The structure of the
ternary complex, which approximates the initial step of the
enzymatic reaction, provides a detailed picture of the interac-
tions between both the substrates and the enzyme and reveals
amino acids that could play important roles in catalysis.

EXPERIMENTAL PROCEDURES

Gene Amplification and Cloning—The open reading frames
for FomA were amplified by PCR using pFBG1204 as a tem-
plate. Each 5�primer contained anNdeI site that overlapped the
start codon, and each 3� primer contained a HindIII site imme-
diately downstream of the stop codon. The PCR products were
A-tailed usingTaqpolymerase anddATP, ligated into pGEM-T
Easy, and transformed into E. coli �-Select. The cells were
plated on LB containing ampicillin and 5-bromo-4-chloro-3-
indolyl-�-D-galactopyranoside (X-gal). White colonies were
picked for plasmid purification. The NdeI/HindIII-generated
inserts were cloned into pET28b, digested with the same
enzymes, and transformed into E. coli �-Select. Plasmid DNA
was purified and used to transform E. coli BL21(DE3). The
presence of inserts was demonstrated by digestion of plasmids
with the cloning enzymes.
Protein Expression andPurification—FomAwas expressed in

E. coli BL21(DE3) cells by the autoinduction method (23). An
overnight culture grown in MDG medium containing 100
�g/ml of kanamycin was diluted 1:1000 (v/v) into ZYM-5052
medium and incubated at 37 °C for 5 h, and then the tempera-
turewas reduced to 22 °C. The cells were pelleted after reaching
saturation, frozen at �80 °C, subsequently resuspended in the
binding buffer (50 mM Tris-HCl, pH 8.0, 20 mM imidazole, 10%
glycerol), and sonicated for 5 min. After removal of debris by
centrifugation (at 46,000 � g for 20 min at 4 °C), the superna-
tant was applied to a TALONmetal affinity resin (Co2� affinity,
Clontech Inc.) preequilibrated with the binding buffer. Protein
was extensively washed with the binding buffer and eluted with
the elution buffer (50 mM Tris-HCl, pH 8.0, 200 mM imidazole,
10% glycerol). The final purification step was performed by size
exclusion chromatography (Superdex 200 column; GE Health-
care). The column was preequilibrated with 10 mM Tris-HCl,
pH 8.0, supplemented with 150mMNaCl. A typical flow rate of
0.5 ml/min was maintained during elution. Absorbance at 280
nm was measured to monitor elution of the protein from the
column. Purified protein was concentrated to 10 �g/�l.

Seleno-L-methionine (SeMet)-labeled FomA was expressed
using E. coli BL21(DE3) cells. An overnight culture grown in
MDGmedium containing 100 �g/ml of kanamycin was diluted
1:100 (v/v) into M9 medium supplemented with 2 mM MgSO4,
100 nM vitamin B12, 0.4% glucose, and 0.2� trace metals mix
(23). The cells were grown at 37 °C until A600 reached 0.5, at
which point 100 mg/liter of amino acids threonine, lysine, phe-
nylalanine, and 50 mg/liter of leucine, valine, and isoleucine
were added to the medium to inhibit the methionine biosyn-
thetic pathway. The cells were grown for additional 45 min to
deplete residual cellular levels of L-methionine, and then 0.2
mM isopropyl �-D-thiogalactopyranoside and 50 mg/liter of
SeMet were added, and the growth temperature was reduced to
26 °C. Production of SeMet FomA was allowed to proceed for
24 h before the cells were harvested. Purification of SeMet
FomA was carried out as described for the native FomA, with
the exception that all buffers were supplemented with 10 mM

�-mercaptoethanol.
Crystallization—Crystals of FomA protein have been

obtained by the hanging drop method at room temperature.

3 The abbreviations used are: AMPPNP, adenosine 5�-(�,�-imido)-triphos-
phate; AAKF, amino acid kinase family of enzymes; NAG, N-acetyl-L-gluta-
mate; NAGK, N-acetyl-L-glutamate kinase; UMPK, uridylate kinase; GK, glu-
tamate-5 kinase; DPO, diphosphate moiety; SeMet, seleno-L-methionine;
MES, 4-morpholineethanesulfonic acid.

FIGURE 1. Chemical structure of the antibiotic fosfomycin.
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The protein (6–9mg/ml concentration in 10mMTris-HCl, pH
8.0, 150 mM NaCl) was incubated with 0.4 mM solution of ATP
for at least 1 h prior to crystallization. The protein-ATP com-
plex was mixed with an equal volume of the well solution (11–
13% polyethylene glycol 3350, 0.1–0.15 M triammonium cit-
rate, pH 7.0, 0.1 MMES, pH 5.2–6.2). The crystals appeared in a
week and grew to the maximum dimensions in 3 weeks. They
belong to the trigonal P3221 space group with a � b � 88.36 Å,
c � 79.05 Å. Crystals of SeMet-FomA were grown from the
same conditions, and they are isomorphous with the native
crystals. Crystals of the FomA�MgAMPPNP�fosfomycin com-
plex were obtained by soaking of FomA�ATP crystals in modi-
fied mother liquor consisted of 30% polyethylene glycol 3350,
0.1 MMES, pH 5.5, 10mMAMPPNP, 50mMMgCl2, and 10mM
fosfomycin for 5 h.
Data Collection, Structure Solution, and Refinement—For

the structure solution by multiple wavelength anomalous dis-
persion, three data sets were collected at 100 K from a single
SeMet derivative crystal at the protein crystallography beam-
line at the Center for AdvancedMicrostructures andDevices at
Louisiana State University. Prior to data collection, a suitable
crystal was dipped for 30 s in a modified mother solution with
the addition of 25% glycerol as a cryo-protectant. The images
were processed and scaled using DENZO and SCALEPACK
(24). Data collection and data processing statistics are summa-
rized in Table 1. Five selenium sites were located by direct
methods using the SnB program (25). Reflection phases to 1.6Å
resolution were calculated and improved with CNS (26), which
was also used for density modification. The protein model was
built into the electron density with program O (27). The struc-
ture was refined against 1.53 Å native data using the maximum
likelihood refinement in REFMAC (28) with the TLS parame-
ters generated by the TLSMD server (29). TLS tensors were
analyzed, and anisotropic B-factors were derivedwith TLSANL
(30). The programO(27)was used to build themodels through-
out the refinement. No significant electron density was
observed for amino acid residues 57–68, 179–182, and 207–
210 as well as the last three residues at the C terminus, indicat-
ing that these regions are highly mobile or disordered. A differ-
ence Fouriermap revealed electron density for only a part of the
ATPmolecule in the active site (Fig. 2A). The diphosphatemoi-
ety (DPO) was modeled into the density. Nine residues (resi-
dues �8 to 0) of the N-terminal poly-His tail were visible and
were included in the finalmodel. Alternate conformationswere
built for residues His0, Met1, Leu6, Ile8, Arg19, Tyr43, Glu242,
Ser249, and Ser250. A total of 231watermolecules were included
into the final model. The protein molecule displays excellent
stereochemistry with 93.3% of nonglycine residues in the most
favored regions of a Ramachandran plot.
FomA�MgAMPPNP�fosfomycin Complex—The structure of

the complex was determined by the molecular replacement
procedure as implemented in AMoRe (28) with the monomer

of FomA from the FomA�DPO
structure as a search model. The
positioned molecular replacement
model was refined essentially the
same way as described above. A Fo
�Fc electrondensitymapunambig-

uously revealed the presence of AMPPNP,Mg2�, and fosfomy-
cin in the active site (Fig. 2B). The final protein model consists
of protein residues�8–178 and 183–263. Alternate conforma-
tions have been built for Cys106, Ser249, and Ser250. A total of 60
water molecules were included into the final model. The pro-
tein molecule has good stereochemistry with 90.7% of nongly-
cine residues in the most favored regions of a Ramachandran
plot. Refinement statistics for both structures are listed inTable
1. All of the figures except Figs. 1 and 3B were prepared using
PyMOL (31).

RESULTS AND DISCUSSION

Overall Fold and Quaternary Structure—According to the
classification based on sequence similarity, FomA belongs to
the amino acid kinase family (AAKF) of enzymes (PFAM group
PF00696) that includes N-acetyl-L-glutamate kinase (NAGK),
glutamate-5 kinase (GK), carbamate kinase, the N-terminal
domain of aspartokinase, and uridylate kinase (UMPK). The
best amino acid identity, however, is only about 24% for the
NAGKs. The representatives from the first four classes of
the AAKF transfer the �-phosphate of ATP to a carboxylate or
carbamate group of the substrates making acylphosphate
bonds,whereas theUMPKenzymes phosphorylate a phosphate
group of uridilate. The crystal structure of FomA protein con-
firmed the assignment of FomA to the AAKF because the
enzyme exhibits the polypeptide fold found in all members of
the AAKF for which crystal structures have been determined:
N-acetyl-L-glutamate kinases (32–34), glutamate-5-kinase (35),
carbamate kinase (36), aspartokinases (37–39), and uridylate
kinases (40–43). The search was made by the secondary struc-
ture matching data base (44) using FomA coordinates from the
FomA�MgAMPPNP�fosfomycin complex, because that struc-
ture ismore ordered and complete in comparison to the FomA�
DPO one. Root mean square deviations between the equivalent
CA atoms of FomA and all these structures lie in the range of
2.21–2.92 Å (over the range of 185–214 CA atoms).
The molecule of FomA consists of an open ��� sandwich

foldwith seven�-helices and 14�-strands (Fig. 3,A andB). The
central core is comprised by eight�-strands (�1,�2,�3,�6,�9,
�12, �13, and �14) that are sandwiched between two layers of
�-helices (�1 and �3 flank one side of the central �-sheet core,
and the helices �4, �5, �6, and �7 lie on the opposite side).
Similar to the members of the AAKF, the monomer of FomA
could be divided into two lobes: the N-terminal lobe (residues
1–160) and the C-terminal lobe (residues 161–263) with a large
crevice between them where the active site of the enzyme is
located (Fig. 3C). The N-terminal lobe residues participate in
binding fosfomycin. The C-terminal lobe binds the nucleotide
molecule.
As evidenced by size exclusion chromatography, FomA is

a homodimer in solution. The asymmetric unit of FomA in
the crystal, however, is represented by a monomer. The

SCHEME 1. Enzymatic reactions catalyzed by FomA/FomB proteins.
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homodimer is generated by the crystallographic 2-fold axis.
The dimer interface is solely mediated by the interactions
between the N-lobes (Fig. 3C). It buries a total of 2875 Å2 of
solvent-accessible area, as calculated using the PISA interface
server (45) or 1437.5 Å2/monomer (11.8% of the surface) and
renders a complexation significance score of 0.407, which
accounts for a medium-tight complex. The interdimer inter-
face, which is predominantly hydrophobic, mainly involves: 1)
antiparallel interactions between the symmetry related �3-he-
lixes (13 participating residues; most of the dimer interface), 2)
interactions of the �4 helix with the symmetry related �7-�8
hairpin, and 3) antiparallel interactions between the 310 helix�3
and the connection loop �5-�4 with the same elements of the
other dimer subunit. In addition to numerous hydrophobic
interactions, primarily provided by Phe, Thr, Ala, and Val, the
interface is stabilized by 18 hydrogen bonds and 18 salt bridges.
It should be noted that although roughly the same surface of the
N-lobe is used for the dimer formation in FomA, NAGK, GK,

and UMPK, the mode of dimerization is significantly different
in every case (see Ref. 35 for the detailed description of the
NAGK, GK, and UMPK dimers). The list of dimer interface
interactions is provided in the supplemental Table S1.
Initially we attempted to obtain a crystal structure of the

FomA�ATP complex. However, cocrystallization of FomAwith
ATP was unsuccessful because the resulting structure
(FomA�DPOcomplex) contains only the diphosphatemoiety of
the ATP molecule, presumably because of hydrolysis of ATP
during crystallization. Soaking of the FomA�DPO crystals in
modified mother liquor with the addition of AMPPNP, MgCl2,
and fosfomycin (see “Experimental Procedures” for details)
prior to data collection proved to be sufficient to obtain the
ternary complex (FomA�MgAMPPNP�fosfomycin). Thus, the
current paper reports structures of two different reaction
states: the FomA�DPO complex, where the active site of the
enzyme does not contain any of the required substrates, and the
FomA�MgAMPPNP�fosfomycin complex, the approximation

TABLE 1
Data collection, phasing, and refinement statistics

FomA�DPO FomA�MgAMPPNP� fosfomycin
SeMet FomA�DPO

�1 (peak) �2 (inflection) �3 (remote)
Wavelength (Å) 1.38079 1.38074 0.9793 0.9795 0.9537
Resolution (Å) 1.53 2.20 1.45 1.45 1.45
Temperature (K) 113 113 113 113 113
Space group P3221 P3221 P3221
Cell dimensions
a (Å) 88.36 85.66 88.30
c (Å) 79.05 78.98 78.87

Number of molecules/asymmetric unit 1 1 1
No. of unique reflections 52 986 17 293 55 525 61 104 55 632
Rsym (%)a,b 4.0 (51.0) 7.1 (55.7) 6.2 (64.2) 5.7 (53.6) 6.8 (70.0)
Completeness (%) 97.9 (85.3) 99.6 (97.9) 97.1 (100.0) 96.6 (100.0) 87.4 (90.8)
Redundancies 5.2 (4.6) 4.1 (3.4) 7.3 (7.5) 9.2 (9.4) 12.8 (11.8)
I/�(I) 34.8 (2.9) 19.2 (1.8) 22.6 (3.0) 32.0 (4.0) 28.0 (3.4)
Phasing statistics
Resolution range (Å) 30–1.6
Number of sites 5
Phasing power acentric/centricc 2.68/2.91
Rc centricd 0.39
Mean FOM after multiple wavelength
anomalous dispersion phasing

0.666

Refinement statistics
Resolution range (Å) 27.49–1.53 29.04–2.20
No. of reflections used in refinement 50 201 15 587
� cut-off used in refinement none none
R/Rfree (%)e 16.86/19.80 19.26/25.20
Number of refined atoms
Protein 1953 2034
Heterogen atoms 9 40
Water 231 60

Average B-factors (Å2)
Protein 25.8 43.2
Water 35.8 42.7
DPO 41.9
AMPPNP 44.1
Magnesium 44.7
Root mean square deviations
Bonds (Å) 0.016 0.014
Angles (°) 1.738 1.727

Ramachandran plot (%)
Favored 93.3 90.7
Allowed 6.7 8.8
Generous 0 0.4
Disallowed 0 0

a The values in parentheses are for the highest resolution shell.
bRsym � ��Ii � �Ii��/�Ii, where Ii is the intensity of the ith observation and �Ii� is the mean intensity of the reflection.
c Phasing power � ��Fh�/E, where �Fh� is the root mean square structure factor, and E is the residual lack of closure error.
d Rc � ���FPH 	 FP� � FHcalc�/� FPH 	 FP, where FPH and FP are the structure factor amplitudes for the data collection on the selenium absorption edge.
e R � ���Fo� � �Fc��/��Fo�, where Fo and Fc are the observed and calculated structure factors amplitudes. Rfree is calculated using 1.6 and 1.4% of reflections omitted from the
refinement for the FomA�DPO and FomA�MgAMPPNP�fosfomycin structures, respectively.

Crystal Structure of Fosfomycin Resistance Kinase FomA

OCTOBER 17, 2008 • VOLUME 283 • NUMBER 42 JOURNAL OF BIOLOGICAL CHEMISTRY 28521

http://www.jbc.org/cgi/content/full/M803709200/DC1


of the early stage of the phosphorylation reaction, when all the
substrates are bound, and the enzyme is ready to proceed with
the catalytical reaction.
The protein in both complexes exhibits the samepolypeptide

fold and dimeric architecture. However, in contrast to the
FomA�DPO structure, which has several disordered parts, the
FomA�MgAMPPNP�fosfomycin structure is mainly ordered.
Themain differences between the two complexes lie in confor-
mations of several structural elements surrounding the active
site: 1) a loop stretching from residues 18 to 23 has slightly
different conformation; 2) the amino acid residues 57–68 are
completely disordered in the FomA�DPO complex, whereas
they are ordered in the FomA�MgAMPPNP�fosfomycin struc-
ture. Moreover, residues 57–63 are a part of the �2-helix, and
3) residues 207–211 are not visible in the FomA�DPO structure,
the helix �6 (residues 195–199) is four residues shorter in the
ternary complex (Fig. 4A). As a result, residues 201–205 are no
longer part of an �-helix, and theymove closer to the active site
so that the side chain of Trp202 participates in stacking interac-
tionswith the adenine ring ofAMPPNP. Such interactions limit

access to the active site (Fig. 4A). The conformational change
observed in the ternary complex is obviously connected to the
movements of loops during the binding of both substrates
The Nucleotide-binding Site—The nucleotide-binding site is

located in the groove between the N- and C-lobes. The triphos-
phate part of AMPPNP binds deeply in the catalytic cleft on the
interface between the two lobes (Fig. 3C) and is surrounded by
the �6-�7 and �9-�10 connection loops and the �1 helix. The
other side of the nucleotide-binding site (the adenosinemoiety)
is formed by the �9-�10 and �6-�7 connection loops, the �10
sheet, and theN-terminal part of the �7 helix. Two polypeptide
segments containing glycine-rich sequence motifs are deeply
buried in the catalytic cleft: a segment of the �1-�1 junction
(residues 9–15; participates in binding with the �-phosphate of
the nucleotide) and the �2-�2 connection loop (residues
51–55; binds the phosphonate group of fosfomycin). These
motifs are well conserved throughout the AAKF and are con-
sidered to be the some of main factors for neutralization of the
accumulated negative charge during the transfer of a phospho-
ryl group.
The superposition of the active sites in both structures shows

that the DPO molecule is positioned closer to the fosfomycin-
binding site than the �-phosphate of AMPPNP (Fig. 4B).More-
over, the overall position of the DPOmolecule more resembles
the position of the �- and �-phosphate groups of AMPPNP in
theNAGK structure (33). A different orientation of the �-phos-
phate is observed in the case of the ternary complex, where the
�-phosphate group is positioned farther away from the fosfo-
mycin-binding site (Fig. 4B). As a result of the different orien-
tations of the phosphate groups, themodes of interaction of the
�- and �-phosphates differ in both FomA complexes. The
diphosphate in the FomA�DPO complex is bound to protein via
H-bonds from the nonbridging oxygen atoms of the �-phos-
phate to the main chain NH atoms of Gly12 and Gly53, to the
side chain NZ of Lys9 (from nonbridging oxygen atoms of both
phosphates), and indirectly via a water molecule from the
�-phosphate to OG of Ser148 (Fig. 5A) (Thus we label the phos-
phate groups of diphosphate as � and �). In the FomA�
MgAMPPNP�fosfomycin complex, a water molecule occupies
the position approximately equivalent to the �-phosphate of
DPO or the �-phosphate of AMPPNP in the NAGK.

In the ternary complex, the nonbridging oxygen atom O-2 of
the �-phosphoryl group of AMPPNP is indirectly hydrogen-
bonded via water molecules to the carbonyl oxygen of Ala222 and
via the bridging oxygen atom to OG of Thr170. The nonbridging
oxygens of the �-phosphoryl group make hydrogen bonds to NZ
of Lys216 andOGof Thr170 (Fig. 5B). The bridgingN is hydrogen-
bonded to OG of Ser13. The �-phosphoryl group participates in
hydrogenbondingwithNHofSer13 andNZofLys18 (Fig. 5B). Lys9
and Lys216 correspond to fully conserved lysine residues in
NAGKs and GKs. It was proposed for NAGK that these residues
are centrally involved in catalysis of phosphoryl transfer by stabi-
lizing the transition state (34). In the FomA�MgAMPPNP�
fosfomycin complex, Lys9 does not participate in hydrogen bond-
ingwith the�-phosphorylgroup. Instead,NZofLys18 ishydrogen-
bonded to the nonbridging O-3 of the �-phosphoryl group. All
three phosphoryl groups are complexed with theMg�2 cation via
nonbridging oxygen atoms. Three water molecules complete the

FIGURE 2. Fo � Fc electron density omit map contoured at 3 � for DPO in
the FomA�DPO complex (A) and MgAMPPNP and fosfomycin in the
FomA�MgAMPPNP�fosfomycin complex (B). Mg2� cation is shown as a
sphere.
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hexacoordinationsphereofmagnesium.Oneof themisH-bonded
to the phosphonate oxygen O-3 of fosfomycin.
The AMPPNPmolecule is bound in the extended conforma-

tion. An eight-residue insertion loop (residues 203–210) with
respect to that in NAGK makes the adenine-binding site less
solvent-accessible. The adenine ring sits in the hydrophobic
pocket formed by Met213, Val172, Val176, Leu20, Ile175, and
Trp202. In the absence of nucleotide (FomA�DPO complex),

the pocket is more open to the sol-
vent because of flexibility of the
loop 203–211 (Fig. 4A). The ade-
nine ring is in the syn configura-
tion and closely resembles the
conformation of AMPPNP in the
NAGK structure (33). Interactions
with the protein involve hydrogen
bonds between N-1 and the main
chain NH of Val176, N-6 and the
carbonyl oxygens of Val176 and
Ala200, N-7 and the main chain
NH of Trp202 (Fig. 5B), and stack-
ing interactions in quite a spectac-
ular way. First, the adenine ring
makes classical �-� stacking
interactions with the side chain of
Trp202. Trp202 in turn participates
in the additional stacking interac-
tion with the side chain of His254
of a symmetry related subunit.
Met213, which is highly conserved
throughout the entire AAKF,
completes the hydrophobic inter-
actions from the other side of the
adenine ring (Fig. 5B). The only
hydrophilic interaction between the
ribose ring and the protein includes
hydrogen bonding between the
3�-hydroxyl group of the ribose ring
and the carboxyl oxygen of Asp171.
The Fosfomycin-binding Site—A

fosfomycin molecule binds in the
N-terminal lobe. The binding
pocket is comprised of the N-termi-
nal parts of the helices �2 and �3,
the �7-�8 hairpin, the �2-�2 gly-
cine-rich connection loop, the
�8-�5 connection, and the �6-�7
junction, which makes a “lid” over
the fosfomycin-binding site just as
the �3-�4 hairpin does in the
NAGK over the NAG-binding site.
The�2 helix and the�6-�7 junction
(extra residues in comparison to
other members of the AAKF) are
not visible in the electron density
map in the FomA�DPO complex,
suggesting that the conforma-
tional change and ordering of

those structural elements should occur during the binding of
fosfomycin.
The phosphonate group of fosfomycin superimposes well

on the �-carboxylate group of NAG in the NAGK and points
toward the triphosphate tail of AMPPNP (Fig. 5C). The
interactions of fosfomycin with protein are provided by the
phosphonate group of the antibiotic via hydrogen bonds.
The O-1 phosphonate atom makes H-bonds with the main

FIGURE 3. The structure of the FomA�MgAMPPNP�fosfomycin complex. A, ribbon diagram of a monomer of
FomA with �-helices and �-strands labeled. The AMPPNP molecule is shown as a space filled model. B, structure
based sequence alignment between FomA and NAGK. The secondary structure elements of FomA defined by
DSSP (47) are given on top. Triangles indicate amino acids that line the AMPPNP-binding site, whereas stars
indicate fosfomycin-binding site residues. The image was generated using the program ESPript (48). C, cartoon
representation of the dimer with the dyadic axis perpendicular to the paper. The N- (cyan) and the C-lobe
(green) domains are shown. AMPPNP and fosfomycin substrate molecules are shown in stick representation.
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chain NH and the side chain OG atoms of Ser149. The O-3
phosphonate oxygen participates in hydrogen bonding with
OG of Thr210 and OG of Ser148 and with a water of the Mg2�

coordination sphere. The O-2 phosphonate atom makes a
hydrogen bond with NH of Gly53 (Fig. 5B). Additional stabi-
lization factors include hydrophobic interactions between
C-1 and C-2 of fosfomycin and hydrophobic parts of Thr210,
Ile61, and Gly57. The primary role of Ser148, Ser149, and
Thr210 in catalysis could be in proper positioning and orien-
tation of fosfomycin for the enzymatic reaction. There are no
direct interactions between fosfomycin and the nucleotide
molecule. However, water-mediated hydrogen bonds
between the phosphonate group of fosfomycin and the
�-phosphate of AMPPNP are observed (Fig. 5B).
Insights into Phosphoryl Transfer—The best studied enzyme

of the AAKF is NAGK, for which kinetic data as well as
crystal structures of different complexes and reaction state
intermediates are available. The enzymatic reaction pro-
ceeds via associative in-line phosphoryl transfer with the
assistance of the catalytical residues Lys8, Lys217, and Asp162
and with no need for general acid-base catalysis (33). The
crystal structures of two FomA complexes presented here
reveal a great degree of similarity between FomA and NAGK
in the overall molecular fold as well as in the conservation of
amino acid residues participating in nucleotide binding
(Figs. 3B and 5C). The residues coordinating the adenine
moiety of ATP appear to be less well conserved. However,
several key residues coordinating the phosphate groups are
conserved in the enzymes. These include Lys9, Asp150, and

Lys216 corresponding to Lys8, Asp162, and Lys217 in NAGK,
respectively (Fig. 5C). Asp150 makes hydrogen bonds with
Lys9 and Lys216 in both FomA complexes, and its likely role is
in the proper orientation of Lys9 and Lys216 for catalysis,
similarly as in case of NAGK. Lys216, which hydrogen bonds
to a nonbridging oxygen of the �-phosphate, should activate
the departure of the leaving phosphate group. Lys9 in the
FomA�DPO complex, which is H-bonded to the �-phosphate
group, is likely to participate in the stabilization of the tran-
sition state intermediate, in a similar manner as observed in
the NAGK. On the other hand, the conformation of the
triphosphate moiety of the AMPPNPmolecule in the ternary
complex of FomA does not allow hydrogen bond interac-
tions between Lys9 and the �-phosphate of AMPPNP (Fig.
5C). However, in this case Lys18 (there is no homologous
residue in NAGK) is H-bonded to a nonbridging oxygen of
the �-phosphate (Fig. 5, B and C). Such a “switch” from one
lysine to another allows Lys18 to be considered the candidate
for a catalytic residue, which neutralizes the charge and
polarizes the leaving �-phosphoryl group. Magnesium is
coordinated with the �-, �-, and �-phosphate groups of the
nucleotide and together with Lys18 and Lys216 is presumably
involved in orientation of the nucleotide and charge neutral-
ization and polarization of the �-phosphate group.
As expected, the biggest differences between FomA and

NAGK are observed in the substrate-binding site. The amino
acid residues Ser148, Ser149, and Thr210 participate in binding
with phosphonate oxygens of fosfomycin via H-bonds. Their
likely role in the enzymatic reaction is in proper positioning and
orientation of the antibiotic for the catalysis.
The shortest distance between oxygen atoms of the phos-

phonate group of fosfomycin and phosphorus atom of AMP-
PNP is 5.19 Å, a value that is long for the optimal in-line
phosphoryl transfer reaction. In addition, the triphosphate
tail of AMPPNP is not aligned toward the phosphonate
group of fosfomycin. Such observations could suggest that
the catalytic conformation of ATP may be significantly dif-
ferent from the one observed for AMPPNP in the
FomA�MgAMPPNP�fosfomycin crystal structure. The
nucleotidemolecule could undergo a conformational change
that places the �-phosphate closer to the fosfomycin phos-
phonate group to allow the in-line phosphoryl transfer to
proceed similar to what is seen for NAGK. Indeed, there is
plenty of room to accommodate such a conformational
change of the AMPPNP molecule without the need for any
restructuring of the active site of the enzyme. The preserva-
tion of architecture of the catalytical residues of NAGK
(Lys9, Lys216, Asp150 in FomA) in the nucleotide-binding
site, as well as the position of the diphosphate molecule in
the FomA�DPO complex that superimposes well to the �-
and �-phosphates of AMPPNP in NAGK ternary complex
with MgAMPPNP and NAG, suggests that the mechanisms
of the enzymatic reaction could be very similar and adds
additional ground for a possible conformational change of
the nucleotide molecule in the FomA catalyzed reaction. On
the other hand, water-mediated catalysis is another possibil-
ity that cannot yet be ruled out because interactions between
the nucleotide molecule and fosfomycin are mediated by two

FIGURE 4. A, a stereo view of the superposition of FomA�DPO (magenta) and
the FomA�MgAMPPNP�fosfomycin (blue) structures. The polypeptide chains
are shown as ribbon representations, AMPPNP, DPO, and fosfomycin mole-
cules are shown in stick representation. B, a superposition of the bound sub-
strates in the FomA�DPO (magenta), FomA�MgAMPPNP�fosfomycin (blue),
and NAGK�MgAMPPNP�NAG (orange) complexes. Mg2� cations are shown as
crosses.
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water molecules. One of them is
coordinated to theMg2� ion and is
hydrogen-bonded to Asp150
(equivalent to the key organizing
residue Asp162 in NAGK) (Fig.
5C). Such coordination could sug-
gest general base catalysis. Asp150
is positioned to deprotonate the
water and could function as a gen-
eral base. There is also another
water molecule that mediates
interactions between AMPPNP
and the antibiotic via hydrogen
bonds of 2.82 Å to the phospho-
nate group of fosfomycin and 2.73
Å to the �-phosphate of AMPPNP.
The water molecule is 3.05 Å from
His58 (Fig. 5B). His58 is in close
vicinity to both the fosfomycin
and AMPPNP molecules (3.83 and
3.45 Å to fosfomycin and AMP-
PNP, respectively) and is positioned
approximately at the midpoint of
the phosphoryl transfer site. It
should be noted that His58 belongs
to the completely disordered part in
the fosfomycin-free FomA�DPO
structure. In contrast, in the
FomA�MgAMPPNP�fosfomycin
complex His58 is a part of the
ordered �2-helix. The ordering of
the helix clearly depends on the
binding of fosfomycin in the active
site of the enzyme. Hence, His58
could also play an important role in
the enzymatic reaction. Mutational
and kinetic studies will be necessary
to confirm the possible catalytical
role of His58 and Asp150.

It is not clear from the present
structures whether the FomA-cat-
alyzed phosphoryl transfer pro-
ceeds via the associative or the dis-
sociative mechanism. The later
mechanism, however, is generally
not favorable for enzymatic reac-
tions assisted by ATP (46). Crystal
structures of additional com-
plexes, such as complexes with
ATP (FomA�ATP and
FomA�MgATP), the ternary com-
plex with ADP, Mg(II), and the
product of the reaction fosfomycin
monophosphate, and a reaction
intermediate or a transition state
analog will be needed to determine
the precise mechanism of the
enzymatic reaction.

FIGURE 5. Stereo views of the active site. A, FomA�DPO complex. B, FomA�MgAMPPNP�fosfomycin com-
plex. The ligand molecules are shown in ball-and-stick format. The Mg2� (green) and coordinated water
molecules are represented as spheres. The interacting protein residues are shown in stick format. C, a
stereo view of the superposition of the AMPPNP binding sites in FomA�MgAMPPNP�fosfomycin (blue) and
NAGK�MgAMPPNP�NAD (red) structures. Mg2� cations are shown as spheres, and water molecules are
shown as crosses.
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