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Summary
While the molecular-mechanics field has standardized on a few potential energy functions,
computational protein design efforts are based on potentials that are unique to individual labs. Here
we show that a standard molecular-mechanics potential energy function without any modifications
can be used to engineer protein-ligand binding. A molecular-mechanics potential is used to
reconstruct the coordinates of various binding sites with an average root mean square error of 0.61
Å, and to reproduce known ligand-induced side-chain conformational shifts. Within a series of 34
mutants, the calculation can always distinguish weak (Kd > 1 mM) and tight (Kd < 10 µM) binding
sequences. Starting from partial coordinates of the ribose binding protein lacking the ligand and the
ten primary contact residues, the molecular-mechanics potential is used to redesign a ribose binding
site. Out of a search space of 2×1012 sequences, the calculation selects a point mutant of the native
protein as the top solution (experimental Kd = 17 µM), and the native protein as the second best
solution (experimental Kd = 210 nM). The quality of the predictions depends on the accuracy of the
generalized Born electrostatics model, treatment of protonation equilibria, high resolution rotamer
sampling, a final local energy minimization step, and explicit modeling of the bound, unbound, and
unfolded states. The application of unmodified molecular-mechanics potentials to protein design
links two fields in a mutually beneficial way. Design provides a new avenue to test molecular-
mechanics energy functions, and future improvements in these energy functions will presumably
lead to more accurate design results.
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Introduction
Computer-aided design of a ligand binding site is similar to solving a 3D jigsaw puzzle: it
involves fitting together the right pieces (amino acid mutations) to create a properly shaped
and functionalized pocket for a ligand. The inputs to the design procedure are the crystal
structure of a scaffold protein, a ligand structure, and a set of amino-acid positions that will be
mutated to create the binding site. The orientations of candidate jigsaw-puzzle pieces are
determined by modeling the conformations that the ligand and surrounding amino acids can
adopt, so as to identify the lowest energy arrangement. The design procedure searches through
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thousands of candidate sequences for one that optimizes the computed binding free energy of
the ligand with the protein. The whole process depends heavily on the potential energy function
(PEF), a mathematical expression embodying the physical laws that govern the protein-ligand
and solvent system.

Over the past 30 years, potential energy functions have played a central role in the molecular-
mechanics field. This field has converged on a small set of standard PEF’s that have been
extensively tested.1 Identifying and correcting the limitations of these energy models is an area
of active research.2–4 The modern molecular-mechanics potential energy functions (MM-
PEF’s) treat proteins as a collection of atoms with partial charges and van der Waals parameters,
connected by springs that maintain bond lengths and angles. The parameters are derived from
quantum calculations and from experimental data on a wide range of systems.5 MM-PEF’s
have been used to calculate binding constants6–10, protein folding kinetics11, protonation
equilibria12, and active site coordinates8,13,14.

Perhaps surprisingly, standard MM-PEF’s are not used for protein design.15 The reason is that
computing energies using MM-PEF’s requires significant computer time and is very sensitive
to detailed atom positions, necessitating fine conformational sampling. When thousands of
different sequences must be evaluated, the computation time per sequence becomes critical.
In order to accelerate calculations, design algorithms typically use simplified PEFs with various
ad hoc energy terms13,16–28 (heuristic potential energy functions are also often used to predict
binding constants29,30 and to predict active site coordinates31). Water is treated in a simplified
way, for example by inserting a distance dependent dielectric constant into Coulomb’s law,
and by applying a surface-area based solvation energy.16,17 The van der Waals interaction is
frequently smoothed so that it is less sensitive to spatial position, and thus can be optimized
with coarse sampling.16–18 Rather than explicitly modeling reference states, such as the
unfolded state, the reference states are typically treated implicitly by modifying the PEF.16–
18 Statistical terms derived by counting how frequently different residues and functional
groups interact in crystal structures, are included as well.16–18 Relative weights for the various
energy terms are adjusted empirically so as to match experimental data.18,19 Similar
approximations were used in the early days of molecular-mechanics calculations, but were
replaced as better models and increased computational power became available.

There are several motivations for trying to identify a single, standardized energy function that
is practically useful for protein design. First, design results from different labs could be
compared, and those results would collectively address where the energy model had failed and
how to improve it. Second, the practice of computational protein design would be simplified
if PEF development were not required. Finally, a PEF that had been broadly validated might
be expected to generalize better to new design problems than would a customized PEF.

One reasonable choice for a universal energy function would be an MM-PEF. MMPEF’s are
the most broadly tested PEF’s,1 and a direct correspondence exists between them and more
rigorous quantum-mechanical treatments of matter.5 A large group of scientists work on MM-
PEF’s, and the advances they make would be directly applicable to design. Here, we test
whether protein-ligand binding sites can be successfully designed based on a standard MM-
PEF that does not include any heuristic corrections. We first describe how we directly apply
an MM-PEF to the protein design problem, and then detail various tests applied to the ribose
binding protein.
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Results
Design scheme

Using the genetic algorithm,32 we search through thousands of sequences to find one sequence
that maximizes the calculated protein-ligand dissociation energy without destabilizing the
protein by more than 5 kcal/mol. To evaluate dissociation and unfolding energies, the bound,
unbound, and unfolded states are modeled, and their calculated energies are differenced. For
each state, we use a mean field rotamer-repacking algorithm to find the atomic coordinates that
minimize the energy. As part of the rotamer repacking, titratable residues are allowed to
protonate or deprotonate depending on the local energetics. Good structural sampling is
achieved by using extremely large rotamer libraries (≥5449 rotamers per position), and several
thousand ligand poses that sample the translational, rotational, and internal degrees of freedom
of the ligand. The optimal structure generated by rotamer repacking is then subjected to
gradient-based energy minimization. The energies of each state are evaluated with the
unmodified CHARMM22 molecular-mechanics potential energy function33 and the
generalized Born solvation formalism34 developed by Lee et al.35 The design procedure is
outlined in Figure 1. To evaluate the approach, we apply three tests: structural prediction,
energetic prediction, and prediction of a binding site sequence.

Structural prediction
For structural predictions, we started with crystal structures and discarded the coordinates of
the ligand and all contacting side chains. These coordinates were then predicted in the context
of the rest of the protein. We first explored the effect of sampling resolution by predicting the
structure of ribose binding protein (RBP) bound to ribose using four rotamer libraries of
increasing size (Figure 2). With fewer than 5449 rotamers per position, the calculated energy
of the predicted structure is less favorable than the calculated energy of the crystal structure,
indicating that the crystal structure conformation is missed due to inadequate sampling
resolution. At 5449 rotamers per position, the predicted structure has the same energy as the
energy-minimized crystal structure, and the coordinates differ by a root mean square (RMS)
error of 0.148 Å. This level of accuracy exceeds the experimental error in the crystallographic
coordinates. This apparently surprising result likely occurs because the fixed portion of the
crystallographic coordinates constrains the possible solutions at the modeled positions.
However, this constraint alone is not sufficient to specify the binding site sequence and
geometry (see below).

Using high resolution rotamer libraries (either 5449 or 6028 rotamers per position), side chains
in the binding sites of 5 different structures were predicted with an average RMS error of 0.61
Å (Figure 3–Figure 4). The number of predicted residues ranged from 9 to 23. The error was
generally larger for surface residues, and when more positions were predicted.

For the RBP-ribose calculations, we restricted the ligand poses to be within 1.8 Å RMS of the
native pose, resulting in the 4639 poses shown in Figure 3. For the ABP-arabinose calculations,
the ligand poses were restricted to be within 1.0 Å RMS of the native pose, resulting in the
4111 poses shown in Figure 3. Although we would have preferred to do the calculations without
this filter, it was necessary to reduce the number of ligand poses to a manageable number (the
precalculated interaction energy matrices had to be smaller than 2 GB to fit into memory).

We explicitly model the bound and unbound states, providing predictions of side-chain
conformational shifts upon binding. The predicted changes match the crystal structures in 70%
of the residues with the largest conformational shifts (Figure 5). Single-state design algorithms
ignore such conformational shifts, in contrast to a multi-state design framework.22 Note that
we did not predict the backbone shift upon binding (4.1 Å RMS for RBP and 0.8 Å RMS for
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VEGF) because the bound and unbound backbone coordinates were used as inputs to the
calculation.

The calculation predicts that one aspartic acid and one glutamic acid in the binding site of ABP
are protonated (Supporting Table 5). If these residues are not allowed to protonate, the structural
prediction is degraded (Supporting Figure 7).

Energetic prediction
To test if the energy function can properly rank the binding affinities of different binding site
sequences, we first computed ligand binding energies for the native ABP and RBP sequences
and for 1000 scrambled sequences. As expected, none of the scrambled sequences have better
predicted stability and dissociation energy than the native (Figure 6a).

Next, we calculated the relative binding energies of 34 mutants of ABP for which dissociation
energies have been measured. Two sequences were predicted to destabilize the protein by more
than 10 kcal/mol relative to native ABP, and presumably adopt alternative backbone
conformations. The binding energies of the remaining sequences are predicted with a
correlation coefficient of r2=0.57 (Figure 6b, Supporting Table 6). The predictions were
performed without any adjustable parameters. As each calculation required about 1 minute of
CPU time on a Pentium processor, the approach is fast enough for design applications. The
data set includes single, double, and triple point mutants of wild type ABP, and covers a wide
range of mutation types (hydrophobic to hydrophobic, hydrophobic to polar/charged, polar/
charged to hydrophobic, and polar/charged to polar/charged).

Within the data set, the calculation can always distinguish weak (Kd > 1 mM) and tight (Kd <
10 µM) binding sequences. However, the absolute dissociation energies are not predicted
correctly. One important possible source of error is that there is no published crystal structure
of unbound ABP. We model the unbound protein backbone conformation based on the crystal
structure of bound ABP. In reality, the unbound protein likely exists in an open conformation
with better solvated binding-site residues.36 Our incorrect unbound state might explain the
21.2 kcal/mol offset in calculated dissociation energies. The slope of the regression line is
greater than one, which is likely due to modes of structural relaxation (such as backbone
motions) that were not modeled. The resulting clashes will exaggerate any energy differences
between sequences. Another possibility is that we are not adequately modeling entropy losses
upon binding.37

Binding site design
The final and most stringent test of the molecular mechanics energy model was a redesign of
the binding site in RBP (Figure 7). We discarded the ligand coordinates, and the sequence and
coordinates of the 10 residues contacting the ligand. The total size of the sequence space
searched was 1710 = 2.0 × 1012 (Gly, Pro, and Cys were not allowed). The calculation was
initiated from a population of random sequences. After evaluation of 8888 sequences, the
energy function identified a point mutant (N13L) of native RBP as the tightest binding
sequence. After 8964 sequences, it picked native RBP as the second tightest binding sequence.
Evaluation of an additional 8879 sequences did not yield any further improvement. The entire
process was repeated with a different random initial sequence population, and the same optimal
sequences were selected. During the course of the design, first stability was achieved, then
hydrogen bonding, and finally shape complementarity. The same pattern has been seen
experimentally in the affinity maturation of antibodies against lysozyme.38

We experimentally tested the three top sequences from four different RBP-ribose redesign
calculations to determine which aspects of the design algorithm were essential (Table 1).
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Decreasing the rotamer resolution (row a), omitting the final continuous minimization step
(row b), or using a less accurate electrostatics model (row c) produces sequences that bind very
weakly. Only when we use a high resolution rotamer library, a final continuous minimization
step, and accurate electrostatics, does the design algorithm predict sequences that bind well
(row d).

Discussion
This paper reports the first successful redesign of an entire binding site based on an unmodified
molecular-mechanics potential energy function. This is a stringent test of the energy function,
because the native sequence and a point mutant are distinguished from 2.0 × 1012 alternative
sequences. Good hydrogen bonds and steric complementarity were picked out directly by the
energy function, without energy terms or selection criteria that specifically required these
features. Given that the underlying physics is the same for the design of new proteins and for
the simulation of known proteins, it is satisfying to see that the same energy models can be
used as well.

We tested a number of simplifications commonly used in protein design calculations, and found
that they all resulted in less successful predictions. For example, low sampling resolution or
an inaccurate solvation model led to sequences that lacked critical hydrogen bonds. Scaling
down the electrostatic energy (which is frequently done to compensate for a crude electrostatics
model) reduced the accuracy of the energetic predictions. Eliminating the unfolded state
resulted in unstable designed proteins. Softening the van der Waals interaction allowed atoms
to pack together more closely, making hydrogen bonds and salt bridges appear artificially
strong (Supporting Figure 8), and resulting in the burial of charged and polar functional groups.

An important conclusion from this work is that MM-PEF’s must be paired with an accurate
continuum solvent model and with protonation equilibria in order to correctly redesign a polar
binding site. Individual polar protein-ligand interactions can exhibit energies up to 100 kcal/
mol (the Coulomb energy between unit charges separated by 3.3 Å). These energies are almost
exactly counterbalanced by interactions with water in the unbound protein. Thus, small errors
in the solvation energy grossly alter the design predictions. Finite difference algorithms are
generally considered the most accurate methods to solve the Poisson-Boltzmann differential
equation that defines the continuum solvent model, but they are currently too slow for protein
design. Very accurate generalized Born approaches have been developed over the last few
years,35 and produce solvation energies that differ from the finite difference result by only 2%
(Supporting information). We have shown that this level of accuracy is both necessary and
sufficient for protein design calculations.

The results in this paper suggest that the protein design and molecular-mechanics fields can
work together on the same potential energy functions, and that future developments in MM-
PEFs will be immediately applicable to protein design (although ad hoc terms may still be
necessary for modeling aggregated and misfolded states). Currently, there are active efforts to
develop polarizable potential energy functions that more accurately reproduce the physical
characteristics of small molecules,2–4 and hybrid quantum mechanical / molecular mechanical
potential energy functions that model charge transfer and changes in covalent bonding.39,40
It will be exciting to see how these improved energy models will impact the protein design
problem.
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Materials and methods
Calculations

Protein structures were predicted using a rotamer-based mean field algorithm.41 The energy
was calculated as the sum of the CHARMM22 molecular-mechanics energy,33 a generalized
Born surface-area solvation energy34,35 using a microscopic surface tension42 of 0.0072 kcal/
mol/Å2, and a deprotonation energy.43 The most probable mean field structure was then locally
minimized using the L-BFGS optimization algorithm44 in TINKER45 to obtain a final
structure and energy. The unfolded protein energy was calculated by assuming that the protein
backbone adopts an ensemble of random walk conformations in water (see 46,47 and
Supporting Information) The stability of the protein was calculated as the energy difference
between the unfolded protein and the folded unbound protein, and the dissociation energy was
calculated as the energy difference between the uncomplexed and the complexed protein-ligand
system. All calculations were performed at 25°C, pH 7.0, 100 mM monovalent salt. Ribose
binding proteins were designed using a genetic algorithm32 that optimized the calculated ribose
dissociation energy, given a 5 kcal/mol limit on protein destabilization. The genetic algorithm
was initialized with a population of random sequences. Calculations were performed using
CNSsolve48, TINKER45, and custom code written in C++, and run on a Pentium-based Linux
cluster.

Protein purification and constructs
RBP without a periplasmic signal peptide was cloned into the NcoI/XhoI sites of pET28a (EMD
Biosciences), generating a derivative with a C-terminal His6 tag. Mutants were made by Kunkel
mutagenesis49 or by QuikChange (Stratagene). Protein was expressed in BL21 DE3 E. coli
cells (Novagen) with 1 mM IPTG for 5 hr at 37°C. Cells were lysed with lysozyme and
sonication in the presence of 1 mM phenylmethylsulfonyl fluoride. Protein was purified by
immobilized metal affinity chromatography, followed by gel filtration chromatography in 20
mM potassium phosphate pH 7.0, 100 mM NaCl. The purified protein was then concentrated,
and its final concentration determined by absorbance.50

Centrifugal concentrator radioligand binding assay
Proteins were diluted into 1 ml of 20 mM potassium phosphate pH 7.0, 100 mM NaCl, and 0.5
µCi 1-3H(N)-D-ribose (Moravek). After equilibration for 30 minutes, the samples were placed
in centrifugal concentrators (Amicon Ultra, 5 kDa MWCO), and centrifuged until at least 500
µl of filtrate had crossed the membrane. Any filtrate in excess of 500 µl was returned to the
retentate, and the quantity of radioligand in the filtrate and retentate were measured by

scintillation counting. Dissociation constants were calculated as  where r is
the ratio of retentate to filtrate radioligand, P is the initial protein concentration, and L is the
initial radioligand concentration. We chose conditions where P > Kd and r fell between 1.2 and
20. The analysis depends on the assumption that water and the ligand cross the membrane at
equal rates. This assumption was tested by centrifuging a ribose solution across the membrane
in the absence of protein; the specific activities of the retentate and filtrate were identical to
within 4%.

Solid phase radioligand binding assay
A solid phase radioligand binding assay was used to detect binding with Kd’s in the high
millimolar range. Nickel-NTA agarose slurry (Qiagen) was washed and resuspended in buffer
(20 mM potassium phosphate pH 7.0 and 100 mM NaCl) to form a 50% (v/v) slurry. Twenty
microliters of the slurry were mixed with 5 nmol of His6-tagged protein and 1.0 µCi of
radioligand in a final buffer volume of 50 µl. Following a 30 minute equilibration, the mixture
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was transferred to 0.45 µm centrifugal filter units (Millipore #UFC30HV0S) and centrifuged
at 12000×g for 2 minutes to remove unbound ligand. The resin was washed three times by
addition of 500 µl of 50 % ethanol and centrifugation at 12000×g for 2 minutes. The bound
ligand was eluted with 250 µl guanidinium HCl, and quantified by scintillation counting.
Radioligand eluted from a no-protein control was included to account for non-specific binding
to the resin, and a control of 0.5 µCi radioligand was used to determine counting efficiency.

Dissociation constants were calculated as  where r is the fraction of
protein bound to radioligand, P is the initial protein concentration, and L is the initial ligand
concentration.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations
PEF, potential energy function; MM-PEF, molecular-mechanics potential energy function;
PDB, Protein Data Bank; RMS, root mean square; ABP, arabinose binding protein; RBP, ribose
binding protein; VEGF, vascular endothelial growth factor.
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Figure 1.
Simplified schematic of the protein design algorithm. (a) Setting up a design calculation. The
design calculation is based on a scaffold protein (gray) with a known crystal structure, and a
set of design positions (red). Possible ligand poses (green) and side chain conformations (blue)
for each amino acid at each position are constructed. The right panel shows multiple side chain
rotamers modeled at one design position, and two alternative ligand poses. Interaction energies
between the possible ligand poses and the possible side chain conformations are precomputed.
(b) Running a design calculation. The design procedure involves separate sequence
optimization (to find sequences that bind ribose) and structural optimization (to determine the
binding constant and stability of each sequence). In the RBP-ribose redesign, we search a space
of 2×1012 sequences and an average of 5×1028 conformations per sequence.

Boas and Harbury Page 11

J Mol Biol. Author manuscript; available in PMC 2009 July 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Higher rotamer resolution improves structural predictions for the RBP binding site (PDB code:
2DRI). Δ Energy is the difference in potential energy between the calculated structure and the
crystal structure, after both have been subjected to local energy minimization. RMS error is
the root-mean-square deviation between the calculated and crystallographic coordinates of the
repacked atoms, comprising the ligand and ten active site side chains. The phenylalanine
rotamers from each rotamer library are shown to illustrate the sampling resolution. The lowest
resolution rotamer library shown is the Richardson penultimate rotamer library51 with
protonation states added for His, Asp, and Glu. The other rotamer libraries were derived by
clustering side chain conformations in high resolution crystal structures from the Protein Data
Bank (see Supporting Information).
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Figure 3.
Prediction of binding site coordinates. Starting from crystal structures stripped of the ligand
and the contacting residues, the active site was reconstructed by finding the lowest energy
arrangement of the ligand and side chains. For ABP-arabinose (PBD code: 6ABP), the
coordinates of the arabinose and 15 contacting residues (10, 14, 16, 17, 64, 89, 90, 108, 145,
147, 151, 204, 205, 232, 259) were predicted using 6028 rotamers per position and 4111 ligand
poses. For RBP-ribose (PDB code: 2DRI), the coordinates of ribose and 10 contacting residues
(13, 15, 16, 89, 90, 141, 164, 190, 215, 235) were predicted using 5449 rotamers per position,
and 4639 ligand poses.
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Figure 4.
Prediction of binding site coordinates for bevacizumab-VEGF (1BJ1), unbound VEGF
(2VPF), and unbound RBP (1URP). For bevacizumab-VEGF, the following 23 residues were
repacked, using 6028 rotamers per position: V17, V21, W48, W79, W81, W82, W83, W91,
W93, H28, H30, H31, H32, H54, H55, H99, H101, H102, H103, H105, H106, H107, H108.
V and W are VEGF chains, H and L are antibody heavy and light chains. For unbound VEGF
and RBP, the same set of residues were predicted as the bound structure.
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Figure 5.
Prediction of side chain conformational shifts in RBP upon binding ribose, or VEGF upon
binding bevacizumab. The five largest experimentally observed conformational shifts are
shown for each protein. The residues were superimposed by aligning the backbone amide
nitrogen, alpha carbon, and carbonyl carbon. * denotes correct predictions, where the unbound/
bound predictions are closest to the unbound/bound crystallographic coordinates, respectively.
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Figure 6.
Predicting dissociation energies. (a) Calculated stability and dissociation energy distinguish
the native sequence (×) from 1000 scrambled sequences (♦) for ABP and RBP. Sequences
predicted to be more then 10 kcal/mol destabilized relative to the native are shown in gray. (b)
Predicting relative dissociation energies of mutants. The graph shows data on mutants of ABP
binding to arabinose. Experimental data are from reference 52 and from measurements reported
in Supporting Table 6. An experimental dissociation energy of zero means that there was no
detectable binding. Calculations were performed using 6ABP as the scaffold structure for both
the bound and unbound states, with 6028 rotamers per position. Coordinates of the fifteen
primary ligand contacts and of residues 20 and 235 were optimized. The circled points are
predicted to be destabilized by more than 10 kcal/mol relative to the native.
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Figure 7.
Redesigning the ribose binding site in RBP. Positions identical to the native are highlighted in
yellow. The figure shows the best sequence as a function of the number of sequences
considered, using either the mean field dissociation energy as the criterion (blue trajectories)
or alternatively the dissociation energy calculated using minimized structures (red trajectories).
All sequences with a mean field dissociation energy greater than 30 kcal/mol (corresponding
to −7.5 kcal/mol relative to the native sequence, dashed line) were locally energy minimized
to generate the red trajectory. Sequence 8871 is the top sequence when ranked by mean field
dissociation energy (corresponding to Table 1b), and sequence 8888 is the top sequence when
ranked by minimized dissociation energy (corresponding to Table 1d). The native sequence
was found out of a possible 2×1012 sequences after 8964 sequence evaluations. Dissociation
and unfolding energies are reported in kcal/mol, relative to the native sequence. The number
of protein-ligand hydrogen bonds was determined using bndlst.53 Shape complementarity
(which ranges from 0 for perfectly non-complementary surfaces to 1 for perfectly
complementary surfaces) was calculated using sc.54 Backbone coordinates for the bound state
are from 2DRI, and backbone coordinates for the unbound state are from 1URP.
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Table 1
High resolution rotamer library, gradient-based local minimization, and an
accurate solvation model are required to successfully redesign the ribose binding
site in RBP. Multiple design calculations (a–d) were performed using different
sampling resolutions and solvent models. The top three sequences from each
calculation and their experimentally measured binding constants are shown. Parts
of the sequence identical to the native sequence are highlighted in yellow. (a)
Design calculation using a lower resolution rotamer library. (b) Design calculation
without a gradient-based local minimization step. (c) Design calculation using a
less accurate generalized Born solvent treatment55 (d) Design calculation using a
high resolution rotamer library, gradient-based local minimization, and an accurate
generalized Born solvation model35 Sequences are ranked by calculated
dissociation energy, allowing 5 kcal/mol destabilization relative to the native
sequence for 5449 rotamers / position, and 20 kcal/mol destabilization for 2800
rotamers / position. The native sequence was not within the top 100 sequences for
design calculations A, B, or C.

*
Kd measured using the solid phase radioligand binding assay.

†
Kd measured using the centrifugal concentrator assay. The reported error is the standard deviation of 3 measurements.
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