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The analysis of group fMRI data requires a statistical model known as the mixed effects model. This article motivates the need for
a mixed effects model and outlines the different stages of the mixed model used to analyze group fMRI data. Different modeling
options and their impact on analysis results are also described.
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INTRODUCTION
The analysis of functional magnetic resonance imaging

(fMRI) data is a complicated procedure. The large data sets

are computationally difficult to manipulate and special

modeling techniques are necessary to deal with temporal

correlation and to apply results beyond the study popula-

tion. The statistical models used to analyze fMRI data

require numerous steps starting with raw data and ending

with an image of P-values for evaluating hypotheses. Luckily

there are easy-to-use software packages that allow users to

input their data and choose certain modeling options to

conduct data analyses. The pitfall of the data analysis ‘black

box’ is that users are often not aware why certain types of

models are used and the purpose of different modeling

options. The focus of this article is to describe the model

used to analyze group fMRI data. The proper model

for group fMRI data is the two-stage summary statistics

approach of the mixed model. A mixed model is necessary to

extrapolate results beyond the study sample. The two-stage

summary statistics approach of this model reduces

the computational burden of analyzing the large volumes

of data collected in fMRI studies. We start by motivating

the need for a mixed model and then go through each stage

of the analysis, describing modeling options at each stage

and how they impact the results.

MIXED MODEL MOTIVATION
To illustrate the need for a mixed model, we use a fictional

non-fMRI example: how a college student’s opinion

about a political party changes after watching a political

advertisement. A questionnaire was used to obtain an

opinion score between 0 and 100 and the measurement of

interest is the difference in this score before and after viewing

the advertisement. You are initially told the data were

collected from 60 college students randomly sampled across

the United States. Their changes in opinion are shown in

the top panel of Figure 1. Later you are told that the first

data description was incorrect. Subjects were not randomly

sampled from all universities, but the students were

randomly selected from three randomly chosen universities

and the university-specific distributions are shown in

the bottom panel of Figure 1. Although the data have

not changed, there is a clear relationship between measure-

ments from the same university. The way data are sampled

from the population changes the data distribution, so

different models are necessary under each of these data

collection scenarios. In order to understand the models

and how they differ, it is necessary to understand

the two different effects that can be specified in a model:

fixed and random. We first describe the effects in general

and then in the context of the data example.

When defining effects as being fixed or random one

must consider how the data were collected, what inferences

are of interest and to which population inferences will be

applied. Often an effect can be broken into different groups

or levels; in our example the effect, mean opinion change

of all college students, can be broken into levels defined

by university. If the data were sampled on all levels of an effect,

it is a fixed effect. If only a subset of the levels were

sampled but you want to apply your inferences to the entire

population, then the effect is a random effect, since only

a random subset of the levels were sampled. If a random

effect exists, it should always be included in the model.

A random effect does not change the mean structure of

the model, but changes the variance structure so the
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distribution associated with the model matches the distribu-

tion of the data. If a fixed effect exists you should include it

only if you are interested in estimating it or adjusting for it in

the model. For example, if you model the mean for each

level of your effect, that same model cannot additionally

supply a mean over all levels of the effect. So, if the interest is

in the overall mean for an effect, the fixed level-specific effect

cannot be included in the model. A model with fixed effects

only is called a fixed effects model, whereas a model with both

fixed and random effects is a mixed effects model.

For our data example, the hypothesis of interest is

the overall mean effect of opinion change in college students.

Therefore, in both data collection scenarios we are interested

in estimating and carrying out inference on the fixed mean

effect, sometimes thought of as the intercept of the model.

The effect that changes between the two data collection

scenarios is the university mean effect and if this is not

modeled correctly, we will see that inference on the overall

mean could be wrong. In the first case, all levels of university

were randomly sampled, so university mean would be

considered a fixed effect. Although it is a fixed effect, this is

an example of when it would not be appropriate to include it

in the model since we cannot include a fixed effect for each

university while also estimating an overall mean, as it is only

appropriate to include one or the other. In the second data

collection scenario all universities were not sampled, only

three randomly chosen universities. Since our goal is to

apply our inferences for the overall mean to the entire

population of all students from all universities, we must treat

university as a random effect. If we don’t treat university

as a random effect, there will not be separate within- and

between-university variances, only a between-student

variance, which only describes the distribution of students

in these three universities and so the inferences would only

apply to these universities.

Under the incorrect data collection description, a fixed

effects model is used to carry out inference on the overall

mean opinion change fixed effect and gives a mean estimate

of 5.12 with a standard error of 0.512, yielding a P-value,

P < 0.0001. This indicates there is strong evidence that

the opinion of the political party increased by 5.12 as

a result of watching the advertisement. Under the correct

data collection description, a mixed effects model allowing

for within- and between-university variability is appropriate

to carry out inference on the fixed overall mean opinion

change and still estimates a mean of 5.12, but the standard

error is larger (s.e.=2.68) with a resulting P-value of

P ¼ 0.06. Using the correct model we realize our data

do not supply strong evidence that there is an opinion

change. The estimated variance, and hence P-value, will

often be larger in the mixed effects model. This is due to

the model incorporating two sources of variability,

within-group and between-group, whereas the fixed

effects model only has one source of variability, between-

student. The distributions in Figure 1 illustrate the

different sources of variability for the two scenarios.

Under the incorrect assumption, there is only one

distribution with one variance, the subject distribution.

Under the correct assumption there are three university

distributions and these universities are part of the

distribution of all universities. The variability between

the three means represents the between-university
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Fig. 1 The top panel shows the opinion change data (points) and distribution estimation (line) under the initial, incorrect, data description where each student was randomly
selected from all universities. The bottom figure displays the same data, but under the correct data description where students were randomly selected from three universities.
Note in the top panel there are 60 independent observations from the same distribution, whereas in the bottom panel there are effectively only three observations since
measurements within a university are related.
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variability. If we incorrectly ignored the random university

effect, our conclusion would have been wrong. We could

only use the fixed effects model result to describe those

specific universities.

Mixed effects models should be used whenever data are

grouped within certain levels of a population and inferences

are to be applied to the entire population. In the case of group

fMRI data, the data for a single voxel consist of time series

from multiple subjects, where each time series is a group of

data specific to a particular subject. Each point in an fMRI

time series is not randomly selected from a random subject,

but an entire time series is selected from random subjects.

Additionally, the distributions of fMRI time series between

subjects can be very different, with some subjects activating

more and/or having more variability in their signal than

others. Since the goal of most fMRI studies is to apply the

inferences beyond the study sample, a mixed effects model

accounting for between- and within-subject variability, is the

appropriate model. Just as shown with the student opinion

change example, if a fixed effects model is used instead of

a mixed effects model on group fMRI data, the estimated

variances can be too small, leading to P-values that are too

small and increasing the risk of false positives.

THE TWO-STAGE SUMMARY STATISTICS MODEL
The typical mixed model used by statisticians to analyze

multiple time series from multiple subjects is a one-stage

all-in-one approach that includes all subjects’ data simulta-

neously (Verbeke and Molenberghs, 2000). Although this

model works well in most situations, it is computationally

too difficult to use on fMRI data, which consist of time series

in excess of 100 time points for each of 100 000 or more

voxels. The first simplification is to analyze each voxel

separately, this is referred to as a mass univariate modeling

approach. In order to apply the mixed model to a voxel

of data, the all-in-one model is broken up into two stages

of modeling known as the two-stage summary statistics

model (Holmes and Friston, 1998). Figure 2 displays the two

stages of the model in the bottom panel and contrasts the

mixed model with the fixed effects model in the top panel.

In the first stage, each subject’s data is analyzed individually.

This produces the individual means and within-subject

variances that are necessary for the group model. The second

stage combines all individual means and within-subject

variances, estimates the between-subject variance and

supplies group inferences. Note that in some statistics

literature the summary statistics approach only uses first

β1, σ1 β2, σ2 βN, σN

N models, estimate N
within-subject variances
and parameter estimates

Estimate group parameter
and between-subject
variance.

βgroup, σgroup

βgroup, σgroup

1 Model, simultaneously
model all subject’s data.

…

Fixed Effects Model

Mixed Effects Model

Subject 1 Subject 2 Subject N

Fig. 2 The top panel of the figure displays a fixed effects analysis where all subject’s data are combined into a single model with only one source of variability.This model does
not acknowledge the grouping of time series within subjects and inferences from this model only apply to the subject population. The bottom panel displays the two-stage
summary statistics mixed model. At the first stage each subject’s time series is analyzed individually, supplying within-subject parameter estimates and variances. The second
stage uses the first stage parameter estimates and variances and estimates the between-subject variance and group parameter estimate, which can be used to carry out
inferences. In the mixed model inferences can be applied to the population from which the subjects were sampled.
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level mean estimates in the second level. As used here

and often in fMRI literature both the lower level mean

and variance estimates are taken to the second level unless

described otherwise. The following two sections describe

the two stages of the model starting with the different

model options that are commonly used in a first-level fMRI

analysis and how they affect the model fit. Following is

a description of the second-level model.

Level 1
If we were analyzing the student opinion data using the two-

stage approach, the first stage would consist of estimating

the three university specific means and variances associated

with the three distributions in the bottom of Figure 1.

In the case of fMRI data the first level analyzes each subject’s

data to obtain subject specific signal size parameters

and within-subject variance. There are many complications

within the data that must be addressed in order to estimate

the mean fMRI response and its variability for each subject.

fMRI time series are very noisy, with noise contributions

from the subject (cardiac, respiratory noise, head motion,

etc.) as well as the scanner. The noise can be classified

as being white or colored. White noise affects all frequencies

equally, adding overall variability, whereas colored noise

only affects some frequencies. White noise blurs the signal

while colored noise is correlated, adding structured trends

to the data that can range between low frequency drift

to high frequency fluctuations. Among all the noise is the

fMRI signal that we wish to detect. The goal is to create a

model that captures both the noise structure and the fMRI

signal. fMRI data analysis software offers many options

to deal with these complications including highpass filters,

lowpass filters and correlation estimation (or whitening)

to model or reduce the noise and hemodynamic response

function (HRF) convolution to improve the model

of the fMRI signal. If either the noise or signal are

modeled poorly the variability of our estimated signal can

be inflated, making it difficult to detect fMRI activation.

Incorrect modeling can also lead to biased variance

estimates which can cause false positive test results.

To illustrate how the different components of the model

improve upon the fit of the model, we have selected a

single time series from a subject who participated in the

Functional Imaging Analysis Contest (FIAC) from the

11th annual Human Brain Mapping conference (Dehaene-

Lambertz et al., 2006). This was a block design study and

the original time series from a single voxel is shown in panel

A of Figure 3. This time series illustrates both the signal

and noise components of fMRI time series. There is a fairly

strong signal, so you can roughly guess when the blocks

of activation occurred, although there is also a considerable

amount of noise. One type of noise is low-frequency noise

and it manifests itself in this time series as an increased signal

in the beginning with a downward trend as time continues.

This is an example of low-frequency drift and is an artifact

introduced by the scanner or from subject movement in

the scanner. Other examples of how low frequency noise

appear in fMRI data are slow uphill trends or u-shaped

trends in the time series. High frequency noise manifests

in the data as high frequency ‘wiggle’ and the sources include

both the scanner and subject.

We now describe a series of models, where each model

improves upon the previous model by adding a new feature.

Although the original analysis had four different stimuli,

to simplify the illustration we use a single explanatory

variable including all stimuli instead of a separate regressor

for each stimulus. With the exception of panel E, Figure 3

shows the original time series in blue and a fitted time series

in red. The modeling technique used in panel E alters

the data before modeling, so the altered data is shown

in green. The yellow indicates one of two sources

of variation, the residual variation, �̂2
R, and the other

source of variance comes from the design matrix of

the model, denoted by �̂2
mod. The test statistics from each

model are listed to the right of each figure. In order to

understand what is changing and how it affects the test

statistic, it is expressed in terms of the three main

components that comprise the test statistic, t ¼ �̂=�̂R�̂mod,

where �̂ is the parameter estimate (effect size) for the

regressor of interest.

We start with the most simple model, using a boxcar

regressor which has a value of 1/2 when there is a stimulus

and �1/2 when there is no stimulus. Panel B of Figure 3

shows how poorly this model fits. The small value of �̂ and

the large residual standard deviation, �̂R, result in a test

statistic of t ¼ 3.55. This model produces a poor fit, since it

assumes that when there is a stimulus the fMRI signal

instantaneously increases and then drops as soon as the

stimulus ends. In reality, since the fMRI signal is a

measurement of hemodynamic change, there is a delay and

the response to an event and the model must reflect this. The

single gamma (Lange and Zeger, 1997) and double gamma

(Glover, 1999) functions are two examples of HRFs.

In order to incorporate the shape of the HRF into our

model we convolve the original boxcar regressor with the

default HRF from the Statistical Parametric Mapping (SPM)

package, the double gamma HRF. Panel C of Figure 3

illustrates how the shape of the regressor more closely fits the

shape of the response, which improves the fit of our model

to the data causing a decrease in the yellow area between

the curves, analogously the residual variance. Notice that

the increase in the estimated mean and the decrease in the

residual variance contribute to an increase in the test

statistic. The variance from the model does not have a

noticeable change. Importantly, when using a canonical HRF

it is assumed to be correct and if it isn’t this could lead to a

poorly fitting model. Luo and Nichols (2003) illustrate how

the SPM diagnostics toolbox can be used to detect a poorly

fitting HRF and Lundquist and Wager (2006) compare

methods for estimating the shape of the HRF as well as

introducing a new method for HRF modeling.
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Now we will focus on the noise of the time series, starting

with the low frequency drift which appears in this time series

as a downward trend over time. The highpass filter is

designed to reduce this type of noise by passing the high

frequency noise and reducing the low frequency noise.

Software packages handle this issue different ways.

The FMRIB Software Library (FSL) fits a weighted running

line smoother through the data, which will capture the low

frequency trends in the data, and then removes the trend by

subtracting the fitted time series from the original time

series. The SPM package adds a set of low frequency cosine

functions to the design matrix to model the trend. Panel D

of Figure 3 shows how the fit of our model is improved by

using the cosine basis functions from SPM. Notice how this

fitted model curves up at the beginning of the time series

fitting the low-frequency drift. The parameter estimate

changes only slightly, so the increase in the test statistic

is attributed to the decrease in the residual variance.

When using a highpass filter you must specify the highest

frequency to be filtered from the time series. To avoid

t=0.30/(1.41×0.06)
t=3.55

t= 0.66/(1.22×0.06)
t=9.02

t=0.64/(1.04×0.06)

t=10.26

t=b /(sR× smod)ˆ ˆ ˆ

t=b /(sR× smod)ˆ ˆ ˆ
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t=0.66/(0.954×.08)   

t=8.65
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Fig. 3 Series of models fitted to a voxel of data from a block design study. The right column displays the test statistics for each model. Time series displayed in blue are the
original time series, red indicates the time series based on the fitted model and the green line in panel E is a whitened time series. The yellow area between the curves
represents the residual error �̂R and the other source of error comes from the model, �̂mod. Panel B starts with the worst model, using only a boxcar regressor and ignoring
temporal autocorrelation. The model additions in panels C and D improve the model fit, which lowers the residual variance yielding larger test statistics. The test statistic drops in
the last case, panel E, since modeling positive correlation tends to increase the overall variance. Ignoring positive temporal autocorrelation can increase the number of false
positive activations. Note that in all cases the regressor has been scaled so the min/max range is 1, insuring �̂; �̂R, and �̂mod are in the same units of %-change from baseline
signal, hence are comparable across models.
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filtering out your signal, it is important to choose a limit that

is at least as large as twice the stimulation period. So if

there were 15 s stimulus blocks followed by 15 s of rest, the

highpass filter should be at least 60 s (max frequency=1/

60=0.0167Hz) to avoid filtering out the signal.

The lowpass filter filters out high frequency noise.

Although this type of filter was used in the past (Friston

et al., 2000), it can often interfere with the signal frequency,

especially in event-related study designs. Currently highpass

filters are rarely used.

Some sources of colored noise, such as cardiac

and respiratory function and head motion can be measured.

In this case, these noise components can be modeled as fixed

effects. These are typically referred to as nuisance variables

since there is no interest in carrying out inferences on these

variables, but the variables adjust the inferences of

the covariates of interest.

The last component to add is a temporal autocorrelation

model, which addresses colored noise. When the temporal

autocorrelation is ignored, the standard errors from

the model will be biased. In the case of positively correlated

fMRI time series, the bias produces variance estimates

that are too small and hence P-values that are too small,

causing false positives. Once the temporal autocorrelation

is estimated, the estimate is used to remove the temporal

autocorrelation from both the data and the model, a step

often referred to as ‘whitening’ or de-noising the model.

The correlation model differs between software packages

with differences such as the number of parameters used to

estimate the correlation and whether the correlation estimate

is unique for each voxel or a global estimate. FSL uses a

voxelwise unstructured correlation estimate regularized by a

Tukey taper then the correlation estimates are spatially

smoothed using a nonlinear spatial filter (Woolrich et al.,

2001). SPM uses a global correlation estimate of a two-term

Taylor series approximation of an autoregressive model

[AR(1)] (Friston et al., 2002b). The results in the fifth panel

of Figure 3 show the whitened time series and fit of the

whitened model, based on the global SPM correlation

estimate. The fit of the whitened model does not seem

much different than the previous model, but the effect of

modeling the autocorrelation is seen by comparing the

t-statistics, which are 8.65 and 10.26 for the models with

and without an autocorrelation model, respectively. The

smaller t-statistic is a result of a slightly larger variance since

the positive correlation is now incorporated into the model.

Although there may be more significant voxels when

not modeling the temporal autocorrelation, due to larger

test statistics, many of these will be false positives.

Level 2
For the student opinion change example, the second level

models the three estimated university means from the

first level assuming each mean has a variance that is a

sum of the previously estimated first level variance and

a between-university variance. This is similar to a one-

sample t-test, but the variance has two parts. In the case

of fMRI data we combine the first level signal change

parameters and within-subject variances to estimate

between-subject variability and carry out inference on

group signal change. The signal change parameter estimates

from the Level 1 analysis comprise the dependent variable;

assume only a single parameter estimate per subject is used.

Any group model can then be used, perhaps a single group

mean, or the estimation and comparison of two group

means. Since we are using a mixed models approach, there

are two sources of variability, the within-subject variability,

which was estimated in the Level 1 model, as well as a

between-subject variability, which is estimated in this level.

Specifically, in the group model, subject k has parameter

estimate �̂k with variance Varð�̂kÞ ¼ �2
withink

þ �2
between,

which is estimated by �̂2
withink

¼ �̂2
Rk
�̂2
modk

and �2
between

is estimated in the Level 2 model. Once the between-subject

variance is estimated, weighted least squares is used

to estimate the group model parameters. This is a similar

to whitening but instead of temporal autocorrelation there

is heteroscedastic variability across subjects.

The estimation of the between-subject variance is carried

out in a variety of ways depending on the software used. FSL

uses a Bayesian approach and specific details about

the model estimation can be found in Beckmann et al.

(2003) and Woolrich et al. (2004). SPM, on the other hand,

assumes all first level within-subject variances are equal, as a

result the within-subject variance is absorbed into the

between-subject variance in the Level 2 model. In the case

of a single group mean, second level SPM model is

equivalent to a one-sample t-test using the N first-level

parameter estimated �̂k. More details about the SPM

model can be found in Friston et al. (2002a) and Friston

et al. (2002b).

Specific group fMRI modeling assumptions of different

software packages and how they differ are discussed

in Mumford and Nichols (2006).

DISCUSSION
When making inference on group fMRI data, it is important

to use a mixed model approach to account for both within-

and between-subject variability. If a mixed effects model

is not used to analyze fMRI data, the results are only

applicable to the subjects who participated in the study, not

the entire population from which they were sampled. If

a fixed effects model is used there will be an increase in false

positive test results. Since fMRI data consist of over 100 000

time series that can each be at least 100 time points long,

data are analyzed in a voxelwise fashion and the mixed

model is broken into two stages, where single subjects

are analyzed at the first level and group analyses are carried

out at the second level. First level modeling options,

including convolution of regressors with HRFs, highpass

filtering and correlation estimates, improve the fit of
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the model and validity of the statistical results. HRF

convolution and highpass filtering tend to improve the fit

of the model, lowering the residual variance. Modeling the

positive correlation of fMRI data reduces bias in the variance

estimates, which can cause false positive test results.

Another important issue, not discussed here, is multiple

testing of correlated test statistics. Different methods

for handling this issue are reviewed by Nichols and

Hayasaka (2003).
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