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Abstract

Background: All currently available methods of network/association inference from microarray
gene expression measurements implicitly assume that such measurements represent the actual
expression levels of different genes within each cell included in the biological sample under study.
Contrary to this common belief, modern microarray technology produces signals aggregated over
a random number of individual cells, a "nitty-gritty" aspect of such arrays, thereby causing a random
effect that distorts the correlation structure of intra-cellular gene expression levels.

Results: This paper provides a theoretical consideration of the random effect of signal aggregation
and its implications for correlation analysis and network inference. An attempt is made to
quantitatively assess the magnitude of this effect from real data. Some preliminary ideas are offered
to mitigate the consequences of random signal aggregation in the analysis of gene expression data.

Conclusion: Resulting from the summation of expression intensities over a random number of
individual cells, the observed signals may not adequately reflect the true dependence structure of
intra-cellular gene expression levels needed as a source of information for network reconstruction.
Whether the reported effect is extrime or not, the important point, is to reconize and incorporate
such signal source for proper inference. The usefulness of inference on genetic regulatory
structures from microarray data depends critically on the ability of investigators to overcome this
obstacle in a scientifically sound way.

Reviewers: This article was reviewed by Byung Soo KIM, Jeanne Kowalski and Geoff McLachlan

l. Introduction

Inferring gene regulatory networks from microarray data
has become a popular activity in recent years, resulting in
an ever increasing volume of publications. There are many
pitfalls in network analysis that remain either unnoticed
or scantily understood. A critical discussion of such pit-
falls is long overdue. In the present paper, we discuss one
feature of microarray data the investigators need to be

aware of when embarking on a study of putative associa-
tions between elements of networks and pathways. We
believe that the present discussion pinpoints the crux of
the difficulty in correlation analysis of microarray data
and network inference based on correlation measures.
The same caveat is of even greater concern in reference to
more sophisticated methodologies that are designed to
extract more information from the joint distributions of

Page 1 of 14

(page number not for citation purposes)


http://www.biology-direct.com/content/3/1/35
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18715503
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Biology Direct 2008, 3:35

expression signals, Bayesian network inference being a rel-
evant example. In a paper published in 2003, Chu et al.
[1] pointed out the important fact that the measurements
of mRNA abundance produced by microarray technology
represent aggregated expression signals and, as such, may
not adequately reflect the molecular events occurring
within individual cells. To illustrate this conjecture, the
authors proceeded from the observation that each gene
expression measurement produced by a microarray is of
the sum of the expression levels over many cells.

2. Aggregated expression intensities

Let v be the number of cells contributing to the observed
expression signal U (see Remark 1 below) and denote by
X; the expression level of a given gene the expression level
of a given gene in the ith cell. The notation Y; is used for
the second gene in a given pair of genes. A simplistic
model of the observed expression signals in this pair is
given by

\4 \4
u=>x, v=>»Y, (1)
i=1 i=1

where X; and Y; are two sequences of independent and
identically distributed (i.i.d.) random variables (r.v.s),
while X; and Y;in each pair (X;, Y;) may be dependent with
joint distribution function F(x, y). Limiting themselves to
the case where v is non-random, Chu et al. [1] showed
that, except for some very special and biologically irrele-
vant cases, the Markov factorization admitted by the
expression levels within individual cells does not survive
the summation (aggregation) in formula (1), thereby sty-
mieing any network inference based on the joint distribu-
tion. The importance of this observation cannot be
emphasized enough. However, as apparent from the rele-
vant literature, it went entirely unnoticed.

In their concluding remarks, Chu et al. [1] note that the
mean vector and covariance matrix remain "invariant
under aggregation up to a simple linear transformation".
The same is obviously true for the correlation matrix. They
saw some hope in that fact as reflected in the following
quote from their paper: "Thus, while waiting for the tech-
nologies capable of measuring efficiently the expression
levels in single cells, in experimental studies, we can still
make valid - although probably more limited - inferences
about the regulatory networks based only on the first two
moments of the joint distribution and the independence
relations."

Unfortunately, this hope is deflated when considering the
case of random v. Indeed, let each X; have the same distri-
bution as X, while each Y; is distributed as Y. Then the fol-
lowing formula holds for the correlation coefficient p(U,
V) between U and V:

http://www.biology-direct.com/content/3/1/35
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where u,= E (v), u,= E (X), y,= E (Y), 0, =Var(y), o2
= Var(X), O'y2 = Var(Y), and Cov(X, Y) is the covariance

between X and Y. Formula (2) can be represented as

p(u,vy=PEN 1
J1+azr J1+b21
Tab (3)
+

V1+a21V1+b21’

where 7= 62 Ju, a=pujo, b= /o, andr = p(X, Y) is the
coefficient of correlation between X and Y. Therefore, p(U,
V) = p(X, Y) if and only if o, = 0.

Remark 1. If the hybridization reaction reaches equilib-
rium, an assumption widely adopted in the physical
chemistry of microarrays [2], the random variable (r.v.) v
can be interpreted as the total number, N, of cells from
which the total RNA is extracted. In the practical use of
microarray technology, however, the reaction is typically
stopped before equilibrium has been reached. In the latter
case, the r.v. v represents the number of cells that collec-
tively yield the ultimate number of bound target-probe
duplexes. Therefore, the random parameter vis unobserv-
able and should be thought of as a virtual number of cells
associated with each batch of target RNA produced by
them. This notion provides a constructive way of bridging
the processes of gene expression at the genomic and tissue
levels, which is the main thrust of our discussion. The con-
ventional protocol of a microarray experiment implies
that it is the total amount of RNA that is controlled (kept
constant) across the arrays (subjects) rather than the
number of cells ending up on each array. Therefore, the
random fluctuations of v cannot be controlled directly.
Even if a tight control of N could be provided in experi-
ments, it is unclear whether this would have had a dimin-
ishing effect on the variance of v.

An upper bound for the deviation between p(U, V) and
p(X, Y) is given by

| p(U,V) - p(X,Y) |S%T((a+b)2+a2bzr). (4)

This result follows from formula (3) and the following
chain of inequalities:
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|p(U, V)= p(X,Y)| <

1
PX, V)| 1= e —
v 1+a21 \/1+b21'
Tab

\/1+a27\/1+b21
1

<l-——
\/1+a21\/1+b21

+7ab <

(a2 +b2)r+a?b?c?

\/1+a21\/1+b21( \/1+a21\/1+b21+1 )

+zab < %((a2 +b2)r + a2

+tab = %T((a+b)2 +a’b’r).

Recall that the equality p(U, V) = p(X, Y) holds when 7=
0. Considering R = p(U, V) as a function of 7, one can ver-
ify that R(7) either increases monotonically or attains a
minimum before starting to increase with increasing z. In
both cases, R - 1 when 7 — . The function R(7) is
smooth at 7 = 0, but its initial slope may be quite high as
our sample computations show. An additional quantita-
tive insight into the potential impact of this unobservable
variation on the correlation structure of microarray data is
possible as described in Section 4.

3. An alternative representation of p(X, Y) and its
implications

Recalling the model given by (1), we give a formula that
allows us to better understand the principal difficulty

brought about by the random nature of the parameter v.
In the [Additional file 1] we find the correlation between

the unobservable r.v.s % U and % V:

1% 1%
1 1
=) X, ) Y |=p(XY). 5
p V;_l ,v;_l p(X,Y) (5)

This formula implies that estimating the correlation
between the unobservable variables X and Y in each gene
pair amounts to estimating the correlation between their
averages over a random number of cells, thereby showing
the earlier-mentioned nonidentifiability aspect of the
problem in terms of the basic random variables. Note that
the model given by (1) can be represented as

http://www.biology-direct.com/content/3/1/35
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where the correlation between X and Y is the same as
that between X and Y, albeit the distributions of the corre-
sponding vectors can be arbitrarily dissimilar. The above
representation shows that the r.v. vcan be interpreted as a
multiplicative random noise as long as the main focus is
on pairwise correlations. However, this interpreation is to

no avail. The noise vand the signals X and Y are inher-
ently dependent under this model. Therefore, the popular
model of independent random effect is unlikely to serve a
good approximation to the aggregated signals. In Section
6, we will invoke formula (5) in our discussion of the util-
ity of the Law of Large Numbers within the framework of
model (1).

Formula (5) also illustrates one restrictive assumption
behind the model that may have gone unnoticed in its
construction. Specifically, the assumption that (X, Y;) are
i.i.d. random vectors implies exchangeability of these vec-
tors across cells and subjects so that the joint distribution
of (X, Y) exhaustively describes both types of variability in
formula (1). Put another way, the baseline joint distribu-
tion of expression levels of all genes introduced at the cel-
lular level is implicitly compounded with respect to a
latent random parameter describing the inter-subject var-
iability. In this case, the correlation between expression
signals within each cell appears to be the same as the cor-
relation between their random averages (as formula (5)
shows), both correlations being computed across sub-
jects. If one wants to separate the two types of biological
variability in a mechanistic model, e.g., by incorporating
a random effect into the expression signals associated
with single cells and thus making them dependent within
each subject, the resultant formulas will become quite
cumbersome and contain additional unobservable
parameters.

4. Assessing the effect of signal aggregation

While our discussion at the end of the previous section
suggests that model (1) is quite simplistic, we presently
have no better vehicle to assess the potential deviation of
the correlation between X and Y from that between U and
V. To gain an idea of how strong the effect of the parame-
ter vvariability can be, let us first compute the coefficient
R = p(U, V) for some parameter values, assuming that
gene expressions within single cells are stochastically
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independent (p(X, Y) = 0). By way of example, suppose
o,/u,=0.23 and u,= 2 x 10> cells. From formula (3), we
obtain R = 0.999942 fora=1,b =2 and R = 0.999952 for
a =1, b =5. When setting p(X, Y) = 0.5 or p(X, Y) = 0.9,
the values of R change only in the fifth digit. The same
magnitude of R still stands for p(X, Y) = 0 and even when
p(X, Y) =-0.9. Notwithstanding arbitrariness of the cho-
sen parameters, this indicates an extremely serious prob-
lem arising in studies of dependence structures in general
and regulatory networks in particular.

Do our calculations imply that the true correlations
between gene expressions are absent or weak? The answer
is definitely "No" for the following three reasons. First, the
assumption of gene independence is biologically implau-
sible and in conflict with a large body of independent
experimental evidence, including the known effects of
noncoding RNAs and involvement of genes in biochemi-
cal pathways. Second, the situation observed in real data
is not as severe as in our sample computations: positive
correlations tend to be lower and even a small proportion
of negative correlations has been documented. It would
appear reasonable that many strong negative correlations
are hidden in the overwhelmingly positive correlation
structure of microarray data. Third, the unobservable
parameters chosen in our computations may be very far
from reality. Therefore, we have to base our assessment on
real gene expression data rather than imaginary parame-
ters of the model. One possible approach to real data
analysis is presented below.

Remark 2. It should be noted that negative correlations are
typically much more prevalent in normalized versus not
normalized data. This does not mean, however, that the
commonly used normalization procedures can restore the
true correlations. A profound effect of such procedures on
the correlation structure of microarray data is well-docu-
mented [3,4]. This effect is hardly beneficial as normaliza-
tion procedures distort the aggregated signals in an
unpredictable way [5] and interfere in the true correlation
structure [3]. There are also other theoretical reasons for
the fact that data normalization does not provide a satis-
factory solution to the problem; these reasons will be dis-
cussed at length in another paper.

From formula (2) it follows that

p(U,V)O'HO'U—z‘%uu,u,,

2 2.2.,.2 22,
(o —zpuy)(oy—zyuy)

p(X,Y)= \/ (6)

wherez,= o,/u,. As a function of z, the coefficient p(X, Y)
either decreases monotonically or attains a maximum at
the point

http://www.biology-direct.com/content/3/1/35

/ 25 42
Z* 2abaRbR (7)

\/a3b+ab3—2a2b2R

where

R=p(U,V), a=*u, p=Hv
Oy Oy

Therefore, the effect of signal aggregation is not unidirec-
tional - the correlation coefficient p(X, Y) may be smaller
or higher than the observed coefficient p(U, V). Formula
(6) can be represented in a more concise form

PUYIouby—zp
JE2-22)E2-22)

where &, = 0,/u,, &,= 0,/ 1, are the corresponding variation
coefficients.

p(X,Y)=

(8)

All the parameters entering formulas (6) or (8) can be esti-
mated from microarray data except for z,, which is unob-
servable. However, there are natural mathematical
constraints that must be imposed on z,. First of all, we
have to require that z,,<¢&, for any gene, i.e.,

Zy<miné, (9)
where §u/ ,j =1,.., m, is the variation coefficient for the
jth gene and m is the total number of genes. However,
condition (9) does not ensure that |p(X, Y)| < 1. To meet

the second condition, we derive from (6) the following
requirement:

oaosl1-p*(UY)]
Var(uy,V—uyU)
for all pairs of genes simultaneously.

2l s , (10)

The above conditions allow us to deduce a realistic range
of possible values of the unobservable variation coeffi-
cient z from a specific set of microarray data. If p(X, Y)
appears to be a monotonically decreasing function of z,,
which property can be verified with real data, then we can
use formula (6) to estimate its maximal deviation from
p(U, V) by evaluating p(X, Y) at the right extreme of z,
yielded by conditions (9) and (10). In this case, we obtain
a reasonably realistic upper estimate of the actual effect of
signal aggregation in accordance with model (1). If p(X,
Y) passes through a maximum as a function of z,, this esti-
mate will become conservative to shifts towards lower val-
ues of the true correlation coefficients. Such estimates
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need to be produced for all gene pairs, of course. More
accurate estimates of the effect in both directions (up and
down) can be obtained by evaluating the behavior of p(X,
Y) over the whole range of admissible values of z,,in each
gene pair, but this approach is computationally extremely
expensive and requires parallel computations.

The mean and minimal (across genes) variation coeffi-
cients of gene expression were estimated from the follow-
ing five sets of microarray data:

BCC: Breast cancer cells cultured in vitro (represented
solely by "vehicle" control samples that were treated with
the medium used to solubilize the inhibitor) with HG
U133A Affymetrix Chip used to produce microarray meas-
urements [6];

TELL and HYPERDIP: two types of childhood leukemia,
U95A Affymetrix Chip [7];

PCTUM: prostate cancer, U95Av2 Affymetrix Chip [8];

PCNORM: normal prostate tissue obtained from prostate
cancer patients, U95Av2 Affymetrix Chip [8].

The results are shown in Table 1. These estimates are con-
sistent with the earlier reported observation that the vari-
ation coefficients of gene expression are virtually constant
across genes [9]. Using the above-described approach, we
analyzed all gene pairs in the HYPERDYP data set report-
ing expression levels of m = 7084 genes for n = 88 patients
with a specific type of childhood leukemia. In this case,

Table 1 offered min £ = 0.044 as an upper bound for

z2. A more accurate estimate of 0.041 was given by ine-
quality (10). Therefore, we used the latter value as the
conservative estimate of z2 when computing the correla-

tion coefficient p(X, Y) by formula (6). Testing for monot-
onicity was performed by partitioning the admissible

range of z? (given by condition (10)) into four intervals

and using formula (6) to compute the corresponding

Table I: Variation coefficients of gene expression levels
estimated from different data sets.

Dataset Av ¢, min &, O¢, # genes
TELL 0.235 0.188 0.025 7084
HYPERDIP 0.269 0.211 0.029 7084
BCC 0.303 0.175 0.090 10212
PCNORM 0.318 0.213 0.11 7084
PCTUM 0.280 0.152 0.12 7084

http://www.biology-direct.com/content/3/1/35

increments of p(X, Y) for each interval. If at least one
increment happened to be positive in a given pair, this
event was recorded as a "monotonicity violation". There
were less than 0.2% of all gene pairs that could be sus-
pected for such violations in the HYPERDYP data. While
this frequency of monotonicity violation may be reck-
oned as quite small, it should be kept in mind that possi-
ble shifts in p(X, Y) towards values higher than the
observed p(U, V) were entirely ignored in this analysis.

Let us now evaluate the numerical results of this study. For
the HYPERDIP data set, the mean (over all gene pairs)
value of p(U, V) is 0.904 and the corresponding standard
deviation equals 2.34 x 10-5. For the unobservable coeffi-
cient p(X, Y) these parameters are 0.797 and 4.16 x 105,
respectively. The total number of gene pairs with negative
values of p(U, V) is only 9442. The number of negative
values of p(X, Y) is much larger, it equals 223,826 in the
data set under study. To gain a better idea of how dissim-
ilar p(U, V) and p(X, Y) may be, it is worth estimating the
mean and standard deviation (across all gene pairs) of the
relative deviation

PXY)=pU.V) |
p(U,V)

A (11)

p:‘

The resultant estimates are 0.154 and 8 x 104, respec-
tively. This does not strike us as a formidable relative dif-
ference. However, two caveats are in order here. First, the

above estimates are not very stable. If we replace z? =

0.041 with z2 = 0.035, the mean value of A fallst0 0.112,
while the number of gene pairs with negative values of
p(X,Y) goes down to 109,574. Second, the model (1) user
for assessing the deviation A ,may still be overly simplistic

discussed in the previous section. Much more research
needs to be done, both theoretically and experimentally,
to shed more light on this methodological difficulty.

5. Signal aggregation and technical noise

Our estimates in Table 1 and those resulted from condi-
tion (10) give only a rough idea of the magnitude of /¢,
and making them more accurate is highly desirable. We
discuss one possibility to attain these ends in the present
section. Consider an experimental design that supposedly
eliminates the biological variation, thereby yielding the
information on measurement errors only. Suppose that a
sample of n arrays is available that consists solely of tech-
nical replicates representing gene expression measure-
ments taken from one and the same subject. Proceeding
from the traditional multiplicative noise model,
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where m is the total number of genes (probe sets), X j is

the observed random signal, and ; is an independent ran-
dom technical (both gene- and array-specific) noise, one
would model this situation as

X]ij C], j=1,...,m,

(12)

where C; are nonrandom constants. If the expression lev-
els are log-transformed, we have

logij =logt; +logC;.

Therefore,

Var(log f(]-) = Var(log t;),

so that, relying on model (12), one can measure the vari-
ance, Var(log ;), of the log-transformed technical noise
directly from technical replicates. In particular, one can
estimate the variance of the mean error across all probe-
sets, i.e.,

m
1
6% =Var EZlog 1
j=1

We resorted to the above line of reasoning in [10] when
reanalyzing the Microarray Quality Control Study
(MAQC) [11]. For this data set, the estimated

Ox

is equal to 0.09. Since the overwhelming majority of
genes have typically much larger (> 0.3) standard devia-
tions of their log-expression signals in biological repli-
cates (different subjects), this level of technical noise can
be deemed negligibly small. This estimate also leads us to
conclude that the true correlation between the unobserv-
able signals log X; s really strong. Indeed, the contribution
of

1 m
Var{ Zj:l log X ;}
to the variance of log-expressions observed in biological
data is much larger than the contribution of

Var{% Z;L log 1;} estimated independently from the

MAQC data, while a strong correlation between true bio-
logical signals (i.e., their values in the absence of measure-
ment errors) is the only explanation for such a

http://www.biology-direct.com/content/3/1/35

discrepancy when the number m of genes is very large.
This also explains why the Law of Large Numbers (LLN) is
not met in microarray data when applied to log-expres-
sion levels across genes [12,13].

The situation is no longer the same when we proceed from
model (1) in an effort to measure the technical noise
stemming from the random nature of the parameter v. For
any gene j, formula (1) gives

\4
Uj= X j=1.,m,
i=1

and it is the parameter vthat plays the role of the technical
noise here. It is clear from (13) that the biological varia-
bility cannot be entirely eliminated from gene expression
signals even when they are produced by purely technical
replicates. Designed to assess the technical variability, the
experiment described above may only reduce the variance
of the r.v.s X;; by eliminating the inter-subject variability,
but there will always be some residual biological variabil-
ity associated with different cells, i.e. "cell to cell" variabil-
ity. Under such experimental conditions, we have

\4
Uj:ZXij' j:1,...,m,
i=1

where Xj; are i.i.d. r.v.s representing the expression levels

(13)

(14)

of the jth gene in different cells obtained from the same
subject and their common (conditional) variance is
expected to be smaller than that of X;; in (13). Formula
(14) also suggests that the MAQC data are far from ideal
for the purposes of noise assessment because the technical
replicates in this study were produced from a mix of many
dissimilar tissue sources, this heterogeneity of samples

may inflate the variance of X i while it should be kept as

low as possible.

To remove the scaling factor C; from the model (12), when
deriving the variance of its noise component, we log-

transformed the observed expression signals X j- This

trick does not work for model (14) and this significantly
complicates the noise assessment. More complications
arise when extending the model represented by formula
(14) to include an additive term that describes sources of
variation other than v. Under the extended model, the
original expression level of the jth gene in technical repli-
cates is given by
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\4
a; = 2 Xy +1.
i=1
In the presence of the noise component attributable to v,
the error term 7 does not not need to be array-specific as
it essentially reflects the equipment-related optical noise.

Since the overall variance of U j is expected to be much

lower than that of U; [10], one can use technical replicates
to make the range of admissible values of z, (see Section
4) much narrower, thereby providing more accurate esti-
mates of p(X, Y) and A, in accordance with formulas (8)

and (11), respectively. This idea of combining informa-
tion from biological and technical replicates deserves a
careful consideration and even a generous investment in
specially-designed experiments because it offers an
improved experimental protocol that may make the usual
correlation analysis, as well as the network inference
based on correlation measures, more meaningful. If the
idea works in general, the new protocol will require pro-
ducing a separate set of technical replicates in each biolog-
ical experiment in order to estimate the range of z,and

then using this estimate to reconstruct p(X, Y) in each
gene pair. This suggestion is based on a plausible assump-
tion that the variation coefficient z, is the same for the bio-

logical and technical replicates produced by a given
biological experiment. To make the estimate of the range
of z as accurate as possible, it is imperative that the tech-

nical replicates be produced from a homogeneous biolog-
ical material derived either from one and the same subject
or at least from the same type of a tissue (initially collected
from several subjects) that is used to produce the corre-
sponding biological replicates. While more laborious and
expensive, the experiments thus designed may provide a
practically workable solution to the problem discussed in
the present paper. Some additional thoughts of this kind
are offered in Section 7.

6. The law of large numbers and random
summation

The following claims seem to be natural in the context of
the model given by formulas (1):

1. The observed expression signal U is a result of summa-
tion of the inter-cellular signals X; over a random number
of cells v, thereby defining the basic model structure rep-
resented by formulas (1).

http://www.biology-direct.com/content/3/1/35

The random summands X; are i.i.d. positive r.v.s. inde-
pendent of v.

2. While the r.v. v is nondegenerate, it tends to take on
large values with high probability because the number of
cells is expected to be large.

In what follows, we examine some indirect corroborative
evidence for the above claims.

Suppose for a moment that the number of summands v=
k is nonrandom. Then the distribution of the correspond-
ing sum in (1) is M-divisible, i.e., it can be represented as
the convolution of M distribution functions. In this par-
ticular case, the fouth central moment g, (U) satisfies the
inequality [14]:

OREEEAH (15)

For infinitely divisible distributions, the condition (15)
assumes the form

p,(U) =30, (16)
Under mild conditions, these inequalities hold in the case
of random v as well [14]. If the inequality (15) is met in
real biological data, this fact will lend additional support
to the presence of signal summation in microarray tech-
nology. When testing the corresponding inequalities for
empirical counterparts of the moments x4, (U) and g, in
(15) and (16), we observed the event of their violation to
be of relatively rare occurrence. For example, the inequal-
ity (16) was violated for 18.6% of the 7084 genes in the
HYPERDIP data. As expected, this proportion was lower
for any finite M in (15). Although there is no objective cri-
terion for declaring this frequency consistent with the
property of infinite divisibility, we deem it quite low in
view of the fact that y,(U) and o, in (16) were replaced
with their sample counterparts. To corroborate our per-
ception, we generated 7000 independent samples of size
n = 88 from a log-normal distribution with parameters
E (log U) = 0.7 and Var(log U) = 0.09. The experiment
was repeated 1000 times. The mean proportion of "incon-
sistent" cases was equal to 23.3%, suggesting that the ran-
dom chance of the event under observation may be high
even when the underlying distribution is known to be
infinitely divisible.

Yet another underpinning for the presence of signal sum-
mation is provided by considering the accompanying dis-
tributions of random sums. In the classical summation
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scheme, the notion of accompanying infinitely divisible
distributions was introduced by Gnedenko [15]. This idea
was later extended to the random summation by Kleba-
nov and Rachev [16]. Consider the random sum

Vi
i=1

(17)

where {v, k € ®}, ® c (1, ) is a family of positive inte-
ger-valued r.v.s independent of X;, i > 1. Ther.v. The r.v. v,
is assumed to have finite expectation equaling k for all k.
It is known that the random sum Uj, can be approximated
by its accompanying -infinitely divisible random varia-
ble S, under the condition of non-negativity of X; only.
Note that the definitions of -infinitely divisible and
accompanying v-infinitely divisible random variables can
be found, for exmple, in [17]. In this case, it can be shown
[17] that the Laplace transform of S, converges to the
Laplace transform of U, in the uniform metric as k — oo.

Since the number of cells v is expected to be large, it is
tempting to apply the Law of Large Numbers (LLN) to the
normalized random sum

1
Zkzizxi' (18)

where k is positive integer, and make some predictions
based on its behavior as v,— o (k — o) in probability. As
before, we will assume that the sequence of nonnegative
integer-valued r.v.s v, is independent of X;, i > 1 and v,—>
o (in probability) as k¥ — «. The continuous r.v.s X; are
i.i.d. and positive. If x, is finite, it is known [18] that Z,—
M, as v, > o, with both limit relations holding in proba-
bility as k — oo. This is the LLN for random sums.

There is no way of ascertaining whether the LLN is met in
real microarray data because the r.v. v is unobservable.
However, we intend to use this powerful tool to predict
certain properties of expression signals and then verify
them with real data. In doing so, we rely on the following
simple result.

Assertion 1. Under the above conditions, the random vector Z,,

= Zyees Ly With its components defined by
Vi
1 Uk,j .
Zp=— Y Xy=l, j=1,m (19)
Vk Vk

d
converges in distribution (—) to a degenerate random vector

as k — oo.

http://www.biology-direct.com/content/3/1/35

The proof is given in [Additional file 2].

The fact that the multivariate limit distribution of Z, is a
degenerate one is consistent with the asymptotic behavior
of Cov(U/v, V/v) (and consequently Var(U/v), Var(V/v))
considered in Section 3. Indeed, we have

Cov(uk,ka:E{l}COV(X/Y)' (20)
Vk Vi Vk

It is easy to show that E{ﬁ} — 0 as k — . Therefore,
4

the covariance in (20) tends to zero when v, is large in
probability. The same is true for the variances of U,/ vj,and
Vi/ vi. of course. While this behavior of the two central
moments is consistent with the convergence established
in Assertion 1, the correlation coefficient p is not well-

defined for degenerate random vectors. At the same time,
the fact that all components of Z,, are asymptotically inde-
pendent is not in conflict with formula (5) because the
latter is valid for any value of v. Nor does it come into con-
flict with the observation that the intra-cellular gene
expression levels are strongly correlated. When deriving
formula (5), we divide Cov(U,/ v}, V,/ ;) by the product of

the corresponding standard deviations of U,/ v, and V;/ v,
which is why the proportionality coefficient E{i} can-

cels out and the uncertainty manifesting itself in the limit
distribution becomes resolved.

The results given above imply that, while the r.v.s U/vand
V/v are asymptotically independent, the correlation
between the components of each pair (X;, Y;) may be arbi-
trarily strong even when v takes on large values with high
probability. Such "paradoxical” situtions are not uncom-
mon in the theory of probability. It should be emphasized
that the above assertion is valid for the random sum of v
i.i.d. random summands normalized by the same random
variable v, and not for other possible ways of normaliza-
tion. For limit theorems related to the random sums nor-
malized by sequences of nonrandom numbers we refer
the reader to [19,20].

Now we are in a position to make and test the following
two predictions:

Prediction 1. The ratios of the observed expression levels U;
and U,, j #r, wherej, r = 1,..., m and m is the total number
of genes, tend to have small variances. The covariance
between different ratios U;/U, is expected to be small as
well.
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Indeed, proceeding from the LLN, we expect the asymp-
totic relation

1 \% ..
L 2i=1%ij _BXyj

1 EX
;2}/:1 Xir Ir

u

] _ .
= et 21
Uy J (21)

to hold true as v — « in probability. This suggests that
every ratio U;/U, is virtually constant (across arrays). The
above-proven assertion also suggests that every two ratios
of the form:U;/U, and U,/U, (with different indices) have
small covariances.

To verify Prediction 1, we formed all pairs from 1000 ran-
domly selected genes. The mean (over the gene pairs)
standard deviation of the ratios U;/U,(j # ) in the HYPER-
DIP data was equal to 0.102, which value is very small
compared to the corresponding mean of the estimated
expectations [ (U;/U,), the latter value being equal to
1.044. The histogram of the standard deviations in Figure
1 illustrates this point further. Shown in Figure 2 is the
histogram of the estimated covariances between U;/U, and
U/U, in all quadruples formed from 100 randomly
selected genes in the HYPERDIP data set. It is clear that
they tend to be small as well. This observation explains
the most salient properties of the so-called & - sequence
[12], as well as a remarkable success of significance testing
for differential expression of genes when the relevant
methods are applied to the elements of this sequence
rather than to the original expression levels [12,13].

15

10

&

Figure |

Histogram of standard deviations for the ratios of expression
levels in all gene pairs formed from 1000 genes. The HYPER-
DIP data set.

http://www.biology-direct.com/content/3/1/35

150

100~

Figure 2

Histogram of covariances between the ratios of gene expres-
sions in all quadruples from a subset of 100 genes. The
HYPERDIP data set.

Prediction 2. The average (expectation) of the ratio Uj/U, is
approximately equal to the ratio of the averages of U; and
u,j=r.

Invoking the LLN, we can assert that
EU; =EvEX,; EU, =EvEX,,.
Proceeding from the representation

1 \% ..
— 21 Xij

1
4 ;z}/zl Xir

| S

’

140

120

100 -

1

0.25 05 0.75 1 125 15

Figure 3

Histogram of the differences between E (U/U,) and E (U)/
[ (U,) estimated by replacing the expected values with the
corresponding sample means. The HYPERDIP data set.
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we can claim that

uj ) B

]E - ’
u, | Eu,

(22)
whenever v is large with high probability.

Replacing the expected values with their sample counter-
parts, we computed the absolute difference between the
left and right hand sides of the equality (22) for all gene
pairs formed from 1000 randomly selected genes in the
HYPERDIP data set. The resultant histogram (Figure 3)
clearly indicates that such differences are very small with
the mean (across the gene pairs) being equal to 0.006.

Hence, both predictions appear to be consistent with real
data. Similar analyses of the other data sets referred to in
Section 3 have confirmed this conjecture.

7. Discussion and concluding remarks

Methods of network reconstruction from designed gene
perturbation experiments are beyond the scope of this
paper. The fact that the latter strategy can be limited to
mean expression levels makes it fundamentally different
from the inference based on genome-wide expression
measurements. Some limitations of the network inference
from gene perturbation experiments have been discussed
by other authors (see, e.g., [1]). The multiple testing
aspect of the problem will not be touched upon either
despite its direct bearing on this type of data analysis.

The world of stochastic phenomena is complex and
uncanny. Intuition is not the best guide in that world.
Some stochastic effects may seem to defy common sense
but nevertheless they may be very real from the theoretical
and practical perspectives.

In the present paper, we describe and explore to the best
of our ability the impact of random signal aggregation on
the correlation structure of microarray gene expression
data. While our analysis of real data suggests that this
impact may be deemed reasonably moderate in some sit-
uations, the main concern still remains because the esti-
mates employed are not sufficiently stable and the
underlying model may still need further refinements. A
similar concern arises in regard to other standard meas-
ures of dependence such as the mutual information. The
latter characteristic is applied extensively to the same data
structure for the purposes of relevance network inference
[21], thereby calling for a similar investigation of its prop-
erties.

We overlooked the phenomenon of signal aggregation
when discussing the correlation structure of microarray
data in our earlier publications [12,9]. The results of [12]

http://www.biology-direct.com/content/3/1/35

connected to the use if &sequences find now theoretical
basis (see Prediction 2). The influence of signal aggrega-
tion on Type-A dependency remains not completely clear.
In [9], we tried to make the case that the observed strong
and long-ranged correlation between gene expression lev-
els are of a biological nature rather than a technical flaw
of the microarray technology. Our belief was based on the
premise that the effects of the technical noise [10] and
multiple targeting [9] on the correlation structure of
microarray data appeared to be negligible. There is no rea-
son to revise this premise. However, the effect of random
summation of expression signals reported in the present
paper is a drastically different story. While technical in
nature, this effect represents a serious obstacle standing in
the way of correlation analysis and network inference. At
the same time, the estimates reported in the present paper
still indicate the presence of strong correlations between
the expression signals produced by different genes at the
level of individual cells.

There are statistical questions, other than the estimation
of correlation coefficients, that may be relatively insuscep-
tible to the effect of signal aggregation. For example, we
hypothesize that it may still be sensible to compare corre-
lation vectors associated with each gene in two different
phenotypes in order to extract more information on
pathogenesis of some diseases or responses to drug thera-
pies. However, this conjecture invites a special investiga-
tion. It is clear that the crux of the difficulty has to do with
a natural desire to make inferences about "microscopic”
processes of transcription within individual cells from
"macroscopic” observations yielded by gene expression
measurements. From this perspective, the mixing effect
caused by signal summation should be considered as con-
founding [22] and, as such, is undesirable. Needless to
say, one can employ the correlation coefficients between
observed expression signals as more global characteristics
of the cell system under study rather than associations
between gene activities within each cell. Such characteris-
tics still represent a source of useful information. From
this viewpoint, the results of correlation analysis of gene
expression data can be interpreted in terms of aggregated
(over the cells) genes, an obvious departure from the
interpretation that has been in wide use among molecular
biologists and bioinformaticians. Since tissue-specific
mechanisms regulating cell functions are not well-under-
stood, it is premature to judge whether or not this cau-
tious interpretation is of biological interest.

The most critical question still remains: How can the true
correlation be extracted from observed expression levels
despite the masking effect of signal aggregation? At
present, we have no satisfactory answer to this question.
However, some practical expedients mitigating the
adverse consequences of signal aggregation can be envi-
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sioned. As discussed in Section 5, one approach is to com-
bine the information provided by technical and biological
replicates using the mathematical treatment of the prob-
lem presented in this paper. Yet another possibility is to
modify the experimental protocol so that the total DNA
rather than the total RNA be kept constant across the
arrays (see Remark 1). The rationale for this suggestion is
that the correlation between the parameter vand the total
number of cells (gauged by the DNA content) in a given
biological sample may well be stronger than that between
vand the total RNA. The main problem with hybridiza-
tion-based technologies is that the latent parameter v is
not accessible to direct measurement. The situation is not
the same with the sequencing technology that produces
counts of all transcripts present in the biological sample.
It seems likely that the sequence-based technology offered
by Illumina (Solexa) may make it much easier to keep the
parameter v constant across biological samples. All the
above-mentioned possibilities have yet to be verified in
biological experiments, of course.

Finally, a search for measures of dependence or relations
between gene expression signals that are preserved under
signal aggregation is warranted. For example, introduce
the following characteristic

pPXY) Gigy =, [p(U V) 6u5,- 2 (V)] (23)
It is easy to see see, that the inequality
pUL VG Ew, > P(U2,V2)Su, 60, (24)
implies
P(X1,Y1)6x, 8y, > P(X2, Y2)Ex, 8y, (25)

because y,and & (v) are the same for all genes. Therefore,
the coefficient p(U, V) &, &, defined by (23) preserves ine-
qualities between the corresponding coefficients for (X,
Y). In this connection, it is important to recall that the var-
iation coefficient of observed expression levels is almost
constant across genes, a fact mentioned in Section 4.
Under such conditions, the inequalities (24) and (25)
imply the same inequalities for the corresponding correla-
tion coefficients. This suggests that the ranking of gene
pairs by the correlation coefficient may still be possible
and such inference can probably be improved by stratify-
ing the population of genes by the value of the variation
coefficient. Whether this observation is of real utility in
studying relationships between genes within the network
paradigm has yet to be explored.

The future of the whole research area dealing with regula-
tory networks hinges on our ability to surmount the
obstacle described in the present paper either by means of

http://www.biology-direct.com/content/3/1/35

mathematics (including the recourse to parametric meth-
ods) or through radical technological improvements.

Reviewers' comments

Reviewer | (B.S. Kim)

The authors (K & Y, hereafter) revisited an old issue of sta-
tistics, i.e, the problem of aggregation, in a new biotech-
nology area with a more complicated mode. It is an old
issue in statistics that the correlation at the aggregated
level may be quite different from the correlation at the
individual level. This phenomenon is often referred to as
the Simpson's paradox (Simpson, 1951), or the ecological
fallacy (Robinson, 1950). Yule and Kendall (1950) also
dealt with this issue in Chapter 13. The primary difference
of K&Y's approach is that the number of components in
the aggregation is regarded as random, because the
number of cells in a tissue, a target material on the micro-
array slide, is not controlled to be fixed under the current
technology and hence subject to the random fluctuations.
As K&Y indicate, making inference on the genetic regula-
tory network (GRN) depends heavily on the finding the
true correlation on the individual cell level, not on the
aggregated level.

This paper deals with one of the basic and fundamental
issues in statistics and biology.

Minor Points
1. p.2. line 8 from the top. inference based correlation —
inference based on correlation

2. p. 5, line 12 from the top. Norvatis Gene Atlas — Nor-
vatis Gene Expression Atlas

3. p.8, lines 1 and 2 from the top: p - p(X, Y) (three
places)

4. p.8 lines 6-8 from the top. Since you considered non
zero correlations such as 0.5, 0.9 and -0.9 in the previous
lines, your argument of "in conflict with a large body of
independent experimental evidence" was not consistent
with the previous sentence. Better to delete or modify the
first reason.

5.p. 10. lines 15-17 from the top. There is no evidence for
supporting the assertion unless you show small values of
Var (&,) in Table I next to "Average &," column, say.

6. p. 11 lines 8-9 from the bottom. The measurement
error is another source of errors in the microarray experi-
ment in addition to technical and biological variations
(Churchill, 2002). It is better to distinguish the measure-
ment error from the technical noise here and throughout
the manuscript.
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7.p. 12 lines 10-12 from the top. It is not clear to me the
purpose of this statement. Better q to indicate clearly what
authors convey by showing that

\/Var{% Z:":l log &} is
%27!:1 |Var(logé)) .

8. p. 12 lines 8-10 from the bottom. There are several
meanings of the word "biological" here and throughout
the manuscript. At line 10 from the bottom "biological
signals" might reduce the confusion if it is changed into
"hybridization signals", because you use "biological repli-
cates" for carrying the inter-subject variation (line 14, p.
12). Also at line 8 from the bottom, I may propose using
"real experimental" instead of "biological".

want to

slightly less than

9. p. 13 line 3 from the top. How about "cell to cell varia-
bility" instead of "biological variability"?

10. p. 15 line 8 from the bottom. It would be nice if
authors provide the definition of " 1-infinitely divisible",
since it is not found in a standard text book such as Laha
and Rohatgi (1979).

11. p. 15 line 2 from the bottom. Provide the definition of
NG

12. p. 15 Equations (18), (19). I don't quite follow why
authors used two subscripts, k and p, for v.

13. p. 16 Equation (20). How about keeping the consist-
ency of notation by changing as follow?

x0 - X Ul —>Uy;

14. p. 19 lines 1-3 from the bottom. Would you add some
discussions on how the result of this paper might affect
the results of Klebanov and Yakovlev (2007)?
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Reviewer 2 (J. Kowalski)

General comments

This manuscript proposes an analytical approach that rec-
ognizes what the authors refer to as a 'nitty-gritty' aspect
of microarray technology in which intra-cellular expres-
sion is produced by signals that are in fact aggregated over
a random number of individual cells. The authors con-
sider the effect of random signal aggregation on correla-
tion and network inference, two of the most popular
analyses tools for microarray analyses. In general, the
authors introduce a statistically sound approach to
addressing a biological underpinning of microarray tech-
nology that has either been overlooked or not widely
known but nonetheless important to consider in related
analyses. The authors show the important implications of
the 'nitty gritty' microarray aspect for inference, particu-
larly with regard to correlation analyses. A revision that
addresses the specific comments below would help to bet-
ter streamline the significance of the work and reinforce
the authors' important contribution to analyses of data
from genomic association studies.

Specific Comments

1) Abstract. In the conclusion section it is stated, "while
our preliminary analyses suggests that in reality the
reported effect may not be as extreme as theoretical con-
siderations allow:". I would suggest a re-wording to the
effect that it is important to recognize the source of signal
in microarray technology and to theoretically account for
it in any related analyses. Whether the effect is extreme or
not, the important point, is to recognize and incorporate
such signal source for proper inference. I may also try to
include the 'nitty-gritty' in the title within the abstract for
contextual meaning of the phrase. One suggestion may be
in the Background section, "Contrary to this common
belief, modern microarray technology produces signals
aggregated over a random number of individual cells, a
'nitty-gritty' aspect of such arrays, thereby causing..."

2) Introduction. Starting at Line 11, "Methods of network
reconstruction..." I would suggest to move this section to
the discussion and prefer to see more of the overview of
the approach of the authors in the introduction. These lat-
ter points focus on what was not done and why as
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opposed to what was done and why. One suggestion
would be to include the beginning part of section 2 as part
of the introduction, explaining the observation noted by
Chu et al., as section 2 is a bit lengthy in its current form.

3) Aggregated Expression Intensities. In remark 2, the discus-
sion about heterogeneous experiments and PCC, thought
important, in its current form, appears a bit disjoint from
the rest of the text and perhaps could be either greatly
shortened or removed.

4) Equations. The number of models/formula within the
manuscript severely detracts at time from the equally
important biological content. One suggestion may be to
devise an appendix for some formula and calculations
presented. Of note, I did not check the formula and
assumed that they were correct.

Minor Comments

1) p.2. section 2, line 3:may consider removing the word
'adequately’ since it assumes that technology in its current
form does reflect intra-cellular signal but is deficient.

2) Table 1. it may be useful to include the number of
genes examined in each dataset to obtain estimates.

The authors' responses are provided in the text.

Reviewer 3 (G. McLachlan)

This paper provides a theoretical account of signal aggre-
gation on the correlation between the measured expres-

sion levels between pairs of genes.

The approach and the results derived are quite novel and
I recommend its publication in the Journal.
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