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Abstract
Purpose—Cancer therapies with mechanisms of action which are very different from the more
conventional chemotherapies are now being developed. In this article, we investigate the performance
of several phase III clinical trial designs, both for testing the overall efficacy of a targeted agent and
for testing its efficacy in a subgroup of patients with a tumor marker present. We study different
designs and different underlying scenarios assuming continuous markers, and assess the trade-off
between the number of patients on the study and the effectiveness of treatment in the subgroup of
marker-positive patients.

Experimental Design—We investigate binary outcomes and use simulation studies to determine
sample size and power for the different designs and the various scenarios. We also simulate marker
prevalence and marker misclassification and evaluate their effect on power and sample size.

Results—In general, a targeted design which randomizes patients with the appropriate marker status
performs the best in all scenarios with an underlying true predictive marker. Randomizing all patients
regardless of their marker values performs as well as or better in most cases than a clinical trial that
randomizes the patient to a treatment strategy based on marker value versus standard of care.

Conclusion—If there is the possibility that the new treatment helps marker-negative patients, or
that the cutpoint determining marker status has not been well established and the marker prevalence
is large enough, we recommend randomizing all patients regardless of marker values, but using a
design such that both the overall and the targeted subgroup hypothesis can be tested.

The paradigm of cancer research has been changing and cancer therapies with new mechanisms
of action from conventional chemotherapies are being developed. Conventional
chemotherapies are also often known as cytotoxic agents, and use various mechanisms
important in mitosis to kill dividing cells, such as tumor cells. Cytostatic agents, on the other
hand, exploit alternate mechanisms, such as inhibiting the formation of new blood vessels
(antiangiogenic agents), initiating tumor cell death (proapoptotic agents), or inhibiting tumor
cell division (epidermal growth factor inhibitors). Many newer therapies (including both
cytostatic and cytotoxic agents) are also often referred to as targeted because they target specific
molecules or pathways important to cancer cells. It is expected that by focusing treatment on
important molecules or mechanisms, the therapies will be more effective and result in less
toxicity than many traditional treatments. Although many of these compounds are at a
preclinical stage or in early clinical testing, there are already some well known targeted
therapies.
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Gleevec (imatinib mesylate) is a small-molecule drug approved by the Food and Drug
Administration to treat chronic myelogenous leukemia. Gleevec interferes with the protein
produced by the bcr/abl oncogene. Velcade (bortezomib) is a proteasome-directed drug
approved by the Food and Drug Administration to treat multiple myeloma and is being tested
in other cancers. Another approved targeted agent is Herceptin (trastuzumab), which blocks
the effects of the growth factor protein Her-2, which transmits growth signals to breast cancer
cells. Iressa (gefitinib) and Tarceva (erlotinib) both target the epidermal growth factor receptor.
Recent phase III studies do not support the use of Iressa; however, a phase III trial of Tarceva
showed a significant improvement in the survival of non–small cell lung cancer (1).

The story for epidermal growth factor receptor inhibitors is complicated because there may be
benefits in the subgroup of patients who are nonsmokers due to genetic differences in the
tumors. It is not clear if the survival benefit may be due to mutations, gene copy number, or
protein expression (2). The results for these epidermal growth factor receptor inhibitors
motivate several more general targeted therapy questions. Is there a genetic subgroup in which
such treatments are effective (or more effective), and how should study designs be modified
where feasible? Should all patients of a particular tumor type be treated with a targeted agent
or should only those patients who are positive for the target (or marker) be so treated? As
mentioned previously, traditional cytotoxic agents target dividing cells, killing tumor cells but
at the cost of collateral damage (toxicity), especially for other organs with a high proliferative
fraction. Also, targeted agents can have collateral benefit in that they can be effective in patients
classified as negative for the target, either because there is a weak signal for the target in such
patients or because the agent hits a different target. For example, there is now evidence that
trastuzumab has some effect in Her-2/neu-negative breast cancer patients (3). Another example
is imatinib, which was developed to target the chronic myelogenous leukemia–defining bcr/
abl translocation but also destroys tumor cells that are c-kit–positive (which virtually defines
gastrointestinal stromal tumors; ref. 4).

Technologic and scientific advances in fields such as gene expression profiling and proteomics
have made it possible to detect possible tumor markers very efficiently. Research laboratories
at universities and pharmaceutical companies have been very productive in developing targeted
agents specifically for those tumor markers. The next challenge then is to validate such
biomarkers in the clinical trial setting and to determine the subgroup of patients with good
prognosis and the subgroup of patients most likely to benefit from a new therapy as a function
of these biomarkers. Hoering and Crowley (5) recently discussed some general issues with
respect to targeted therapies and cytostatic agents in the context of clinical trials for multiple
myeloma.

Two classes of biomarkers can be distinguished. Prognostic markers give information about a
likely disease outcome independent of a treatment and can be used for risk stratification. For
example, patients at high risk, who do poorly with conventional approaches, may be treated
more aggressively or may be reserved for highly experimental regimens. Other markers, on
the other hand, give information on a likely disease outcome based on a specific treatment.
These therefore represent treatment by marker interactions, and are now known in some clinical
literature as predictive markers (6). Predictive markers can be used to indicate which patients
should be treated with a particular targeted agent (developed to attack that marker). In general,
a prognostic marker is not necessarily a predictive marker, but the hope is that some of the
prognostic markers may be predictive as well.

Such markers are often based on levels of a specific chemical in the blood or in other tissue
compartments, on the abundance of certain proteins or peptides, or on a combination of gene
expression levels. Thus, in practice, the underlying marker distribution and the response
probability as a function of the marker value is often continuous. The actual cutpoint to
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distinguish marker-positive from marker-negative patients may not be able to be determined
precisely or the best cutpoint among various possibilities may be unknown. In that scenario,
it is advantageous to take the actual marker distribution into account when designing the trial.
In this article, we investigate the performance of several phase III clinical trial designs, both
for testing the overall efficacy of a new regimen and for testing its efficacy in a subgroup of
patients with a tumor marker. We study the effect of designs assuming continuous markers to
assess the trade-off between the number of patients on the study and the effectiveness of
treatment in the subgroup. This formulation also allows us to explore the effect of marker
prevalence in the patient population and the effect of marker misclassification if the actual
cutpoint that distinguishes the group of patients associated with the greatest potential treatment
effect is not known. We investigate possible trial designs for predictive markers, but we also
consider scenarios with an underlying prognostic marker, as it is often unknown whether or
not a novel marker is prognostic or predictive. The results of this investigation can serve as a
guide in the decision as to which trial design to use in a specific situation. Although we present
the results for binary outcome data, the same strategy can be easily implemented for other
outcomes including survival data.

Phase III Trial Designs for Targeted Agents
A variety of designs for assessing targeted treatments using biomarkers have been proposed.
Figure 1 illustrates three such phase III trial designs for predictive markers. For illustration
purposes, we restrict our discussion to two treatments, T1 and T2, where T1 could be the
standard of care and T2 the new therapy of interest. These do not have to be limited to single
agents but can include entire treatment strategies, as is common for many cancers. We also
assume that the marker distinguishes between two groups, marker-positive patients (M+) and
marker-negative patients (M-). It is conjectured that the new therapy to be studied, T2, benefits
M+ patients. For this illustration, we also assume that for continuous markers, a cutpoint has
been determined to distinguish these two groups.

In the randomize-all design, the marker status of the patient is assessed and all patients are
randomized to one of two treatments. The treatment assignment for patients can also be
stratified by observed marker status. If stratification is deemed not necessary, assessing the
marker status of the patient can occur after randomization, which may speed up the beginning
of the treatment. If we hypothesize that the treatment is mostly efficacious in marker-positive
patients, but it is unclear whether the therapy is beneficial (possibly to a lesser extent) for
marker-negative patients as well, this is a good design to test for overall benefit, regardless of
marker status, and to explore the M- and M+ subsets. One possibility is to use this design and
power it for the subgroup of marker-positive patients. This will then allow us to determine,
with appropriate power, whether or not the treatment is effective overall and in the subgroup
of M+ patients. A similar procedure in the context of hazard ratios was recently discussed by
Jiang et al. (7).

Simon and Maitournam (8) evaluated the efficiency of a targeted trial design. In this design,
patients are first assessed for their marker value and only marker-positive patients are enrolled
in the trial and randomized to the two treatment options. They evaluated the effectiveness of
the targeted design versus the randomize-all design with respect to the number of patients
required for screening and the number of patients needed for randomization. A targeted design
proves to be a good design if the underlying pathways and biology are understood well enough,
so that it is clear that the therapy under investigation only works for a specific subset of patients
namely, marker-positive patients. Such a targeted design generally requires a smaller number
of patients to be randomized than the randomize-all design to determine the efficaciousness of
a new treatment in M+ patients; however, no insight is gained on the efficaciousness of the
new treatment in M- patients, and a large number of patients still need to be assessed for their
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marker status. Freidlin and Simon (9) also proposed an adaptive two-stage trial design
specifically for developing and assessing markers using gene expression profiling. We do not
evaluate this trial design in our article as we focus our discussion on one-stage designs.

Hayes et al. (10) suggested a trial design for predictive markers, in which patients are
randomized between marker-based treatment (M+ patients getting new therapy, M- patients
getting standard of care) and every patient, independent of their marker status, getting standard
of care. Such a trial is designed to test whether marker-based treatment strategy is superior to
standard therapy. We refer to this trial design as the strategy design. Sargent and Allegra (11)
suggested an augmented strategy design, extending this strategy design to cases in which
patients are randomized between marker-based treatment (as in the strategy design) and
treatment independent of marker, wherein a second randomization between new versus
standard therapy is added to the latter arm. We evaluate the strategy design rather than the
augmented strategy design because the former is more frequently used. As an example, the
strategy design was recently used in a used in a non–small cell lung cancer trial to test
individualized cisplatin-based chemotherapy dependent on the patient’s excision repair cross-
complementing 1 mRNA (12).

These various trial designs test different hypotheses. The randomize-all design addresses the
question of whether the treatment is beneficial for all patients, with the possibility of testing
whether or not the new treatment is beneficial in the subset of marker-positive patients. We
also investigate testing both the targeted and the overall hypothesis in the randomize-all design
with appropriate adjustment for multiple comparisons. The targeted design tests whether or
not the treatment is beneficial for marker-positive patients. The strategy design addresses the
question of whether the marker-based treatment strategy is better than everyone receiving
standard of care (T1) regardless of marker status. The strategy design does not directly address
the question of whether treatment T2 is more efficacious than treatment T1; however, it is
frequently used in that context and we therefore felt it important to assess its properties.

In this article, we evaluate the effectiveness of the randomize-all, the targeted, and the strategy
phase III trial designs under several scenarios. These scenarios include the presence of a
prognostic marker, several possible scenarios for the presence of a predictive marker, and the
absence of a valid marker. We assume that the underlying distribution of the biomarker is
continuous in nature. We further assume that a cutpoint is used to distinguish patients with
marker values above (below) such a threshold, who are then referred to as marker-positive
(negative) patients. We investigate the performance of several test statistics for the different
trial designs discussed in this section as a function of the marker distribution and the marker
cutoff. The performance is evaluated as a function of the cutpoint, the number of patients
screened, and the number of patients randomized to obtain a certain power and significance
for the various test statistics. We study these designs under some simple marker and effect
assumptions.

Underlying Model Assumptions and Simulations
In practice, the underlying marker distribution, and the response probability as a function of
the marker value, are often continuous. Assume that the log-transformed marker value X is
normally distributed, X ~ N (μ,σ2), and its density function is denoted by f(X). Other
distributional assumptions may be used instead. If multiple markers are of interest, a combined
distribution of a linear combination of the markers can be used. We assume that two treatments,
T1 and T2, are being investigated and that the treatment assignment has been determined using
one of the various trial designs discussed above. The treatment assignment is indexed by j =
1,2 and we focus our analysis on binary outcomes. This approach, however, can easily be
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extended to a survival outcome. The expected outcome for the subgroup of M+ patients, M+
= {X:X > c} can be written, assuming a logit link, as

where c is the cutpoint that distinguishes M+ from M- subjects and where the fraction of
marker-positive patients is given by νM+(c) = ∫x>cf (x)dx and the marker-negative fraction is
given by νM−(c) = 1 − νM+(c). Analogous calculations for the M- patients give the summary
measures, gj(c,M-) for those groups. We study design properties indexed by the cutpoint c.
Therefore, important variables in the design assessments are [gj(c,M+),gj(c,M-), νM+(c)],
which constitute the outcome and the fractions of patients in the M+ group.

Figure 2 presents several scenarios based on this simple marker treatment model. Scenario 1
is the scenario in which the marker under investigation is a false marker, i.e., it has no effect
on the outcome. Scenarios 2 to 4 are different scenarios for a predictive marker. In scenario 2,
the new treatment (T2) does not help M- patients more than the standard treatment (T1), but
has additional benefit for marker-positive patients, increasing with the marker value. In
scenario 3, the two treatment curves are diverging with increasing marker value. The marker
does not have any effect on treatment 1, but the effect of treatment 2 is increasing with
increasing marker value. In scenario 4, the new therapy benefits M+ patients, but has a negative
effect on M- patients. Finally, for a prognostic marker, in which T2 is overall better than T1,
both are increasing with increasing marker value (scenario 5). All these graphs are on a logit
scale.

We investigate the overall performance of the different designs in the various scenarios
discussed above. We simulate the underlying log-marker distribution from a normal
distribution X ~ N(μ, σ2). We then evaluate the response probability to the marker using the
distribution functions discussed above for the various scenarios. Appendix 1 lists the actual
parameters used to evaluate the response probabilities for the five different scenarios. We did
5,000 simulations to calculate gj(c,M-) and gj(c,M+). Next, we use these derived quantities
and evaluate power or sample size for the different scenarios assuming an underlying binomial
distribution. For the power calculations, we used a one-sided significance level of α = 0.05.

Results
Figure 3 shows the power of the three designs as a function of the sample size of patients
randomized for each of the five scenarios discussed earlier. In scenario 1, which is the scenario
with no valid marker, the randomize-all and the targeted design achieve the same power for
all sample sizes, as response to treatment is independent of the marker status. The lowest power
is achieved with the strategy design as this design assigns subsets of patients in both of the
randomized arms to the identical treatment, and is thus inefficient if there is no true underlying
marker. For scenario 2, in which the new treatment T2 only helps patients with the marker, the
targeted design outperforms both the randomize-all and the strategy design, as this is the
scenario of a true marker for which this trial has been designed. The randomize-all design and
the strategy design achieve the same power. This is due to the fact that in the experimental arm
the same fraction of marker-positive patients are treated with the effective treatment T2 and
the same fraction of marker-negative patients are treated with T1 (in the strategy design) or T2
(in the randomize-all design), and the effect of both treatments is the same for marker-negative
patients. Scenario 3 is the scenario in which M- patients benefit less than M+ patients. In that
scenario, the targeted design performs the best, followed by the randomize-all design, and then
the strategy design. In this case, the efficacy is the largest in the M+ patients and is thus best
picked up by the targeted design. The new therapy, however, also helps M- patients. This fact
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is missed by the targeted design because no information is obtained on M- patients. In the
strategy design, the M- patients in the experimental arm are treated with the less effective
treatment T1 and the power of that design is thus lower than that of the other two designs. In
scenario 4, in which the new therapy is beneficial for M+ patients but is actually harmful for
M- patients, the targeted design outperforms the others. The randomize-all design does the
worst, as the two effects in this example cancel each other out. Lastly, in scenario 5, the example
for a purely prognostic marker, the targeted design performs the best, followed by the
randomize-all design and lastly the strategy design.

For a new marker or a new assay that has not yet been thoroughly tested, the cutpoint
corresponding to the strongest therapeutic effect is often not known precisely. Using an
underlying continuous marker model makes it possible to investigate this effect on power and
sample size for the various scenarios. We thus perform simulation studies in which we vary
the cutpoint c, which distinguishes M+ from M- patients, illustrated in Fig. 4. We keep the
normal distribution of the log-transformed marker-value centered at the midpoint μ = 0.5, but
the cutpoint is shifted by δ to c′ = c + δ . Shifting the cutpoint results in some patients being
incorrectly (or inappropriately) classified as M+, when treatment T2 is not more effective for
this patient and vice versa.

We investigated the effect on power for a fixed sample size in the three designs. Moving the
cutpoint does not affect power in the randomize-all design, as all patients are being randomized
independent of their marker status and the underlying marker distribution is not affected by
moving the cutpoint. Moving the cutpoint has an effect on whether a subject is classified as
being marker-positive or being marker-negative and thus has a large effect on power for the
targeted and the strategy design.

We found that overall, the improvements in power for the targeted design are impressive for
most scenarios. Only in the case in which there is a constant odds ratio between treatment arms
is there a decrease in power for the targeted design, and then only for the most extreme marker
group. The worst case for the randomize-all design is the hypothetical total interaction model
of scenario 4, in which the overall treatment effect is null. This is also the only case in which
the strategy design performs slightly better than the randomize-all design.

We also explored the effect of maker prevalence in the patient population on power for the
different designs and scenarios. In our simulations, we achieve this by shifting the marker
distribution, but leaving the cutpoint at X = 0.5. Shifting the marker distribution increases or
decreases the fraction of M+ and M- patients, illustrated in Fig. 5. The extreme case with the
mean of the distribution beyond the left edge of Fig. 5, μ = -∞, corresponds to all patients being
marker-negative, the other extreme case with the mean of the distribution beyond the right
edge of Fig. 5, μ = +∞, corresponds to all patients being marker-positive. In the latter case, all
three designs are the same. The mid-point, μ = 0.5, corresponds to the case in which the number
of marker-positive and marker-negative patients is the same.

We evaluated the effect of marker prevalence on power and sample size. The targeted design
performs the best in all scenarios with an underlying true predictive marker (scenarios 2-4). In
those scenarios, the treatment benefit for M+ patients is diluted in the randomize-all and
strategy designs and many more patients are needed to test the respective hypothesis. The
targeted design, however, misses the benefit of the T2 for marker-negative patients in scenario
3. In the case of a prognostic marker (scenario 5) with a constant odds ratio between treatment
arms, the targeted design has smaller power than the randomize-all design but only for the
extreme marker values when the cutpoint is shifted such that most patients are marker-negative.
The randomize-all design performs as well, or in most cases, better than the strategy design
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except for the hypothetical total interaction model of scenario 4, in which the overall treatment
effect is null.

Next, we studied the feasibility and performance of testing both the overall and the targeted
hypotheses in the randomize-all design, with appropriate adjustment for multiple comparisons.
We split the significance level α and test the overall hypothesis at α = 0.04 and the targeted
hypothesis at α = 0.01. Other splits of the significance level can be considered, but the outcome
would qualitatively stay the same. Figure 6 summarizes our results for power versus sample
size for all five scenarios. The solid lines represent the power for each hypothesis with split
α. To get a sense of the effect of a reduced α on power, we also include the power for both
hypotheses for α = 0.05 (dashed lines). In general, there is little change in power for the overall
hypothesis for α = 0.04 versus α = 0.05. The change in power for the targeted hypothesis for
α = 0.01 versus α = 0.05 is slightly larger because there is a larger difference in α. The main
question, however, is whether it is feasible to test both the targeted and the overall hypothesis
in the scenarios with a predictive marker using this trial design. In the scenarios with a
predictive marker (scenarios 2-4), with the exception of the scenario of total interaction
(scenario 4), the power for the two hypotheses (with Bonferroni-adjusted α-levels) is
comparable and only a modest increase of sample size (compared with the randomize-all design
with just the overall hypothesis and α = 0.05) is needed to test both hypotheses. We note that
in the context of a given real study, one can simulate from the large sample joint normal
distribution of the two test statistics to less conservatively control for the overall type 1 error.
For instance, if the overall hypothesis is fixed at α = 0.04, then by using this calculation, one
could increase α for subgroup test to >0.01, yet still have an overall α = 0.05.

We also investigated the effect of the marker prevalence on the ratio of the number of patients
randomized in the randomize-all design and the number of patients screened in the targeted
design (the results are summarized in Fig. 7). The number of patients required for screening
in the targeted design is given by the ratio of the number of randomized in the targeted design,
divided by the fraction of M+ patients. If the fraction of M+ patients is equal to 1, the targeted
and the randomize-all design are equivalent. For a small fraction of M+ patients, the mass of
the marker distribution is centered at very low marker values. Scenarios 1 and 5 are similar.
In case the marker is absent (scenario 1) and there is a constant difference in treatment efficacy
independent of the marker value, this ratio increases linearly with the fraction of M+ patients.
In scenario 5, this ratio increases too, but is not linear as the difference in response is not
constant. Scenarios 2, 3, and 4, the scenarios with an underlying predictive marker are also
similar. The ratio of the number of patients randomized in the randomize-all design and the
number of patients screened in the targeted design gets larger with smaller M+ prevalence. If
the marker prevalence is small in those scenarios, we have to screen more patients in the
targeted design. This figure shows, however, that we have to randomize even more patients in
the randomize-all design compared with the number of patients we have to screen in the targeted
design, as the treatment effect gets diluted.

Discussion
In this article, we evaluate three different trial designs commonly considered for situations
when an underlying predictive marker is hypothesized. We consider the randomize-all design,
the targeted design, and the strategy design. We also evaluate testing both the overall and the
targeted hypothesis in the randomize-all design. Even if a promising marker is found in the
laboratory, it is not clear that this marker is an actual predictive marker for the treatment of
patients or that the new treatment under investigation only helps marker-positive patients. Here,
we investigate five realistic scenarios, considering several different types of predictive markers,
a prognostic marker, and no marker. Because many biological markers are continuous in nature,
we assume an underlying continuous marker distribution rather than a discrete distribution, as
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has been used in the current literature. This is more realistic for most markers and thus allows
for a more precise design and analysis of clinical trial data. It also allows us to determine the
effect of a range of cutpoints on the performance of various designs. For a newly developed
marker or assay, the cutpoint has often not been determined precisely. This formulation also
allows us to take into account marker prevalence in the patient population by shifting the
underlying marker distribution. Finally, although the results are stated for a single continuous
marker, the same strategy holds for a linear combination potentially based on two or more
biological markers. For instance, the continuous marker could be a linear combination of gene
expression measurements.

The large effect on power we have observed due to differences in treatment efficacy as a
function of marker values and fraction of selected marker-positive patients highlights the need
for a thorough investigation of properties before committing to a specific design and initiating
a phase III study with targeted agents. If the actual underlying scenario (marker response
distribution) is known, it is easy to decide on the most appropriate trial design using our results.
In reality, however, the true underlying marker response distribution is often unknown and we
have to consider several possibilities. We suggest some general guidelines.

In general, the targeted design performs the best in all scenarios with an underlying true
predictive marker. There is only one exception, which is in the case of a prognostic marker
with constant odds ratios between treatment arms (scenario 5) when the targeted design has
less power than the randomize-all design, but only for the extreme marker values when the
cutpoint is shifted such that most patients are marker-negative. In addition, more patients still
need to be assessed for their marker status compared with the randomize-all and the strategy
designs. If the new treatment can also help marker-negative patients, there is also the question
of whether the targeted design is appropriate. The strategy design tends to be inefficient in
comparing the efficacy difference of two treatments as patients in different randomized arms
are treated with the same therapy. The randomize-all design performs as well, or in most cases,
better than the strategy design except for the hypothetical total interaction model on scenario
4, in which the overall treatment effect is null. We thus recommend using the randomize-all
design over the strategy design except for cases in which the actual strategy hypothesis is of
greater interest than the efficacy hypothesis.

We recommend using the targeted design if it is known with little uncertainty that the new
treatment does not help all patients to some degree, if the marker prevalence (indicating patients
helped by the new therapy) is small, and if the cutpoint of marker-positive and marker-negative
patients is relatively well established. If the cutpoint is not yet well established, the power of
the study can be severely compromised. Likewise, if only the most extreme marker values are
classified as marker-positive, but if the treatment is more broadly effective, then some patients
who are classified as marker-negative will not get randomized even though they would have
benefited from the new treatment.

Scenario 3 is a very likely scenario. Here, the treatment works better for M+ subjects but also
benefits M- subjects, for instance, to a lesser extent. Even if one pathway of action is well
understood for M+ patients, there is always the possibility that the new agent works via a
different pathway for the M- patient. This has recently been observed in the case of Her-2
overexpression in breast cancer, there is still the possibility that the new therapy under
investigation works through other pathways not yet investigated (3). If there is the possibility
that the new treatment helps marker-negative patients, that the cutpoint determining marker
status has not yet been well established, and if the marker prevalence is large enough to make
the study effective, we recommend using the randomize-all design with the power adjusted for
multiple comparisons such that both the overall and the targeted hypothesis can be tested. Our
results show that if there is an underlying predictive marker and if the cutpoint determining
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marker status is not too far off the correct cutpoint, the targeted hypothesis and the overall
hypothesis (with split α level) achieve similar power as the overall hypothesis tested at α =
0.05 and thus both hypotheses can be tested with only a modest increase in sample size
compared with testing the overall hypothesis alone in the randomize-all design (Fig. 6). In
addition, we found that even in the case of extreme (large or small) marker prevalence, both
the targeted and the overall hypotheses (with split α level) achieve comparable power as the
overall hypothesis tested at α = 0.05, and again, both hypotheses can be tested with only a
modest increase in sample size compared with testing the overall hypothesis only in the
randomize-all design.

Appendix A: Simulations and Model Parameters
We used the following underlying parameters. The log-transformed marker values X were
simulated using X ~ N (μ = 0.5, σ2 = 0.52). The response distribution to the log-transformed
marker values of the two treatments, j=1,2, for the five scenarios were simulated assuming a
logit link with the following function:

where νM+(c) = ∫x>cf (x)dx is the fraction of marker-positive patients. The actual parameters
used for the five scenarios are summarized in Table 1. In scenario 2, x transforms to x′ =
(x-0.5)+.
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Fig. 1.
Possible clinical trial designs for targeted therapy: randomize-all design, targeted design,
strategy design.
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Fig. 2.
Scenarios for response distribution of marker. The response probability is plotted versus the
log-transformed marker value x.
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Fig. 3.
Power of the randomize-all, targeted, and strategy designs as a function of sample size (number
of randomized patients) for the different scenarios. In scenario1, the power of the randomize-
all and targeted designs are identical. In scenario 2, the power of the randomize-all and strategy
designs are identical.
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Fig. 4.
Illustration for shifting the cutpoint from “cutoff” to “C + Δ ”.
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Fig. 5.
Illustration for shifting the marker distribution.
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Fig. 6.
Power for testing the overall and the targeted hypothesis in the randomize-all design with α
adjusted for multiple comparisons: α = 0.04 for the overall hypothesis and α = 0.01 for the
targeted hypothesis (solid lines). For comparison, the dashed lines show the power for α = 0.05
for both hypotheses.
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Fig. 7.
Ratio of the number of patients randomized in the randomize-all design and the number of
patients screened in the targeted design as a function of marker prevalence.
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Table 1
Model parameters used in simulation studies

Scenario a01 a11 a02 a12
1 0 0 1 0
2 0 0 0 4
3 0 0 0 2
4 0 0 -2 4
5 -3 4 -2 4
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