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Abstract. y-Secretase is a promiscuous protease that
cleaves bitopic membrane proteins within the lipid
bilayer. Elucidating both the mechanistic basis of vy-
secretase proteolysis and the precise factors regulating
substrate identification is important because modu-
lation of this biochemical degradative process can
have important consequences in a physiological and
pathophysiological context. Here, we briefly review
such information for all major classes of intramem-
branously cleaving proteases (I-CLiPs), with an
emphasis on y-secretase, an [-CLiP closely linked to

the etiology of Alzheimer’s disease. A large body of
emerging data allows us to survey the substrates of y-
secretase to ascertain the conformational features that
predispose a peptide to cleavage by this enigmatic
protease. Because substrate specificity in vivo is
closely linked to the relative subcellular compartmen-
talization of y-secretase and its substrates, we also
survey the voluminous body of literature concerning
the traffic of y-secretase and its most prominent
substrate, the amyloid precursor protein.

Keywords. Intramembrane, protease, proteolysis, secretase, rhomboid, substrate, S2P, amyloid precursor
protein, I-CLiP, Alzheimer’s disease, lipid raft, presenilin.

Introduction

Until recently a little known phenomenon, regulated
intramembrane proteolysis (RIP) has emerged as a
major pathway of signal transduction and cellular
homeostasis [1, 2]. The remarkable feat of catalyzing a
hydrolytic reaction within the hydrophobic interior of
a lipid bilayer is carried out by a class of proteins
known as intramembranously cleaving proteases (I-
CLiPs). A variety of I-CLiPs have been discovered
and are classified into three groups as outlined below

* Corresponding author.

[1]. Key properties of these unique enzymes are
summarized in Figure 1.

Intramembranously-cleaving metalloproteases: site 2
protease family

Site 2 protease (S2P) is the founding member of the
metalloprotease subfamily of I-CLiPs [3] and cleaves
both the sterol regulatory element-binding proteins
(SREBPs) and activating transcription factor 6
(ATF6) [2] in the Golgi membrane [4]. SREBP, the
prototypical substrate of S2P, has two transmembrane
(TM) domains connected by a short luminal loop with
two large cytosolic N- and C-terminal domains [5].
SREBP is initially cleaved in its luminal domain by
site 1 protease (S1P) and subsequently by an S2P-
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Q° R
S2P Metalloprotease [HExxH, LDG [Yes Yes Yes No Unclear
Rhomboid |Serine protease |GxSG, H No Yes Yes No Yes
SPP Aspartyl protease |YD, LGXxGD |Yes Yes Unclear |No Yes
v-secretase [Aspartyl protease [YD, LGxGD [Yes Possibly* [Yes No Yes

Figure 1. A summary of common themes among the I-CLiPs. Signature motifs are universally conserved among family members and are
located in transmembrane regions of the protease. Residues in bold are directly involved in catalysis. With the exception of Rhomboid
proteases, an initial ectodomain cleavage event facilitates subsequent intramembrane proteolysis (IP). The importance of helix
destabilization is observed for virtually all I-CLiPs: flexibility of the transmembrane helix appears to be necessary for the protease to access
the scissile region (*the potential importance of helix-destabilizing residues for y-secretase-mediated IP is evaluated in this review).
Trafficking of protease and substrate refers to whether these two entities are located in different organelles — a general control mechanism
for IP that ensures that proteolysis occurs in a regulated fashion. In contrast to many other ‘classical’ proteases, the cleavage sites of I-CLiPs
are generally not delineated by canonical sequences. Lastly, multiple sites of cleavage have been identified for many of these proteases.

mediated intramembranous cleavage, that releases
the cytosolic N-terminal bHLH-Zip domain. This
domain translocates to the nucleus and elevates
transcription of genes involved in cholesterol biosyn-
thesis [6]. Its liberation is strongly dependent on
endogenous sterol levels [7] as a drop in the concen-
tration thereof initiates changes in the subcellular
localization of SREBP [8] (Fig. 2). The involvement of
an escort protein, the SREBP cleavage-activating
protein (SCAP), was detected during studies of cells
that were resistant to modulation of proteolysis by
sterol levels [9]. The modulatory properties of sterols
derive from their ability to cause SCAP — and in turn
SREBP (via an interaction between its C terminus and
that of SCAP [10]) — to bind to endoplasmic reticulum
(ER)-resident anchor proteins known as Insigs [11,
12]. In a similar manner, oxysterols bind to Insigs,
thereby causing Insigs to bind to SCAP [13]. In either
case, the anchoring of SREBP to Insigs prevents the
translocation of SREBP from the endoplasmic retic-
ulum to the Golgi, where it is proteolyzed. High sterol
levels therefore regulate a negative feedback system:
by inhibiting SREBP processing, the transcription of
genes implicated in cholesterol biosynthesis remains
at low levels. Sterol depletion abrogates the Insig-
SCAP interaction, allowing the SREBP-SCAP com-
plex to enter (COP)II-coated vesicles for anterograde
transport to the Golgi [14], where SREBP is proteo-
lyzed by S1P [15]. S2P proteolysis, which is not
regulated by sterol levels, constitutively occurs after
S1P proteolysis.

The precise factors disposing substrate to S2P pro-
teolysis have been investigated, and primary struc-
tural characteristics within the TM domain (TMD)
appear to be dispensable for the enzyme-substrate

recognition process, akin to the current paradigm for
substrate recognition by y-secretase (discussed below)
and some other I-CLiPs. Biochemical studies have
identified sequence elements on both sides of the
membrane that are required for efficient proteolysis,
namely an arginine residue in the short luminal loop
and a cytosolically located tetrapeptide sequence
DRSR [16]. Substitution of the crucial arginine
residue with alanine precluded proteolysis, whereas
a more conservative substitution (lysine) did not have
an inhibitory effect [16]. Later studies revealed that
initial sterol-induced cleavage within the luminal loop
by S1P, a membrane-embedded serine protease,
occurs in proximity to the conserved arginine residue
[5,17]. Following S1P proteolysis, S2P cleaves SREBP
substrates intramembranously between a leucine and
cysteine [18], which is located three residues to the C-
terminal side of the critical DRSR motif. However,
neither the leucine nor cysteine was found to be
necessary for cleavage, nor were many of the con-
served residues within the transmembrane domain, as
shown by singly replacing each TM residue with
alanine [18]. These data suggest that strict conserva-
tion of the sequences proximal to the cleavage site and
within the TMD is unnecessary for S2P activity.
However, at least one residue of the universally
conserved asparagine-proline (NP) pair is required.
This dipeptide, which is located in the middle of the
first SREBP TMD, has been proposed to facilitate
unwinding of the transmembrane o-helix, thereby
potentiating exposure of backbone residues in the
protease active site [19].

Five features observed for the cleavage of SREBP —
the requirement for interruption of the transmem-
brane helix, the dispensability of primary structure
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Figure 2. Proteolytic pathway of SREBP. SREBP initially coexists in the endoplasmic (ER) with its escort protein, SCAP (bottom panel).
The presence of sterols or oxysterols promotes an interaction with ER-resident anchor proteins known as Insigs. Sterol depletion abrogates
this interaction and the SREBP-SCAP complex translocates to the Golgi, whereupon SREBP is initially proteolyzed in its short luminal
loop by S1P, a membrane-embedded serine protease. Following this cleavage, the transmembrane region of the SREBP N-terminal
fragment is proteolyzed intramembranously by site 2 protease (S2P) between a leucine and a cysteine, which results in liberation of the N-
terminal domain. This domain is a transcription factor that translocates to the nucleus and up-regulates expression of genes involved in

cholesterol biosynthesis. SCAP and Insigs are polytopic membrane proteins.

immediately proximal to the cleavage site, a prelimi-
nary ectodomain cleavage as a prerequisite for intra-
membranous proteolysis, the involvement of escort
proteins, and the release of biologically active factors —
are not unique to S2P but reflect features for other
enzymes of the I-CLiP family.

Intramembranously cleaving serine proteases:
rhomboid family

In Drosophila the founding member of the rhomboid
serine protease family — Rhomboid-1 — is responsible
for the proteolysis of Spitz [20], the liberated domain of
which is involved in signaling through receptor tyrosine
kinases [21]. Rhomboids are ubiquitously present in all
forms of life on earth, and participate in diverse
biological pathways such as quorum-sensing in Provi-
dencia stuartii and signaling via the epidermal growth

factor (EGF) receptor in Drosophila. Rhomboid is also
implicated in a number of human diseases, such as type
II diabetes and autosomal-dominant optical atrophy
[20]. Rhomboids were initially believed to employ a
catalytic triad (Asx, His, Ser) akin to classical serine
proteases such as trypsin, chymotrypsin, and elastase;
however, recent studies have indicated that the Asn
residue of rhomboid is dispensable for catalytic activity,
leading to a catalytic dyad model of proteolysis [22],
which has been corroborated by crystallographic
analyses of rhomboid proteases [23-25]. These studies
revealed a catalytic dyad buried within the membrane,
in addition to novel structural features that permit
substrate selectivity and intramembrane proteolysis.
GIpG, a rhomboid from Escherichia Coli, possesses six
TM helices (TM1-6). As a consequence of helix-
destabilizing glycine residues, TM4 is shorter than a



1314 A.J. Beel and C. R. Sanders

typical membrane-spanning alpha-helix. This results in
an aqueous cavity in the membrane plane, surrounded
on three sides by TM helices and solvent-exposed on
the fourth to the depth at which the N-terminal end of
TM4 originates [23, 24]. It is within this hydrophilic
cleft that scission of a TM substrate is believed to occur.
Ben-Shem et al. [24] suggested that substrate helix
destabilization permits contact between the enzymatic
active site and the scissile bond at a crevice between
TM2 and TMS. TMS is believed to act as a dynamic
gating system for substrate entry to the active site [26].
The problem of bringing water into the lipophilic
context of the bilayer is resolved by the crystallographic
data — the curtailed length of TM4 and the provision of
polar residues by other TM helices surrounding the
active site permit water accessibility within the plane of
the bilayer [27]. Wang et al. [23] propose that the upper
segment of the TM helix of the substrate unfolds within
the active site, thereby exposing the scissile bond to
hydrolysis. The crystal structures of GlpG provide
information about its mechanism of intramembrane
proteolysis; however, the lack of an apparent evolu-
tionary relationship between rhomboid-type proteases
and other I-CLiPs precludes generalization of this
mechanistic information [28].

Rhomboid proteolysis, like that of S2P, also depends
on the relative subcellular localization of the various
components involved in the process. Indeed, the
similarities between this pathway and that of
SREBP proteolysis are striking. Spitz, a prototypical
substrate for rhomboid proteases in Drosophila, is
constitutively localized to the ER, whereas Rhomboid
is found in the Golgi apparatus [21]. Cleavage of Spitz
is therefore regulated by its intracellular traffic, which
requires involvement of an escort protein, Star.
Cotranslocation of Star and Spitz from the ER to
Golgi allows interaction between Rhomboid and
Spitz, leading to proteolytic degradation of the latter
and its subsequent export from the cell [21, 29].
Studies of the sequence requirements for Rhomboid
substrates have demonstrated an importance for
helix destabilization, analogous to that observed for
S2P substrates. Insertion of the Spitz TMD into other
proteins that are normally not cleaved by rhomboid
proteases led to the degradation of the chimeric
constructs, suggesting that the essential features for
proteolysis are contained within the TMD of Rhom-
boid substrates. Later analyses revealed that a
conserved motif in the Spitz TMD with low helical
propensity provided the basis for Rhomboid sub-
strate specificity [30]. Thus, substrate conformation
and/or dynamics determine its susceptibility to
Rhomboid cleavage, as was observed for S2P.
Urban and Freeman [30] found that the luminal
portion of the TMD was most critical for Rhomboid
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proteolysis. Two consecutive residues (GA) con-
tained therein, when inserted into non-substrates,
allowed these peptides to be processed efficiently.
Insertion of B-branched amino acids, which decrease
local helical propensity, also enhanced proteolysis
[30]. Another recent study confirmed the importance
of helix-destabilizing residues; however, no consen-
sus sequence was identified, and different members
of the Rhomboid family were shown to exhibit
distinct substrate preferences [31], suggesting that
substrate recognition involves other structural ele-
ments distal from the cleavage site. One aspect of
Rhomboid proteolysis that differs significantly from
processing by other I-CLiPs is that Rhomboid does
not require preliminary ectodomain shedding, and is
able to cleave full-length substrates with large
extracellular domains [22, 30].

Intramembranously cleaving aspartyl proteases:
presenilin, signal peptide peptidase, and others
Presenilin (PS) and signal peptide peptidase (SPP) are
members of an I-CLiP subfamily whose catalytic
mechanism involves two aspartate residues, akin to
classic aspartyl proteases [32]. Both are polytopic
membrane proteins with two putative aspartate residues
demarcating the catalytic site [33—35]. The observation
that transition state analogues can inhibit both enzy-
matic activities suggests that the two share similar active
sites [36, 37]. Though similarities between PS and SPP
abound, differences have also been documented.
Whereas PS is a member of a multiprotein complex,
SPP can act alone [38]. The two proteases exhibit
different substrate recognition profiles: PS cleaves type I
single-TM proteins (cytosolically oriented C terminus),
whereas SPP cleaves inversely oriented type II TM
proteins [32, 39]. SPP and PS have conserved catalytic
motifs (YD and LGxGD), each containing one of the
active site aspartates, located in adjacent TM regions.
Intriguingly, the orientation of these two motifs is
inverted in each of the two proteases, a property that
may account for their unique in vivo substrate prefer-
ences [40] (Fig. 3). SPP cleaves certain signal peptides
with type II transmembrane orientation following their
liberation from a preprotein by signal peptidase (SP) [41,
42]. In addition to its role in the degradation of remnant
signal peptides, SPP generates biologically active pep-
tides, such as HLA-E epitopes and calmodulin-depend-
ent signaling peptides [43]. Furthermore, given its role in
processing the hepatitis C virus (HCV) core protein [44]
and the GB virus B core protein [45], SPP may be a
useful therapeutic target in the prevention of certain
viral infections. In analogy to S2P and Rhomboid, SPP
requires helix-breaking residues for proteolysis [41],
while its substrates appear to lack a well-defined
recognition sequence [46].
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Low-resolution structural data of y-secretase allow us
to speculate on the mechanism it employs to accom-
plish hydrolytic cleavage within the bilayer. An
electron microscopic single-particle reconstruction
of the y-secretase complex supports the notion of an
intramembrane aqueous cavity through which water is
able to penetrate the bilayer [47]. Li et al. [60] suggest
that a number of TM helices of PS provide a protein-
surrounded cavity within the bilayer that is amenable
to the presence of water. Studies employing cysteine-
scanning mutagenesis and measurement of the acces-
sibility of artificial cysteine residues to a hydrophilic
reagent have corroborated the notion of an aqueous
cavity within the interior of y-secretase [48, 49].

Profile of an enigmatic protease: y-secretase

v-Secretase is perhaps the most intensely studied
intramembrane protease because of its critical role in
the neuropathogenesis of Alzheimer’s disease (AD)
[50, 51]. It processes the C-terminal fragment (CTF)-
derived portion (C83 or C99) of the amyloid precursor
protein (APP) within the membrane, liberating the
beta-amyloid peptide (Af), which has a proclivity for
aggregation, forming amyloid plaques in the central
nervous system. Intermediates in the formation of
these neuritic plaques are thought to be a major factor
in the etiology of AD [52]. Despite its pivotal role in
the most economically costly disease in the developed
world [53, 54], many basic features of the y-secretase
complex remain to be elucidated.

Composition, assembly, and subcellular localization of
v-secretase

Unlike other members of the family, y-secretase
requires multiple components — PS, nicastrin (Nct),
anterior pharynx defective-1 (Aph-1), and presenilin
enhancer-2 (Pen-2) — for enzymatic activity both in
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vivo [55, 56] and in vitro [57]. PS, a nine-pass TM
protein [58, 59], is the catalytic core of the protease
[35, 60, 61]; Nct, a single span membrane protein with
a large, heavily glycosylated extracellular domain,
assists with substrate selection [62]; Aph-1, a seven-
pass TM protein, promotes the assembly, stabilization,
and traffic of the complex [63]; and Pen-2, a two-pass
TM protein, triggers PS endoproteolysis [64—-66]. The
precise molecular stoichiometry of the complex was
recently determined by Sato et al. [67] tobe 1:1:1:1 for
PS:Nct:Aph-1:Pen-2. The relevance of non-essential
cofactors remains uncertain.

Proper complex assembly and maturation requires all
four components and appears to occur early in the
secretory pathway [68, 69], though the process has yet
to be precisely localized. Assembly begins with the
formation of a subcomplex between Nct and Aph-1,
which is mediated by interactions between their
respective TMDs [70]. Full-length presenilin stably
associates with the initial Nct-Aph-1 complex [71, 72]
via an interaction between the extreme C-terminus of
PS and the TMD of Nct [73-75]. Interaction with Pen-
2 via TMD4 of PS [76] then enables full-length
presenilin to execute auto-endoproteolysis to form
NTF and CTF heterodimers, which constitute the
active protease [72, 64—66]. The PS-NTF/CTF heter-
odimer is stabilized via an interaction with the C-
terminal domain of Pen-2 [77].

The subcellular localization of y-secretase has been a
controversial issue, as residence has been reported in
numerous compartments, including the ER [68], the
Golgi/trans-Golgi network (TGN) [78], the endo-
some [79], the lysosome [80], the phagosome [81],
the autophagic vacuole [82, 83], and the plasma
membrane [84, 85]. Investigation using quantitative
immunogold-electron microscopy reported PS1 lo-
calization at the plasma membrane, the ER, endo-
somes, vesicular-tubular clusters (VTCs), the nuclear
envelope, and COPI-coated vesicles, while PS1
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localization at the Golgi was minimal [86]. Despite
the substantial concentration of PS in the ER, studies
have demonstrated that y-secretase attains an active
proteolytic state in post-ER compartments [87]. The
precise contribution of each of these locales to
overall cellular y-secretase activity has not been
evaluated, though evidence suggests the plasma
membrane and endosomes to be the principal sites
of proteolysis [88].

Heterogeneity of y-secretase

PS and Aph-1 exist in multiple isoforms, each of which
can be selectively incorporated into y-secretase to
generate an active protease, suggesting the possibility
of distinct y-secretase activities.

Two isoforms of PS—PS1 (the major isoform) and PS2
— exhibit a number of notable differences [89]: (1)
there are strong phenotypic differences between
PS1— and PS2— systems; (2) isoform-specific expres-
sion levels are variable among different tissues; (3)
each is incorporated into a proteolytic complex in a
mutually exclusive manner; (4) each isoform exhibits
differential susceptibility to certain y-secretase inhib-
itors; (5) the two isoforms differ in their ability to
process APP CTFs. Furthermore, there is evidence for
tissue-specific alternative splicing of the presenilin
transcripts [90].

Three isoforms of Aph-1 have been identified in
humans: Aph-la (for which there are two splicing
variants — Aph-1aS and Aph-lal) and Aphl-b [91].
As with PS, tissue-specific expression patterns of Aph-
1 have been documented [92], and evidence suggests
these isoforms may be associated with functionally
distinct y-secretase complexes [93]. Coimmunopreci-
pitation experiments implicated Aph-1aS, Aph-laL,
and Aph-1b in distinct y-secretase complexes, each of
which contained either PS1 or PS2, demonstrating the
existence of six distinct proteolytic entities in mam-
mals [94]. The functionality of each of the six
combinatorial possibilities has recently been con-
firmed [95].

The factors regulating expression levels of the various
isoforms and the biological significance of each of the
six constitutionally distinct complexes are not known.
A greater understanding is necessary to determine
whether functionally distinct y-secretase complexes
exist at different stages of development or in different
cell types, and if the variant complexes exhibit differ-
ent substrate recognition properties or different intra-
cellular trafficking.

Ectodomain shedding of y-secretase substrates

The substrates for y-secretase are generally derived
from large precursor proteins that undergo a prereq-
uisite ectodomain shedding event before being
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cleaved by y-secretase [96]. PS-dependent proteolysis
therefore culminates a sequential proteolytic cascade
that begins with the removal of a large extracellular
fragment. This antecedent cleavage occurs in prox-
imity to the membrane, such that the residual ectodo-
main is typically shorter than about 30 residues, a
property that dramatically enhances substrate recog-
nition by y-secretase [96]. The enzymes that catalyze
the ectodomain shedding event are termed sheddases
and include members of the disintegrin and metal-
loprotease (ADAM) family, such as ADAM-10 and
ADAM-17; aspartyl proteases such as the 3-site APP-
cleaving enzymes (BACE1), and matrix metallopro-
teases (MMPs) [97]. ADAM-17, otherwise known as
tumor necrosis factor-o (TNFa)-converting enzyme
(TACE) and ADAM-10 (and its ortholog Kuzbanian)
are thought to exist predominantly at the cell surface,
though intracellular shedding by these two proteases
has also been documented [reviewed in ref. 98].
Together with ADAM-9, these metalloproteases con-
stitute ‘a-secretase’ activity, which processes APP in a
non-amyloidogenic fashion [99]. BACEL1 (the puta-
tive -secretase that processes APP in the amyloido-
genic pathway) is a TM aspartic protease with
maximal activity within the lumen of acidic organelles
such as endosomes and also the Golgi apparatus
[reviewed in ref. 100).

The ectodomain shedding event that generates PS
substrates is often controlled by changes in higher-
order structure, such as ligand-induced oligomerization
(Fig. 4). The binding of ligand or the cis homo- or
heterodimerization of a receptor with another receptor
(e.g., homophilic association of cadherins) has been
observed to modulate ectodomain shedding for a large
number of PS substrates. For example, the binding of
CD44 to hyaluronan oligosaccharides [191] or to a
monoclonal antibody [192] can promote ectodomain
shedding. The EphB2/ephrinB2 system involves recip-
rocal regulation in which both EphB2 (receptor) and
ephrinB2 (ligand) are metalloproteolyzed upon trans
interaction between the two proteins located on
adjacent cell surfaces [136, 137]. Furthermore, changes
in substrate glycosylation state, which may affect ligand
binding, are known to affect ectodomain shedding
[168]. Preshedding dimerization or oligomerization has
been reported for a number of y-secretase substrates,
including APP [193, 194], APLP-1 and APLP-2 [194],
syndecan-3 [195, 196], and the homophilically associat-
ing cell adhesion molecules (CAMs), including the
cadherins [197] and protocadherins [198], nectin [199],
and L1 [200].

Substrate docking by y-secretase
Nct, a single-span TM protein component of PS, was
initially reported to be critical for the maturation of -
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Sortilin  EKQNSKSNS -KKYVCGGR XisCOH (182, 183]
Syndecan3 K S 1 -LERKE Y RMKJKD E G Xo-COH (186]
Tyrosinase - - - - - EQASR SLLCHEHKRK X:-COH (187)
TYRP1 -SR-EFSVPE I RARMSMD E X-COH (187)
TYRP2 ETP---GWPTT - - QYRMLRKG X,+COH [187]
VEGF-R1 TSD--KSNLE - - RKMMEIR S S S Xg5-COH [188]
VGSCP2 PER--DSTV - - - KCVRKK E X;;-COH [189, 190]
VIDLR SVPPKGTSA- - - - G YIMWRNWQHKNM X,-CO.H ND ‘apoE, reclin, a2-macroglobulin  (105]

Figure 4. Sequences and properties of y-secretase substrates. The sequences of 55 known type I membrane protein substrates are
presented. Only the first 8 residues of the extracellular domain (ECD; unless actual length is shorter) and the first 8 residues of intracellular
domain (ICD) are given. The blue region of the multiple sequence alignment (MSA) corresponds to hydrophobic TM residues; the column
of arginine and lysine residues highlighted in red are part of stop-transfer signals; the orange-shaded glycine residues are parts of GxxxG
motifs (which may be dimerization-prone). y-Secretase cleavage sites, where known, are immediately to the left of residues displayed in
red. Appropriate references for PS-mediated proteolysis and ectodomain shedding are provided. The colored boxes in the column entitled
“Sheddase Regulation” correspond to the known regulatory modes for prior ectodomain shedding of a particular y-secretase substrate.
Blue boxes indicate that ligand binding controls cleavage, with the cell entries containing the names of the responsible ligand(s). Yellow
boxes indicate that differential glycosylation influences ectodomain cleavage. Green boxes indicate that calcium influx promotes
ectodomain cleavage: increases in cellular calcium concentrations, either by introduction of an ionophore, mechanical scraping of cells, or
use of an NDMA or AMPA receptor agonist, likely directly up-regulate metalloprotease activity. Red boxes indicate that substrate
oligomerization affects cleavage. These various regulatory modes are not mutually exclusive and for cases in which multiple modes affect
the cleavage of a substrate, the individual contribution of each stimulus has generally not been evaluated. A10, ADAM10/kuzbanian; A17,
ADAMI17/TACE; B1, BACE1; M, MT1-MMP. The multiple sequence alignment was performed using the bcl_align program (Jens Meiler,
unpublished data) and used data from various protein structure prediction algorithms. The chromatic visualization was done using Jalview.
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Figure 5. Model for y-secretase substrate recognition and cleavage. (A) Following ectodomain shedding, the truncated extracellular amino
terminus of the substrate (white) makes electrostatic contact with E333 of the nicastrin ectodomain. This interaction positions the substrate
at the initial substrate-binding site of the complex, located at the interface between the two fragments of the PS heterodimer. (B) The
substrate then either physically translocates or kinks (shown) in such a way that the scissile bond is positioned within the catalytic site
formed by the transmembrane aspartate residues of PS helices 6 and 7. This model reflects aspects of figures from Wolfe [51], Shah et al.

[62] and Kornilova et al. [207].

secretase and for protease-substrate binding [201].
Later studies by Shah et al. [62] cogently demonstrat-
ed that Nct assists the substrate recognition process.
Following preliminary ectodomain shedding of a vy-
secretase substrate, the large Nct ectodomain binds to
the substrate’s free amino terminus. Chemical or
antibody-mediated obstruction of substrate N-termi-
nal amino functionality drastically inhibits substrate
binding and vy-secretase activity. Shah etal. [62]
identified a region within the ectodomain of Nct —
the DAP domain (DI'YGS and peptidase homologous
region) — to be critical for substrate recognition.
Various mutations of a highly conserved glutamate
residue in the DAP domain abrogated substrate
recognition, whereas mutation of this residue to an
aspartate did not significantly interfere with PS
activity. These results suggest that the carboxylate
side chain of Nct E333 is involved in a direct
interaction with the free N-terminal amino group of
y-secretase substrates (Fig. 5) [62].

The interaction between Nct and the substrate N-
terminus is involved in positioning the substrate into
the initial substrate-binding site (or docking site),
which is spatially distinct from the catalytic site.
Multiple lines of evidence support the existence of

physically separated docking and catalytic sites, in-
cluding (1) the ability of y-secretase to bind simulta-
neously a substrate and a transition state analog
(TSA) inhibitor [202, 203]; (2) the observation that
TSAs exhibit non-competitive inhibition [204, 205];
(3) FRET analysis demonstrating proximity between
APP CTFs and PS while PS is bound to a TSA
inhibitor [206].

An elegant study by Kornilova et al. [207] demonstrat-
ed that the putative docking site and catalytic site are
separated by a distance not exceeding three amino acid
residues in length. A 10-residue helical peptide vy-
secretase inhibitor (D-10) was reported to bind to the
PS heterodimer interface. In contrast to TSA inhibitors,
which allow simultaneous binding by substrates, D-10
prevented substrate binding, suggesting that it occupies
the docking site. Whereas D-10 (at the docking site)
and TSA inhibitors (at the active site) have been shown
to simultaneously bind y-secretase, D-13 (generated by
a three-residue extension of D-10) prevented binding
of TSA inhibitors, suggesting that D-13 occupies both
the docking site and the active site [207].

Such studies have led to a model of catalysis in which
an interaction between Nct and the substrate N
terminus positions the substrate within the docking
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site, at the interface between PS NTF and CTF. Either
physical translocation of the entire substrate or a kink
within the TM region of the substrate enables the
entire substrate or a portion thereof, respectively, to
enter the catalytic site where peptide scission occurs
(Fig. 5). Position x of the LGxGD catalytic motif
located in TM7 of PS has been shown to be critical for
substrate recognition [208].

The role of lipid rafts in y-secretase action

A large body of evidence has implicated cholesterol
in the production of Af and the progression of AD.
Cholesterol depletion in hippocampal neurons was
shown to entirely abrogate AP production [209],
while hypercholesterolemic mice have been shown to
be afflicted with an accelerated amyloid pathology
[210]. Cholesterol reduction (via application of the
cholesterol-lowering agents known as statins) was
shown to reduce BACE processing of APP in HEK
293 cells [211] and to reduce AP generation both in
hippocampal neurons and in guinea pigs [212].
Epidemiological studies have correlated a reduction
in the prevalence of dementia with the use of statins
[213,214]. These effects may be related to disruption
of lipid raft structures, in which BACE and Y-
secretase have been reported to reside [215-218].
Indeed, emerging evidence suggests an intimate
connection between APP processing and lipid rafts
[summarized in ref. 219]. Note, however, the exis-
tence of contradictory epidemiological data [220],
and the ambiguity characterizing the relationship
between statins and Af}, which could, for instance, be
a consequence of altered protein isoprenylation
[221].

Lipid rafts are highly ordered membrane microdo-
mains characterized by elevated levels of cholesterol,
sphingolipids, glycolipids, saturated phospholipids,
and glycosylphosphatidylinositol (GPI)-anchored
proteins relative to the bulk environment of predom-
inantly freely mixing unsaturated phospholipids [re-
viewed in ref. 222]. This particular arrangement
imparts the property of resistance to solubilization
by non-ionic detergents, such as Triton X-100, at
reduced temperature, and delineates lipid rafts (also
called detergent-resistant membranes, or DRMs) as a
unique subphase within the context of the lipid
bilayer. The functional importance of lipid rafts
derives from their ability to sequester various proteins
critical to such biological processes as signal trans-
duction, membrane traffic, lateral membrane sorting
[222], and, perhaps, regulated intramembrane pro-
teolysis [reviewed in refs. 223, 224].

Various reports have corroborated an intimate rela-
tionship between rafts and APP processing. APP has
been reported to interact with resident raft proteins
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[225], and studies have demonstrated APP processing
to be affected by ceramide, sphingolipids, glycosphin-
golipids, and isoprenoids [226-230]. The critical
dependence of amyloidogenic processing on lipid
rafts [231, 232] led Ehehalt et al. [231] to postulate the
existence of two separate pools of APP — a raft-
associated one that is cleaved by BACE in an
endocytosis-dependent manner, and a contingent
external to lipid rafts capable of undergoing non-
amyloidogenic processing by a-secretase, most likely
at the cell surface. Indeed, reduction of cholesterol
levels has been shown to enhance non-amyloidogenic
(a-secretase-mediated) processing of APP, an effect
that correlates with augmented membrane fluidity
and impaired APP internalization [233]. Vetrivel et al.
[234] have provided experimental support for a model
in which y-secretase and its substrates are compart-
mentalized into discrete membrane microdomains.
Distinct microdomain locales have also been reported
for a y-secretase substrate and its sheddase [235].
While it remains to be seen whether cleavage by other
y-secretase substrates is promoted by association with
raft domains, it is very likely that mechanisms
governing the movement of substrates between mem-
brane microdomains are important. Several lines of
evidence suggest that ligand binding and oligomeriza-
tion may control association of membrane proteins
with lipid rafts. For example, translocation of the B cell
antigen receptor to lipid rafts is triggered by antigen-
induced oligomerization, following which signal trans-
duction events occur [236]. Similarly, the T cell
antigen receptor [237] and FceRI [238] are recruited
to rafts immediately subsequent to ligand binding.
Engagement of tumor necrosis factor (TNF) receptor
1 by TNFa also triggers its association with rafts [239].
Binding of vy-secretase substrates, many of which
function as TM receptors, with cognate ligands may
also trigger association with rafts. As discussed earlier,
the ectodomain shedding event for a large number of
v-secretase substrates is triggered by ligand-binding or
oligomerization, which suggests that ectodomain
shedding is linked to the promotion of the affinity of
certain substrates for rafts. Indeed, studies have
reported the association of a number of y-secretase
substrates with lipid rafts and closely related caveolae
[240], including ApoER2 [241], CD44 [242], DCC
[243], IGF-1R [244], LRP-1 [245], and N-cadherin
[246]. Moreover, ligand-triggered association with
rafts has been demonstrated for EphrinB1 [247],
EphB2 [137], ErbB4 [248], GHR [249], HLA-A2
[250], and LRP-6 [251], while phosphorylation-de-
pendent recruitment has been demonstrated for p75
[252].
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Figure 6. Regulating access of APP to y-secretase by subcellular trafficking. APP (yellow cylinder) undergoes complex maturation and
trafficking throughout the endosomal system and may be cleaved by secretases in a number of subcellular compartments. The majority of
amyloidogenic (BACE) processing appears to occur after internalization of cell surface APP, possibly in conjunction with LRP (red
cylinder) and the adaptor protein, Fe65 (gray cruciform). Myriad proteins have been reported to bind to and modulate the trafficking and
processing of APP. Many of these interactions may be mediated by cytosolic adaptor proteins (denoted by the question mark signs and the
cruciforms). Much of the information presented in this figure must be subjected to additional experimental scrutiny. This figure also does
not include the additional level of trafficking that occurs between raft and non-raft fractions of the membrane, nor does it display BACE or
v-secretase trafficking. The activity of these two proteases has been demonstrated to occur at the cell surface and in various compartments
of the endosomal system, with the latter thought to represent the principal site of activity.

Controlled intracellular trafficking as a proteolytic
regulatory mechanism — the example of APP

APP traffic has been extensively studied; however,
many aspects remain ambiguous and controversial.
Traffic-controlled access of substrate to protease is
dynamically regulated for several I-CLiPs (cf. Fig. 1),
and will be surveyed in this section for the specific case
of y-secretase and APP (Fig. 6).

Mpyriad proteins have been identified as mediators
of APP traffic, many of which are members of the
low density lipoprotein (LDL) receptor and phos-
photyrosine-binding (PTB) domain families. APP
processing occurs at a number of locations as it is
trafficked throughout the cell: prior to reaching
the cell surface, at the cell surface, and following
internalization from the cell surface, although the

precise contribution of each pathway has not been
investigated.

LDL receptor-related protein (LRP) has been impli-
cated in the raft association, internalization and
amyloidogenic processing of APP [253-255]. LRP
physically associates with uncleaved APP [256] and
BACEI1 [257], and may therefore be involved not only
in the endocytosis of APP but in its presentation to
BACE]1. LRP1b, which has a reduced rate of internal-
ization relative to LRP, impairs APP endocytosis,
enhances cell surface levels of APP and stimulates
non-amyloidogenic APP processing [258]. Another
member of the LDL receptor family, LR11/SorLA,
has also been shown to mediate APP traffic [summar-
ized in ref. 259]. SorLA is believed to promote non-
amyloidogenic processing of APP, as suggested by its
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reduced expression in the AD brain and the elevated
production of AP upon ablation of SorLA [260].
Amyloidogenic processing of APP is believed to occur
primarily in the endosomal system following internal-
ization of cell-surface APP. SorLA functions as a
sorting receptor, and is thought to maintain APP in the
Golgi, thereby preventing it from reaching the cell
surface and subsequent endocytosis to the endosomes,
and thus diverting it from the amyloidogenic pathway
[261]. SorLA was later shown to interact directly with
APP and BACE and to reduce APP-BACE interac-
tions, suggesting that the reduction of amyloidogenic
processing also results from its interference with APP-
BACE association [262,263]. A fourth member of the
LDL receptor family implicated in APP traffic is
ApoER?2, which, like LRP, binds APP and escorts it to
lipid rafts; however, unlike LRP, ApoER?2 reduces the
internalization rate of APP and elevates amyloido-
genic processing at the cell surface [264]. F-spondin,
an extracellular ligand of both APP and ApoER2, is
believed to mediate a ternary complex with these two
proteins, leading to enhancement of their respective
cell surface levels and metalloprotease-mediated
processing [109]. Intriguingly, each of these four
transmembrane escort proteins is also cleaved by y-
secretase, which suggests a negative-feedback system,
in which the escort protein is enzymatically degraded
along with its cargo.

Various cytosolic adaptor proteins — the most prom-
inent of which are members of the X11/Mint and Fe65
families — have been reported to bind the intracellular
C-terminal YENPTY motif of APP (important for its
traffic) via PTB domains, and thereby modulate
processing of APP. Though the precise role of the
X11/Mint proteins is presently unknown [reviewed in
ref. 265], and controversial reports have been pub-
lished [266], much data suggest that these proteins,
along with synergistic contributions from Alcadeins
[267] and Munc18a [268], inhibit production of Af,
possibly by maintaining APP in an immature state in
early compartments of the secretory pathway [269—
272]. Recently, arole in APP traffic from the TGN has
been established for the y isoform of X11 [273].

The Fe65 family of adaptor proteins contain two PTB
domains, the second of which (PTB2), binds to the
APP family of proteins (APP, APLP1, APLP2) [274,
275]. Fe65 and its homolog — Fe65-like (Fe65L) and
Fe65L2 — have been reported to enhance A} produc-
tion [276-278]. Although the mechanism by which
Fe65 action is exerted is presently unknown, it may
occur via concomitant interaction with LDL receptor
family members. Through its other PTB domain
(PTB1), Fe65 can interact with a variety of proteins,
including LRP1 and ApoER?2, and can functionally
link these two receptors to APP [279-282]. Fe65L1
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has also been shown to enhance LRP degradation,
suggesting that Fe65 family members may funnel APP
and LRP in a tripartite complex toward secretase-
containing compartments [283].

Disabled (Dab)-1, another PTB domain-containing
protein binds to an NPxY motif in the cytosolic domain
of APP, APLP1, APLP2, ApoER2, VLDLr, and LRP
[279, 284-286], each of which is a substrate for y-
secretase. Dabl was reported to increase cell surface
levels of APP and ApoER2 and to elevate non-
amyloidogenic APP processing [287], though elevated
amyloidogenic processing has also been reported [288].
Numerous other adaptor proteins have been reported
to bind APP and influence its processing, including c-
Jun N-terminal kinase (JNK)-interacting protein-1
(JIP-1b) [289], Pinl [290], ShcA and ShcC [291-292],
PAT1 [293], BRI2 [294], and ARH [295].

Is y-secretase a processive protease?

Similar to other I-CLiPs [26, 36, 296], y-secretase
cleaves several substrates including APLP-1, APP
[103], CD44 [111], and Notch-1 [163], at multiple
locations. APP is cleaved intramembranously at the y-
site, located in the center of the TMD near residues
40-42 (using the numbering of A), the &-site, located
at the C-terminal end of the TMD near residue 49
[297], and the T-site, located near residue 46 [298].
Investigation into the relationship between these
various cleavage sites has demonstrated that Ap49 is
likely the progenitor of AP46, and that Af46 is an
intermediate precursor of AB40/42 [299], giving rise to
a sequential proteolytic cascade model, in which small
~three residue fragments are consecutively truncated
from the C terminus after an initial cleavage near the
membrane-cytosol interface [299, 300] (Fig.7). In
agreement with this model, evidence suggests a
sequential proteolysis of Notch, in which the S4
cleavage event, occurring near the middle of the
Notch TMD, depends upon the S3 cleavage event,
occurring near the membrane-cytosol interface [301].
Several studies [299, 300] have noted the orientation
of APP cleavage sites on the same side of the
transmembrane helix. Indeed, the periodicity of the
g, C, and vy cleavage sites is similar to the periodicity of
an o helix, suggesting a model in which the C terminus
of an a-helical substrate is ratcheted into the catalytic
site of y-secretase, undergoing consecutive cleavage
events that release a peptide fragment of approxi-
mately three or four amino acids in length.

Substrate specificity of y-secretase

v-Secretase is a very versatile protease, having already
been reported to cleave nearly 60 unique type I
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Figure 7. Model for processivity of y-secretase proteolysis. An initial ectodomain shedding event allows substrate recognition by vy-
secretase, which then executes successive juxtamembranous and intramembranous cleavage events. y-Secretase cleavage often yields a
transcriptionally active intracellular domain which can translocate to the nucleus to regulate gene expression.

transmembrane proteins (Fig.4). Many of its sub-
strates contain domains that are capable of trans-
locating to the nucleus and modulating transcription
of various genes [302]. Others do not appear to have a
definitive signaling function, leading to y-secretase’s
acquisition of the moniker ‘proteasome of the mem-
brane’ [303]. Potential pharmacological modulation
of y-secretase cleavage of C99 (the precursor to Ap)
[304], considered an important therapeutic target for
AD [305], must not interfere with y-secretases cleav-
age of its diverse collection of substrates.

Various studies have sought to define characteristics
that distinguish y-secretase substrates from peptides
that are not cleaved, e.g., MUC1 [110]. TMD ori-
entation (type I-N-terminal out) and ectodomain
length (the average reported ectodomain length for vy-
secretase substrates is slightly under 15 amino acids)
were thought to be requisite features of all efficiently
processed substrates [96]; however, the discovery of
peptides contradicting both these principles suggests
the importance of other features for substrate recog-
nition by y-secretase. Though the vast majority of vy-
secretase substrates are type [ TM proteins, type Il TM
proteins [306, 307] as well as the glutamate receptor
subunit 3 (GluR3), a multipass TM protein, have been
reported to undergo PS-dependent processing [308].
Processing has been reported for full-length E-cad-

herin, which has an extracellular domain of more than
500 residues [132] as well as full-length VEGF
receptor [188]. Lastly, y-secretase does not appear to
recognize a scissile bond by TM depth, as it is capable
of cleaving at sites throughout the TMD, at the
membrane-cytosol interface [132, 135], and in the
cytosolic juxtamembranous region [159]. We have
conducted an extensive bioinformatic examination of
substrate primary, secondary, and quaternary struc-
tures to determine structural characteristics that
predispose a substrate to y-secretase proteolysis.

Recognition of substrate primary structure by
y-secretase

Sequence conservation among substrates is minimal,
and mutations in substrates are apparently well
tolerated by vy-secretase, as evidenced by a number
of mutagenesis studies on APP [309-313] and other
substrates. Nevertheless, there are examples of single
point mutations that entirely abolish y-secretase
cleavage, suggesting that while the enzyme is promis-
cuous, it requires certain sequence or structural
characteristics for proper substrate recognition. Single
point mutations of the ErbB4 receptor tyrosine kinase
(V6731) and the Notch-1 receptor (V1744G), for
example, are known to abrogate proteolysis [139,
314]. In both cases, the mutated valine residue is
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Figure 8. Helical propensities relative to site of cleavage for y-secretase substrates. Using a combination of methods — psipred configured
with two different neural networks and jufo [315-317] — we compared residues surrounding 23 y-secretase cleavage sites. These methods
perform a three-state prediction, assigning a value to each amino acid indicating the probability that it exists in a random coil state, an o
helix, or a {3 sheet. The results from the three methods were averaged and plotted as a function of residue number relative to the site of

cleavage (position 0 in figure).

located immediately adjacent to the site of cleavage.
Many vy-secretase substrates contain a similarly posi-
tioned valine, which, though critical for the cleavage of
Notch-1 and ErbB4, has been demonstrated to be
dispensable for the cleavage of other substrates,
including APP [309], CD43 [110], and DCC [126].
Hence, the importance of primary structure is equiv-
ocal, and recognition likely involves factors at higher
levels of protein structure.

Recognition of substrate secondary structure

Proteolysis by other I-CLiPs is enhanced by and often
requires helix-destabilizing residues. To determine if a
similar requirement exists for y-secretase proteolysis,
we performed secondary structural predictions on all
substrates with known primary cleavage sites (Fig. 8).
The results suggest that helix destabilization may be
important for presenilin-mediated proteolysis. To our
knowledge, this is the first such demonstration of the
potential relevance of transmembrane helix destabi-
lization for y-secretase proteolysis. Cleavage appears
to most commonly occur near the C-terminal end of

the TM helix just inside the membrane-cytosolic
interface (Fig. 4).

Recognition of substrate higher-order structure by
y-secretase

A number of y-secretase substrates — syndecan-3
[195], E-cadherin [318], N-cadherin [319], ErbB4
[320], APP [321], PTPk, and PTPu [322] — dimerize
via TMD interactions. Several substrates (ErbB4,
IGF-1R, CSF-1R, VEGF-1R, EphB2) are receptor
tyrosine kinases (RTKs), which are known to dimerize
in response to ligand binding [323]. Mutationally
induced promotion of APP homodimerization result-
ed in substantial elevation of Af} production, suggest-
ing that dimerization may be a direct regulatory factor
in the proteolytic processing of APP [193]. In addition
to ectodomain dimerization interfaces, a particular
motif within the C99 TMD - GxxxG - mediates
homodimerization, and mutations affecting the dime-
rization strength of this motif alter y-secretase cleav-
age precision, but not efficiency. Interestingly, more
than 25 % of y-secretase substrates contain the GxxxG
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pentapeptide — a canonical TM dimerization motif
[324-325] - in their TMD (cf. Fig. 4). Inhibition of
C99 dimerization by mutating its GxxxG motifs was
shown to specifically reduce production of longer
forms of AP (e.g., AP42) and increase production of
shorter forms of AP (e.g., AP35, AP38) [321]. These
observations have led to an expansion of the proc-
essive proteolysis model proposed by Qi-Takahara,
such that PS proteolysis removes consecutive frag-
ments from the exposed C-terminus of APP until
cleavage reaches a certain distance from the dimeri-
zation motif, whereupon cleavage terminates and
ApPA40/42 is released. Disruption or attenuation of the
dimerization interface allows continued proteolysis of
APP, with the concomitant release of shorter AP
fragments. According to this model, the terminal
cleavage point is determined by the location and
strength of the TM dimerization interface [321]. Note
that oligomerization-dependent control of proteolysis
is unlikely to apply to all y-secretase substrates, as
demonstrated for the Notch receptor [165], suggesting
the existence of multiple proteolytic regulatory mech-
anisms.

Perspectives

Common themes have begun to emerge among the
evolutionarily diverse class of proteases known as I-
CLiPs. A regulated event such as ligand binding or
ectodomain shedding precipitates complex subcellu-
lar traffic events or movement between membrane
microdomains, following which the formerly separat-
ed protease and substrate come into contact. Often,
the proteolytic cleavage that ensues is not merely
degradative in nature, but initiates a signaling cascade
that can impact genomic expression, communicate
information to other cells, effect cellular homeostasis,
or nucleate pathological events. These peculiar pro-
teases have co-opted classical protease motifs. Their
sequence specificity is typically quite loose, and
factors beyond the primary level of protein structure,
particularly TM helix destabilization, appear more
important for substrate recognition and proteolysis.

Although much has been learned, many basic ques-
tions remain unanswered. The substrate/enzyme stoi-
chiometry, relevance of additional cofactors, and
subcellular localization and traffic of y-secretase
remain ill-defined. The traffic between subcellular
compartments and membrane microdomains for C99
and other y-secretase substrates — a critical facet of
proteolytic regulation — requires much additional
investigation. While correlations have been reported,
the discovery of causal factors regulating substrate
traffic and ectodomain shedding has been limited.

Intramembrane Proteolysis

Indeed, for C99 it remains unclear which trafficking
and/or enzymic properties control the rate of A
production. The processive model of intramembra-
nous cleavage also remains highly suppositional. Such
basic issues require continued attention to acquire a
deeper understanding of the various physiological and
pathophysiological events mediated or influenced by
y-secretase proteolysis. The clinical utility of agents
that modulate y-secretase activity, considered a viable
therapeutic avenue for the prevention and treatment
of AD, will be enhanced by an elucidation of these
fundamental questions.
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