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High-resolution solid-state NMR spectra of three full-length membrane proteins uniformly aligned
in lipid bilayers between glass slides are observed at high magnetic field. The resolution of the specific
amino acid labeled samples shows promise for large membrane protein structure determination
utilizing aligned samples and shows resonance patterns known as PISA wheels. The tilt angles of
the transmembrane helices are extracted from the resonance patterns in PISEMA spectra.

Progress has been made in membrane protein structure determmatlon in lipid bilayer
environments?. From the complete structure of gram|C|d|n in 199319 to the structure of the
M2 transmembrane domain with? and without1€ the antiviral drug amantadine, the structure
of MerFt12 etc., there are now ten structures in the Protein Data Bank characterlzed by aligned
sample SO|Id state NMR. Recent improvements in RF probe technology and in sample
preparation have make it possible here to obtain spectra of uniformly aligned full-length
membrang proteins displaying characteristic resonance patterns for their transmembrane (TM)
a-helices™.

Sample preparation is the key to macromolecular structural characterization, whether it is
crystallization for x-ray diffraction or cryo-EM, or homogeneous isotropic samples for solution
NMR, or a uniformly aligned sample for solid state NMR. Here, from monomeric to octameric,
from 3.5 to 82 kDa and from one to three TM helices per monomer we demonstrate uniform
protein alignment in hydrated phospholipid bilayers on glass slides.

The helical structure prediction for three proteins is shown in Fig. 1. KdpF is a 30 residue
protein (33 residues as expressed in E. coli) from the Mycobacterium tuberculosw genome.
This protein appears to be a component of the Kdp K* transporting complex It has a single
putative TM helix and no predicted 2° structure for the terminal segments. Rv1861 is another
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putative membrane protein from the Mtb genome. It has a predicted ATP or GTP binding site
in the N-terminal segment and three TM helices. Rv1861 is adjacent to the genes that code for
molybdenum transport and may be involved in this transport function. Non-denaturing PAGE
of this protein shows a narrow band at approximately 82 kDa suggesting an octameric state
(see supplemental materials). Diacylglycerol kinase (DAGK) from E. coli is an extensively
studied protein with an experimentally characterized secondary structure as illustrated in Fig.
112 1n addition to the three TM helices there are two short amphipathic helices thought to be
associated with the bilayer interface. Overall, this protein forms a native state trimer and
therefore, a nine-helix bundle.

Fig. 2 shows the PISEMA spectra of KdpF, Rv1861, and DAGK in liquid crystalline lipid
bilayer environments. Uniform helical structures generate patterns of resonances, known as
PISA (Polar Index Slant Angles) wheels with 3.6 resonances per turn. Because it has been
difficult to predict such wheels from crystallographic data in the Protein Data Bank due to the
relatively low resolution of the membrane protein structures, the high sensitivity of the wheels
to local structural variations and fotential tensor variation (see supplemental materials), it has
been questioned in the literature 3 whether PISA wheels would be observed in membrane
proteins. Here PISA wheels are clearly observed for two (KdpF and Rv1861) of the three
proteins. We have previously argued that due to the scarcity of strong inter-helical interactions
and the low dielectric of the membrane interstices that membrane proteins would have very
regular helical TM structurel0. Indeed, the uniformity of helical structures and the unusually
short intra-helical hydrogen bonds have been documentedl0; 14, meaning that, in general, the
helical structure is more uniform19:16 than observed in water soluble proteins where
approximately 30% of all helical backbone carbonyls accept more than one hydrogen bond.
The third protein, DAGK has TM helices displaying small tilt angles such that the PISA wheel,
which disappears at a 0° tilt angle, is unresolved in the uniformly 1°N labeled sample.

For KdpF the three valine residues in the TM helix are in a sequential pattern of i to i+3 to i
+6. Based on a 100° inter-residue spacing about the helical axis the connectivity lines between
the residues can be drawn on the wheel as in Fig. 2B resulting in the assignment of these
resonances to residues Valg, Valy; and Valq4. Therefore, not only can the tilt of this helix be
characterized as 34° + 3°, but the rotational orientation of the helix is also fixed by this residue
specific assignment of the resonances. A fourth Val residue in the N-terminus may be highly
dynamic generating a poorly cross-polarized signal and an 1°N-1H dipolar coupling near 0
kHz.

Rv1861 has three putative TM helices and the PISEMA resonance intensity is distributed over
most of the potential spectral area, and yet a characteristic wheel pattern is observed indicating
a tilt of 37° £ 3°. Since the intensity pattern around the wheel is so strong we anticipate that
two of the helices have this same tilt angle. While only three of the four Met resonances are
observed, Met; is likely to be highly dynamic, if it is not cleaved in the expressed protein. Of
the remaining three Met residues Met,g is likely to be part of TM2 and Metgy to be part of
TM3.

The helical tilt angles for the three TM helices of DAGK are smaller than those for KdpF and
Rv1861. Unlike Rv1861 the intensity distribution is at the extremes of the dipolar and chemical
shift ranges. All five of the Trp resonances are observed as shown in Fig. 2F. As predicted

from the secondary structure characterization1? three of the resonances are in the TM region
of the spectrum and two in the amphipathic surface bound region (70-80 ppm). TM3 has two
Trp residues and a Met residue and TM2 has two additional Met residues. Shown in Fig. 3 are
these resonances and theoretical PISA wheels reflecting a 9° and 15° helical tilt angle. The

three observed resonances in TM3, Metog, Trp112, and Trp;117 would be separated on the PISA
wheel by 140° and 160°, respectively. For a regular helical structure these resonances would
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not be in the same half of the wheel and therefore the helical tilt is likely to be less than 15°
and greater than 9° because of the separation of the Trp resonances or 12 + 3°.

Proteins ranging in molecular weight from a 3.5 kDa monomer to an 82 kDa octamer have
been uniformly aligned between glass slides demonstrating the feasibility of preparing full
length membrane protein samples for solid state NMR structural characterization. Initial
PISEMA spectra show that helical structures in membrane proteins can have a very regular
structure resulting in resonance patterns known as PISA wheels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Secondary structure prediction for (A) KdpF and (B) Rv1861 both from Mtb, and (C) DAGK
from E. coli®. This latter protein is a functional mutant engineered to be a particularly stable
trimer. Predictions for KdpF and Rv1861 were performed using TMHMM. The Val, Met
and Trp residues specifically labeled for PISEMA spectra are highlighted.
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Figure 2.

PISEMA spectra of KdpF (A&B), Rv1861 (C&D) and DAGK (E & F) of uniformly 15N-
labeled (A,C&E) and amino acid specific labeled protein (B,D&F) expressed in E. coli and
reconstituted into a mixture of lipids — dimyristoylphosphatidylcholine (DMPC) and
phosphatidyl-glycerol (DMPG) in a 4:1 molar ratio. The samples were aligned between glass
slides (see supplemental materials). Spectra were obtained with NHMFL low-E probes at 600
MHz except for the 1°N UL KdpF spectrum which was obtained in the UWB 900 MHz magnet.
The low-electric field feature was essential for this spectroscopy. 0.8 ms cross polarization
contact time, an acquisition time of 4 ms during with SPINALY decoupling was applied, and
arecycle delay of 6 s were used. To avoid the limitations of the 1H bandwidth the spectra of
DAGK were obtained in two halves with different offset frequencies. Spectra acquisition time
varies from 6 hours to 3 days. The PISA wheels were calculated using motionally averaged
tfilpolar (v = 10.375 kHz) and chemical shift tensors (c11 = 57; 622 = 81; 033 = 228 ppm)lov

J Am Chem Soc. Author manuscript; available in PMC 2008 October 18.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Lietal. Page 7

|
-
o

15N-TH Coupling (kHz)

I
N
o

250 200
19N Chemical Shift (ppm)

Figure 3.
TM region of the PISEMA spectra of 1°N-Trp (blue) and 1°N-Met (red) labeled DAGK.
Theoretical 9° and 15° PISA wheels are superimposed on spectra.
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