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Abstract
Most homeostatic processes including gene transcription occur as a result of deviations in
physiological tone that threatens the survival of the organism. A prototypical homeostatic stress
response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate
levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family
of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that
have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity.
Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional
regulation of hypoxia/stress-regulated genes and thus are an important component of events leading
to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to
regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the
development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting
cellular stress responses. These small molecules are proving effective in preclinical models of stroke
and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are
only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate
and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of
the transcription factors that play an effective role in neuroprotection against oxidative stress as a
result of changes in PHD activity.
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2. PROLYL HYDROXYLASE ACTIVITY AND REGULATION OF GENE
TRANSCRIPTION

Hydroxylation of specific amino acids in proteins is as an enzyme catalyzed posttranslational
modification that can lead to changes in interactions between proteins. Indeed, hydroxylation
of proline residues has been shown to play an important role in the stability of proteins such
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as collagen (1), elastin (2), and prion protein (3). Hydroxylation of specific prolines (position
402 or 564) within the transcriptional activator “Hypoxia Inducible Factor-1” (HIF-1) (4,5)
regulates its transcriptional activity. HIF-1 hydroxylation is a prototypic example of a
posttranslational modification capable of regulating gene transcription. As HIF is at the center
of adaptive responses to ischemic and oxidative stress, the regulation of HIF hydroxylation
becomes a viable strategy for engaging its homeostatic functions in a host of tissues,
particularly the brain. The group of enzymes that can catalyze the hydroxylation reaction of
HIF-1 are prolyl 4-hydroxylases (PHDs). These enzymes belong to a super family of 2-
oxoglutarate dependent hydroxylases, that require iron in the catalytic moiety (6). They also
utilize oxygen in the form of dioxygen, incorporating one oxygen atom into the proline residue,
and the other into 2-oxoglutarate, yielding succinate and CO2. PHD activity negatively
regulates the stability of hypoxia inducible factor-1 alpha (HIF-1α). The well-established
strategic role HIF-1 plays in the regulation of adaptive mechanisms in response to hypoxia,
the requirement of oxygen for the activity of PHDs and the inverse relationship between PHD
catalytic activity and HIF-1 transcriptional activity has led researchers to appropriately
designate PHDs as key players in the oxygen sensing transcriptional mechanisms regulated by
HIF-1. Interestingly, oxygen is not the only co-factor required for PHD activity. The transition
metal, iron is also required as is 2-oxoglutarate. The ability of both of these cofactors to regulate
PHD activity suggests that PHD activity can be modulated under conditions of iron or 2-
oxoglutarate deficiency. As iron and 2-oxoglutarate are critical for the optimal function of
mitochondrial respiration via their functions on Fe/S cluster proteins and production of
reducing equivalents (NADH and FADH2), it is not surprising that deficiency in either of these
two co-substrates would trigger transcriptional responses that decrease the dependence on
mitochondrial respiration and increase the dependence on glycolytic metabolism. In this
review, we provide an overview of the enzymology of the PHDs and the transcriptional
responses modified by changes in enzyme activity. We also discuss other transcriptional
activators that are induced by oxidative stress in the central nervous system.

3. REGULATION OF PROLYL 4-HYDROXYLASE (PHD) ENZYME ACTIVITY
VIA IRON, 2-OXOGLUTARATE AND OXYGEN BINDING SITES

The hydroxylation reaction catalyzed by the PHDs comprises of an iron-mediated
incorporation of a hydroxyl group into the conserved proline residue with the consumption of
a dioxygen molecule and release of carbon dioxide, whereas 2-oxoglutarate is converted to
succinate (7) (for review, see Siddiq et al., 2007) (Figure 1). PHDs that selectively catalyze
the formation of hydroxyproline in the HIF-1 molecule by the hydroxylation of conserved
proline residues belong to a sub-group of the dioxygenases. The most extensively studied prolyl
hydroxylases are the ones that hydroxylate a proline residues in collagen molecules (8-13).
These studies reveal that the enzyme, isolated as a homogeneous protein by affinity
chromatography from three different sources (8-10,12,14,15), occurs as a tetramer with a
molecular weight of about 240,000 (11,16-18). The enzyme does not hydroxylate free proline,
and recognizes a conserved motif (LXXLAP in the HIF-1 molecule; X indicates any amino
acid and P indicates the hydroxyl acceptor proline) in the primary substrate for hydroxylation
(5,11,19-22). The hydroxylation of prolyl residues in this sequence is influenced by the nature
of the amino acid in the X position, the nature of the amino acids in the adjacent sequences,
the chain length and conformation of the primary substrate (11,16,23).

In general, kinetic mechanisms for enzyme reactions fall into two major groups, sequential and
substitutional. In sequential mechanisms, all the reactants must combine with the enzyme
before the reaction can occur and the product is released; whereas in substitution mechanisms
one or more products are released before all the substrates have become bound to the enzyme.
Kinetics studies of PHDs suggest that the binding of the co-substrates Fe2+, 2-oxoglutarate,
oxygen, and the proline containing primary substrate to the enzyme occurs by a sequential
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mechanism (23,24) (Figure 1). However, several aspects of the co-substrate affinity, binding
and requirements of prolyl hydroxylase have remained unresolved. For instance, while the
absolute requirement of iron by PHDs and the mechanism by which iron mediates the transfer
of a hydroxyl group in the proline residue are well established, there is still considerable
disagreement concerning the affinity and binding strength of iron in the prolyl hydroxylase
protein. Spectroscopic evidence has been reported for the firm binding of iron to the enzyme
(25,26), however a main concern about these studies is the impurity of the enzyme preparations.
Some of the in vitro studies suggest that the enzyme was not completely inhibited by EDTA,
2,2′-dipyridyl and a variety of other chelating agents such as Desferrioxamine (DFO) (27,28),
but others have found complete inhibition with some of these compounds (e.g. (27,29,30).
There are also observations that prolyl hydroxylase purified by affinity chromatography on its
polypeptide substrate linked to agarose retained about 40% of its maximal activity without the
addition of Fe2+ (22,31). In vitro studies clearly indicate that the activity of pure prolyl
hydroxylase is completely dependent on added Fe2+. Whether iron stays permanently bound
to the enzyme in the tissues is not clear. There are reports suggesting that even when PHD is
purified by an affinity column procedure, the enzyme does not retain sufficient quantities of
iron to catalyze the reaction without the addition of this cation in vitro (32-34). Inhibition of
the activity of PHDs in primary neurons by the treatment with iron chelators such as DFO,
resulting in stabilization of HIF-1 and downstream target genes, indicates that these enzymes
do rely on the labile pool of iron in the cells for their activity (35). Fe2+ is located in a pocket
coordinated with the enzyme by three side-chains with two histidines and an aspartate forming
the catalytic triad (36-38). However, the exact mode of the binding of iron to the enzyme
molecule is not known, but it has been suggested in many previous reports that this binding
may occur to one or more −SH groups present in the vicinity of the active site of the enzyme
(33,39). In agreement with this suggestion, in vitro studies show that sulphydryl reagents inhibit
PHD activity (33), and this inhibition can be reversed with dithiothreitol (DTT) (33,40,41).

PHDs catalyze the uncoupled decarboxylation of 2-oxoglutarate in the absence of the
polypeptide substrate (42-47). It thus seems that Fe2+, 2-oxoglutarate and oxygen, can bind to
the enzyme in the absence of the polypeptide substrate. Studies using distinct structural analogs
of 2-oxoglutarate such as dihydroxybenzoate (DHB) and dimethyl-oxalyl-glycine (DMOG)
have been found to inhibit PHD activity (35). It is thus clear that the co-substrates 2-
oxoglutarate and iron bind at separate sites on the enzyme molecule (30) and the inhibition of
binding of either leads to inhibition of PHD activity and consequent activation of downstream
pathways governed by PHDs. These sites are evidently also distinct from the binding site of
the polypeptide substrate, as in vitro studies using oxaloacetate or Zn2+ do not affect the binding
of the polypeptide substrate to the active site (27). This also clearly suggests that some of the
citric acid cycle intermediates (27,28) may act as physiological inhibitors of the enzymes.

The prolyl hydroxylase reaction is entirely dependent on O2, and during the reaction one atom
of the O2 molecule becomes incorporated into the hydroxyl group of the formed hydroxyproline
while the other is incorporated into the succinate (33). Mechanistic studies of the enzyme
activity reveal that oxygen is activated before hydroxylation by the formation of a ferryl
intermediate or hydroperoxide (32,48-57). This occurs via interaction of molecular oxygen
with Fe2+ leading to the oxidation of Fe2+ to Fe3+ (33,36,58-61). Compounds capable of
inhibiting the formation of hydroperoxide, such as epinephrine and nitroblue tetrazolium,
inhibit the activity of PHDs in vitro (62). A series of reports show that HIF-1 protein levels
are generally low in rodent tissues under physiological conditions, however with organ or
systemic hypoxia and diminished PHD activity, HIF-1 levels are significantly increased, and
thus there is an increase in HIF-target gene transcription (35,62-66).
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4. PHD ACTIVITY-RESPONSIVE TRANSCRIPTION FACTORS
Most physiological processes including gene transcription occur as a result of changes in the
tonic physiologic or biochemical state of the cells and tissues in order to either fulfill the basal
endogenous needs to stay alive, or combat to and survive against an external stimuli such as
stress. 2-oxoglutarate being a part of the TCA cycle and both Fe2+ and O2 being electronically-
activated, radical-generating molecules play an important role in determining the ‘redox-state’
or ‘stress’ driven processes in living cells. The sensitivity of the PHD activities towards
changing levels of fundamental molecules, like oxygen, 2-oxoglutarate and iron, presents a
very complex but rather useful scheme that engages cellular adaptive responses leading to the
activation of rescue mechanisms. These mechanisms help the cell survive by initiating the
transcriptional upregulation of genes that enhance tissue perfusion and anaerobic ATP
generation pathways. Gene array analysis has recently revealed significant information
regarding global changes in the gene transcription pathways of cells in response to stress such
as hypoxia/ischemia. These changes not only enhance the capability of the system to combat
the hypoxic conditions but also contribute to hypoxia-induced phenotypic changes in the cells
(67,68). Studies have also demonstrated that stress as a result of changes in oxygen or iron has
a cell-type and cell-state specific effect on the cellular transcriptome. Although the knowledge
of the transcriptional mechanisms that are activated by the oxygen sensors is crucial to influence
the downstream gene transcription events in favor of physiologic recovery, an effective
therapeutic approach requires a global understanding of the upstream pathways. These stress-
sensing mechanisms that communicate the stress signal to specific transcriptional regulators
in the brain are areas of intense investigation in our own laboratory as well, and the current
hypotheses include investigations regarding the direct role of oxygen, iron and 2-oxoglutarate
dependent enzymes prolyl hydroxylases in neuroprotective transcriptional pathways. In the
following section, we discuss the various transcription factors that play a established role in
neuroprotection and are regulated in response to changes in oxygen, iron or 2-oxoglutarate and
thus may be a potential PHD target or interactors.

4.1. The Hypoxia-Inducible-Factors (HIF)
The HIF transcription system including its homologs (e.g., HIF-1α, HIF-2α, HIF-3α) has
emerged as a key regulator of responses to changes in PHD activity as a result of changes in
oxygen and/or iron levels, both at local and systemic levels. So far, HIF is the most established
PHD-regulated transcription factor. The degradation of HIF occurs in the presence of molecular
oxygen by modification of oxygen-dependent degradation domains within the HIF protein
carried out by the PHDs. These enzymes add a hydroxyl group in conserved proline residues
(402 and 564 of the alpha subunit of HIF-1) thus facilitating interaction with the von Hippel-
Lindau tumor suppressor, which targets HIF-1α for proteasomal degradation (Figure 2).
Treatment of both isolated neurons or animals with PHD inhibitors leads to stabilization of
HIF and an increase in the levels of its downstream target genes (e.g.erythropoietin, vascular
endothelial growth factor, glycolytic enzymes) (35).

It is believed that approximately 1–1.5% of the genome is transcriptionally regulated by
hypoxia. Many of these genes are known to be regulated by HIF-1α regulate biological changes
(e.g. increased O2 delivery, increased angiogenesis, increased anaerobic glycolysis) that
facilitate adaptation to hypoxia and associated metabolic compromise. In addition to its role
in combating hypoxia, HIF-dependent gene expression provides resistance to oxidative stress,
since many of the genes regulated by HIF-1 or HIF-2 (e.g. erythropoietin, VEGF, MnSOD)
prevent oxidative stress-induced death by themselves (69-73). Recent evidence has pointed
out that reactive oxygen species (ROS) generation occurs at multiple time points after stroke
(74-76). Studies on the expression of HIF-1 and its target genes in the adult rat brain have
shown that after focal cerebral ischemia, mRNAs encoding HIF-1α, glucose transporter-1 and
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several glycolytic enzymes including lactate dehydrogenase were up-regulated in the areas
around the infarction (77-80).

Pharmacological and genetic strategies that reduce oxidative injury and decrease brain damage
are now considered to be an effective approach for drug development in stroke. The well-
established role of PHDs in the scheme of HIF regulated gene transcription presents researchers
a distinct therapeutic target for activation of HIF by small molecule “drugs” against oxidative
stress. The advantage of this strategy as compared to prior “antioxidants” is the ability of a
single drug to selectively target a single molecule (i.e. PHD) that will activate more than seventy
genes providing adaptation to ischemia and oxidative stress (35,81,82) (Figure 2).

4.2. Cyclic AMP response element binding protein (CREB)
The cyclic AMP response element binding protein (CREB) is one of a family of leucine zipper
transcription factors regulated by intracellular signaling mechanisms such as cAMP and
Ca2+. CREB family members contain a C-terminal basic domain that mediates DNA binding
and a leucine zipper domain that facilitates dimerization. These two domains are separated by
the kinase inducible domain (KID). Ser-133, present in the KID is phosphorylated in a stimulus-
inducible manner leading to the binding of the KID domain to the transcriptional coactivator,
CREB binding protein (CBP) (83,84). This phosphorylation-dependent interaction between
CREB and CBP is believed to function as the trigger for inducible gene expression. Since the
identification and cloning of CREB, the molecular mechanisms by which it functions as an
inducible regulator of transcription have been the focus of much investigation. Clear details of
the upstream signaling mechanisms that convert extracellular stimuli into CREB activation,
by Ser-133 phosphorylation, in order for CREB to function as a stimulus-dependent
transcriptional activator are not known. In neurons, CREB phosphorylation occurs under a
wide variety of cellular circumstances. These include responses to growth factors during the
development of the nervous system, depolarization and synaptic activity during normal
neuronal function, and hypoxia and stress responses during stroke or neural injury.

Acute mild hypoxia in neuronal cells activates CREB through phosphorylation at serine 133
(85) and CREB and HIF-1 may act together at promoters of genes involved in hypoxic
compensation (e.g. LDH). In an intestinal epithelial cell model, more severe hypoxia results
in the CREB degradation, an event mediated through decreased activity of protein phosphatase
1γ (86). CREB degradation leads to a derepression of inflammatory gene expression and thus
contributes to hypoxia activated inflammatory processes. Interestingly, more prolonged
exposure to severe hypoxia results in CREB stabilization and a resolution of inflammatory
gene expression through the transcriptional upregulation of small ubiquitin-related modifier-1
(SUMO-1) modification (87). Thus the hypoxia regulated CREB-dependent gene expression
is dependent upon the extent and degree of the stimulus.

There are also reports that show treatment of primary neurons with hypoxia mimics, such as
iron chelators, increases CREB binding to DNA (88). Recent unpublished data from our lab
shows that treatment of primary neurons with structurally distinct inhibitors of PHD activity
increase CREB protein as well as mRNA levels (Siddiq et al., unpublished data). Although the
molecular components by which hypoxia or hypoxia mimics alter signaling cascades
culminating in CREB inhibition/activation have not been as precisely defined, some attractive
candidates, such as SAPK2/p38MAPK exist. As a hypoxia-activated kinase, SAPK2 has at
least three downstream targets, MAPKAP K2, MSK1, and MSK2. All of which are CREB
kinases (89,90). These appear to be critical regulators of CREB because in mouse fibroblasts
lacking MSK1 and MSK2, CREB phosphorylation in response to stress is eliminated almost
entirely (91). There are various reports showing a direct effect of hypoxia on the activity of
these kinases. For instance, the activation of p38 MAPK requires dual phosphorylation of
threonine 180 (Thr180) and tyrosine 182 (Tyr182) residues within the conserved threonine-
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glycine-tyrosine (TGY) motif. This is reported to be involved in conveying extracellular stress
to cellular response such as inflammation and the processes of cell differentiation, growth, and
death (92). However, reports suggest that under hypoxic conditions enhanced phosphorylation
of CREB is accompanied by the decrease of ERK1/2 phosphorylation in mice brains (90,
93-96).

There are also reports that suggest inhibition of kinase activities by prolyl hydroxylases, such
as the ones that regulate NF-κB activation by a hydroxylation mechanism (97) (see next section
for details). It is possible that under normoxia inhibition of one or more of the phosphorylating
kinases in the ERK/MAPK signaling pathway occurs by the addition of a hydroxyl group by
the PHDs, whereas under hypoxic conditions, inhibition of PHD activity allows for the
activation of the CREB by phosphorylation. Decrease in ERK phosphorylation under hypoxic
conditions may be a result of feedback mechanisms once the survival machinery is active. In
summary, there seems to be a cross talk between the CREB phosphorylation and activation
under stress conditions and PHD activity under hypoxic conditions, but a cogent model of how
these pathways intersect is just being established (Siddiq et al., unpublished observations).

4.3. Nuclear factor kappa-B (NF-κB)
The transcription factor nuclear factor kappa-B (NF-κB) is known for its fundamental role in
regulating immune and inflammatory responses. Originally discovered in B lymphocytes about
20 years ago (98), the NF-κB family members (p65 or RelA, RelB, c-Rel, p50/p105 or NF-
κB 1, and p52/p100 or NF-κB 2) are also diffusely expressed in both neurons and non-neuronal
cells (99). However, in certain regions of the brain, especially the cortex and hippocampus,
constitutive nuclear NF-κB activity has been reported exclusively in neurons (100-103).
Members of the NF-κB family share a conserved Rel-homology domain (RHD) responsible
for DNA binding activity, protein dimerization, and nuclear translocation. NF-κB is bound to
the repressor molecule inhibitory kappaB (IκB) in the cytosol in the absence of stimulus. This
coupling of proteins masks the nuclear localization sequence (NLS) of NF-κB and sequesters
the protein in the cytosolic compartment. Upon stimulation, IκB is targeted for ubiqutination
and degradation by specific serine phosphorylation. The NLS of NF-κB is then exposed, and
enables it to translocate to the nucleus where it carries out its transcriptional activity at specific
κB sites within the promoter regions of target genes (104). NF-κB-responsive genes include
those responsible for encoding inflammatory cytokines, chemokines and cell surface adhesion
molecules and several hypoxia induced genes such as cyclooxygenase-2 (COX-2), tumor
necrosis factor alpha (TNFα), interleukin-6 (IL-6) and macrophage inflammatory protein-2
(MIP-2). NF-κB plays a dynamic role in the survival and death of neuronal and non-neuronal
cells under physiological and pathological conditions (105,106). Research has established that
the activation of NF-κB by cytokines enhances neuronal survival by preventing apoptosis and
that the anti-apoptotic action of cytokines disappears in neurons that are treated with a super-
repressor IkappaB-alpha protein, or lacking the RelA (p65) subunit of NF-κB (107). The
inhibition of NF-κB renders various types of cells highly vulnerable to apoptosis (104,108).

Until recently, the central event in NF-κB activation that is the removal of the IκB complex
from the transcription factor was considered to be through a process involving phosphorylation
and degradation in which the IκB degradation is preceded by phosphorylation of serine residues
32 and 36 mediated by the IκB kinase (IKK) complex. However more recent reports show that
NF-κB activity is mainly regulated by the regulation of molecules further upstream of the
IκB phosphorylation. Hypoxia and more importantly specific inhibition of PHD activity by
pharmacological agents as well and siRNA stimulate NF-κB transcriptional activity (97).
Mechanistic studies reveal that neither NF-κB nor IκB contain hydroxylation motif but two of
the important upstream kinases namely, inhibitory kappaB kinase alpha (IKKα) and inhibitory
kappaB kinase beta (IKKβ), contain the sequence LXXLAP, the conserved proline containing
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motif present in HIF-1 molecule making it a primary substrate for hydroxylation by PHDs.
Mutation of this conserved proline residue to alanine resulted in the loss of hypoxic-inducibility
of NF-κB activity. It is proposed that under normoxic conditions, hydroxylation of this
conserved proline residue inhibits the phosphorylation activity of these kinases thereby
inhibiting the phosphorylation and degradation of the IκB subunit. Under hypoxia, inhibition
of PHD activity inhibits the hydroxylation of the IKKα and IKKβ, leading to the
phosphorylation and degradation of IκB and subsequent activation of NF-κB transcriptional
activities (Figure 3).

4.4. Specific protein 1 and 3 (Sp1 and Sp3)
Sp1 and Sp3 are ubiquitous transcription factors of the Sp/XKLF transcription factor family
that are involved in basal transcription and housekeeping gene expression (109-112). This
family includes members such as Sp2–Sp4 that contain identical sequence binding motifs, but
can display differential activity, depending on the stimuli. For instance, polyglutamine
expansions in the huntingtin protein can induce neuronal toxicity, in part, by sequestering Sp1
and one of its coactivators, TATA binding protein-associated factor (TAF)II130, suggesting a
role for Sp1 in neuronal survival (113,114). Sp1 has also been shown to regulate prosurvival
proteins e.g., the inhibitor of apoptosis (IAP) protein, survivin (115), and manganese
superoxide dismutase (116) as well as prodeath proteins e.g., Fas ligand (117,118) and 12-
lipoxygenase (119). Like other transcription factors, the role of Sp1 in regulating cell death
may depend on a number of factors, such as the cell type and the death stimulus (120). Levels
of Sp1 are regulated to an extent by mRNA expression, but further regulation can be imposed
by proteasomal degradation, for example, in response to nutrient starvation and adenylate
cyclase stimulation (121). Reports suggest that in primary neurons, oxidative stress increases
the levels as well as DNA binding of both Sp1 and Sp3 in neurons (122). Similarly, several
classically hypoxia-responsive genes such as EPO and VEGF have Sp1/Sp3 binding sites
within promoter regions that are thought to facilitate transcriptional activation (123,124). Sp1
and Sp3 have also shown to be involved in COX-2 expression in a hypoxia independent manner.
Both hypoxia and oxidative stress increase nuclear localization of Sp1 and Sp3 levels (122,
125). Forced expression of Sp1 and Sp3 enhances neuronal survival under oxidative stress
conditions. Sp1 and Sp3 activation appear to be temporally related to the onset of oxidative
stress in cortical neurons and not a late event that is a consequence of oxidative stress-induced
cell death. Activation of Sp1 and Sp3 DNA binding occurs within the first 2 hr of glutamate
or HCA exposure and is maximal by 5 hr. The kinetics of Sp1 and Sp3 activation demonstrate
that induction of these factors is an “early” response to cell stress, and their activation is initiated
8–10 hr before the point at which neurons become irreversibly “committed” to the cell death
pathway (88,126-128). The close temporal relationship between oxidative stress and Sp1 and
Sp3 activation is also supported by the observation that structurally diverse small molecules
including inhibitors of the prolyl hydroxylases (e.g., DFO) that inhibit oxidative glutamate
toxicity also block the activation of Sp1 and Sp3 by glutathione depletion, despite having no
effect on glutathione depletion per se (88,127). The direct effect of hypoxia or oxidative stress
on Sp1 and Sp3 activities and presence of Sp1 and/or Sp3 binding sites in hypoxia-regulated
genes such as VEGF, indicates a HIF-1 independent but redox-sensitive mechanism by which
levels of survival genes may be regulated. Similarly, induction of VEGF may also occur via a
p42/p44 MAP kinase-dependent mechanism (129). These studies reveal the presence of two
Sp1-binding sites present in the MAP kinase responsive region. Wild type or mutant constructs
for the Sp1 show that mutation of both Sp1-binding sites blocks the phosphorylation-dependent
transcriptional activation and VEGF induction (130). There are also reports showing activation
of the MAP kinase pathway by hypoxia /ischemia (93) which in turn affects Sp1 activation.
The redox sensitive regulation of Sp1/Sp3 levels and transcriptional activity and their ability
to induce neuroprotection and survival genes through diverse signaling mechanisms suggests
the presence of a molecular framework connected via PHD activity.

Siddiq et al. Page 7

Front Biosci. Author manuscript; available in PMC 2008 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.5. Activating protein-1 (AP-1)
Activating protein-1 (AP-1) is a redox-sensitive transcription factor and it has been suggested
that hypoxia and consequently the redox environment in the cell, initiates AP-1-mediated gene
transcription (131). It comprises members of Fos, Jun, ATF (activating transcription factors)
and MAF (musculoaponeurotic fibrosarcoma) (132-138) protein families that can
homodimerize or heterodimerize to form the active AP-1 complex and modulate gene
expression. The combinatorial interaction of these proteins provides multiple levels of gene
expression control. In addition, cell type and the differentiation state can dictate the phenotypic
outcome, accounting at least in part for how AP-1 can regulate apparently conflicting endpoints
(137). AP-1 is involved in diverse cellular functions related to apoptosis, cell proliferation, cell
differentiation, catecholamine biosynthesis, inflammation, xenobiotic metabolism, tumor
invasion and angiogenesis (138). Genes regulated by AP-1 in hypoxia include tyrosine
hydroxylase (139), VEGF (140), and endothelial NOS (eNOS) (131). AP-1 co-operates with
other transcription factors such as HIF-1, GATA-2, NF-1 and NF-κB to complement the
activation of hypoxia-sensitive genes (139-142). Thus, AP-1 may represent an important
facilitator of stress-induced gene expression through interaction with other transcription
factors. The mechanism by which AP-1 is activated in hypoxia has yet to be fully elucidated.
This is likely to be a complex process, given AP-1's apparent activation by oxidants (131) and
anti-oxidants alike (143). Another signaling mechanism proposed is the hypoxia-induced
modulation of intracellular Ca2+ levels upstream of AP-1 activation (139,140,144,145). This
increase is thought to activate AP-1 independently of HIF. Other reports demonstrate a role
for non-receptor tyrosine kinases in propagating the hypoxic signal from G protein-coupled
receptors based on results implicating a role for Src (non-receptor tyrosine kinase) and Ras
(145). Reports suggest that AP-1 activation under oxidative stress is mediated via a Jun N-
terminal kinase (JNK)-dependent pathway (146). An interesting model of JunD induced gene
expression via PHDs has been presented by Gerald et al (147). Accordingly, JunD, a member
of the AP-1 family, regulates both genes involved in antioxidative defense and H2O2
production. Increased production of H2O2 by JunD inhibits the PHD enzyme activity by
promoting iron oxidation i.e. by converting Fe2+ to Fe3+. An increased proportion of PHD in
the Fe3+-inactivated state limits PHD activity, and therefore a decrease in HIF-1α
hydroxylation, and degradation. Subsequently, HIF-1α accumulation enhances VEGF-A
transcription. Reciprocally, JunD overexpression decreases intracellular H2O2 content,
alleviates toxic effects of ROS, and efficiently counteracts Ras-induced angiogenesis in tumors.

5. PERSPECTIVES
Hypoxia is among the most fundamental of stresses for multicellular organisms that depend
on oxygen as the terminal electron acceptor in efficient mitochondrial ATP production. The
precise mechanism by which a change in oxygen tension leads to a complete reorganization
of metabolic infrastructure is beginning to be elucidated. Central to these adaptive
reorganization efforts is the change in activity of the oxygen, Fe2+ and 2-oxoglutarate
dependent dioxygenases known as the HIF prolyl 4-hydroxylases. These enzymes possess a
Km for oxygen that makes them ideal oxygen sensors (7). In response to changes in iron,
oxygen or 2-oxoglutarate, PHD activity decreases. It is now clear that in addition to the
canonical PHD substrate HIF, other transcription factor families such as CREB, NF-κB and
AP-1 are also regulated by changes in PHD activity. The precise targets that must be
hydroxylated to suppress adaptive hypoxia signaling are being defined. Moreover, an
understanding of the tissue specific and subcellular mechanisms by which PHDs modify the
tone of gene expression are only beginning to be defined. The current review summarizes our
limited knowledge of what promises to be a very fruitful and therapeutically relevant field of
investigation.
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Figure 1.
Schematic presentation of the proposed sequential mechanism for the prolyl hydroxylase
reaction. The 2-oxoglutarate is stoichiometrically decarboxylated during the hydroxylation of
HIF in the presence of dioxygen and iron, resulting in the generation of carbon dioxide
(CO2) and succinate. The dashed lines between the enzyme and Fe2+ indicate that the enzyme
may exist with or without Fe2+ in the catalytic moiety after each catalytic cycle.
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Figure 2.
Cellular response to hypoxia: Levels of Hypoxia Inducible Factor-1 (HIF-1) are regulated by
cellular oxygen by proline hydroxylation. The reaction is catalyzed by the enzymes prolyl 4-
hydroxylases. Under normoxia (blue arrows), the intracellular level of HIF-1α is kept low by
rapid ubiquitination and subsequent proteasomal degradation via recruitment of von Hippel–
Lindau protein (pVHL), which depend on the hydroxylation of proline residues. In contrast,
under hypoxia (orange arrows), both the intracellular level and the transcriptional activity of
HIF-1α increase as a result of suppressed PHD activities. Consequently, HIF-1α forms a
heterodimer with HIF-1β and changes the transcriptional rates of HIF-1-regulated genes under
hypoxia; Reproduced with permission from # 7.
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Figure 3.
Nuclear factor kappaB regulation, NF-κB dimers are held in the inactive state by a family of
inhibitors called I-κB. Diverse signaling mechanisms, such as inhibition of PHD activity by
hypoxia or DMOG, leads to activation of a multisubunit kinase IKK complex which
phosphorylates I-κB on two key serines. Phosphorylation of I-κB marks it for degradation by
the ubiquitin pathway, NF-κB dimer is thus liberated to translocate to the nucleus, bind DNA
and activate transcription. Under normoxia, a hydroxylation reaction, catalyzed by PHDs
hydroxylates the proline on the IKK□ subunit, inhibits the downstream phosphorylation events
thus inhibiting NF-κB activation.
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