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Abstract
The objectives of this study were to use computer-generated phantoms containing real subject motion
to: 1) compare the sensitivity of four commonly used fMRI software packages, and 2) compare the
sensitivity of three statistical analysis strategies with respect to motion correction. The results suggest
that all four packages perform similarly in fMRI statistical analysis with SPM2 having slightly higher
sensitivity. The most sensitive analysis technique was to perform motion correction and include the
realignment parameters as regressors in the general linear model. This approach applies to all four
packages examined and can be most beneficial when stimulus-correlated motion is present.
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Introduction
The objective of most functional MRI (fMRI) experiments is to determine the degree to which
voxels in the brain respond to a given stimulus. The methods used to accomplish this task are
difficult to evaluate and compare because there is no absolute ground truth for the results. Some
comparisons between fMRI software packages have been limited to qualitative descriptions of
documentation, functions, and ease of use [1]. Others have used multiple repetitions of the
same experiment to increase reliability in the results [2–4]. Many others have found the use of
various simulations or computer-generated phantoms valuable in examining fMRI analysis
techniques. In these simulations, periods of signal increase and noise were added to null data
sets to evaluate imaging and post-processing [5–7] and voxel-wise thresholding methods [8,
9]. In all of these phantoms, motion was excluded or ignored.

Ardekani et al. added random rigid-body motion and noise to a data set without activation to
compare the performance of four software packages based on realignment error [10]. Others
have added regions of activation to the phantom with random motion [11] or real subject rigid
body motion [12] and noise to evaluate the effects of motion correction on activation detection.
In a similar study, we added real subject rigid and non-rigid body motion and varying levels
of activation and noise to a null dataset in order to compare commonly used fMRI software
packages based on the effect of their motion correction algorithms on detection of activations
[13]. These three studies illustrated that the most accurate motion correction algorithms were
able to increase specificity through accurate realignment while maintaining sensitivity through
effective reslicing techniques. We also looked at the effect of motion correction algorithms on
phantom data with no motion added and found no loss of sensitivity with motion correction.

More recent modifications to the phantom [14] employed updated registration methods for
more accurate simulation of real subject motion. Also, a denoising approach was used to
improve the signal-to-noise ratios of the base images from which the phantoms were
constructed. A single-template method was used to create all the phantoms as a single subject,
resulting in uniform creation of simulated activation regions. Finally, a collection of phantoms
was generated with varying levels and types of real subject random and stimulus-correlated
motion. These improvements have produced phantoms that can be used for more accurate
evaluation of fMRI analysis of more realistic data with respect to activation sensitivity than
previous phantoms.

Evaluation of the utilization of motion correction algorithms and their effects on activation are
important in the comparison of fMRI software packages because head motion is a primary
source of error in processing of fMRI studies [15,16]. One main cause of error is that the same
voxel location imaged in two different scans may contain MRI image information from two
different locations within the brain. Also, signal variations occur when the head is in different
positions within the magnetic field of the scanner in different scans. Finally, motion can
influence signal intensity because the signal intensity is a function of the history of the position
of the voxel in the magnetic field (spin history), especially in voxels whose relaxation time,
T1, is much larger than the repetition time [17]. The rigid and non-rigid body motion taken
from a real subject included in our current phantom incorporates the first error and some of the
effects of the second, but does not include the third type of motion error.
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Another concern in correcting for motion in fMRI data is the presence of stimulus-correlated
motion. Stimulus-correlated motion can increase the number of false-positive activations when
signal changes at anatomic boundaries appear to be due to the stimulus, when in reality they
are due to motion [18,19]. After datasets containing stimulus-correlated motion are realigned,
sensitivity to both false-positive and true-positive activations can be significantly reduced.

Motion correction may be further utilized for detection of activation by including the signal
changes due to motion as confounding effects of no interest in the general linear model (GLM)
[20]. In an investigation to determine the optimum design for fMRI studies involving overt
speech, Birn et al. simulated datasets including signal increases due to activation and/or signal
increases due to motion in block and event-related paradigms [21]. The data were analyzed
using three different strategies: no correction for motion, ignoring all data at time points
acquired during motion, and incorporating a model of the motion-induced signal as a regressor
in the GLM. Their results showed that when activation related changes occur in the same voxels
with motion related changes, modeling the motion as an additional regressor can improve the
detection of the activation. In the same study, in vivo data were also analyzed using the same
three strategies with similar results. One interesting note is that in all three strategies, datasets
were not corrected for motion in the traditional sense of co-registration. In practice, most data
are co-registered and resliced before statistical analysis. Also, the stimulus timing was used as
the added motion regressor. This approach assumes that the subject moved in the same way in
response to all of the stimuli. It is more common to use the actual motion translations and/or
rotations as added regressors in the GLM. Our computer-generated phantom can be used to
further evaluate the use of adding motion regressors to the GLM when the more common
practice of motion correction (referring to co-registration and reslicing) is also employed.

In another study, the effects of task-correlated motion on effective connectivity were examined
using three different strategies [22]. Specifically the investigators compared motion correction
with SPM2 (http://www.fil.ion.ucl.ac.uk/SPM/SPM2.html), motion correction with SPM2 and
including the rigid body motion parameters in the statistical model, and the FLIRT motion
correction (http://www.fmrib.ox.ac.uk/fsl)[23] followed by an independent component
analysis (ICA) to identify and remove the motion-related components. When implementing
each of these preprocessing strategies on twelve healthy volunteers performing a word
generation language task containing stimulus-correlated motion, they found no significant
differences between activation maps. The effective connectivity, on the other hand, was greatly
influenced by the preprocessing strategy.

The first objective of this study was to use our collection of computer-generated phantoms,
which include a wide range of realistic subject motions and levels of signal change, to compare
the fMRI analysis of four commonly used software packages. Specifically, quantitative
comparisons were made based on activation detection (sensitivity) in ten phantoms containing
varying degrees of random and stimulus-correlated motion. The second objective of this study
was to compare the sensitivity of three types of statistical analysis strategies with respect to
motion correction: no motion correction, with motion correction, and with motion correction
and including the motion parameters as regressors in the GLM. The completion of these two
objectives will result in a framework upon which other quantitative comparisons of fMRI
algorithms can be based.

Materials and Methods
Phantom

The computer-generated phantom we created and utilized in this work is described in detail in
Pickens et al. [14] and is available via website
(http://www.vuiis.vanderbilt.edu/fmriphantoms). The phantom consists of a single gradient-
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echo, echo-planar image volume (TE = 35 ms, TR=2000 ms, 90° flip angle, 64x64 matrix, 7
mm thickness, 0 mm gap, 19 slices per volume) denoised [24] and copied 99 times to create a
100 volume fMRI acquisition. Ten regions of activation of 3x3x2 (X x Y x Z) voxels were
added using a block design paradigm of 10 volumes per block convolved with a hemodynamic
response function derived from the sum of two gamma functions (delay of response = 6 sec,
delay of undershoot = 16 sec, dispersion of response = 1 sec, dispersion of undershoot = 1 sec,
ratio of response to undershoot = 6, length of kernel = 32 sec) [25]. The activation levels were
0.5, 1, 2, 4, and 6% signal change in two regions each. Rigid body motion estimated from a
normal volunteer using mutual information [26]and non-rigid body motion from the same
dataset, measured using an adaptive bases method we have developed, [27] were then added.
The non-rigid body motions include signal changes from physiological sources such as cardiac
and respiratory motion and are small relative to the rigid-body motion. Last, a Rician noise
level [28]comparable to the original image noise was added independently at each time point
using trilinear interpolation. This phantom allows evaluation of fMRI analysis algorithms as
performed in this study.

It should be noted that the design of the phantoms used here was optimized for comparison of
fMRI statistical algorithms with respect to activation sensitivity. However, this method
prohibits absolute comparisons of motion correction algorithms in two ways. First, we use a
single template, so the motion applied to the template is a combination of the motion from the
real subject and the coregistration between the real subject and the template. This extra step of
coregistration includes non-rigid body deformations. Second, the motion measured from the
real subject is also a combination of rigid and non-rigid body motion at each voxel. Because
of its non-rigid body motion component, the motion applied to our phantom cannot be directly
compared to the estimate of the rigid body motion determined by the different packages. A set
of phantoms optimized for the purpose of comparing motion correction approaches can be
created with modifications to the design used here and may be pursued in a future study.

Motion Models
Four categories of real subject head motion were incorporated into the phantom and compared
in this study. These categories were chosen to be realistic, but to represent standard and
somewhat extreme capabilities of the fMRI analysis software packages. The criteria used here
for categorization only utilize the translational motion of the center of mass because we had
previous threshold measurements of these data for comparison [29]. We also used correlation
of the motion of the center of mass and the simulated task block design to determine task
correlated motion. The details of this classification process are given Pickens et al. [14].
However, once a subject’s motion was classified, the non-rigid and rigid body translations and
rotations along the x, y, and z axes of every voxel were added to the phantom. The motion in
Model 1 (low, random motion) was chosen to simulate a cooperative subject with very little
motion. Model 2 (high, random motion) was chosen to simulate a subject that moves during
the acquisition in a random manner. Models 3 (low, correlated motion) and 4 (high, correlated
motion) were intended to simulate the same type of subjects as Models 1 and 2 respectively,
except that their motion is correlated to the simulated task block paradigm. These correlated
motions are most likely to occur in motor mapping experiments and create unique difficulties
in the fMRI statistical analysis [18,19,22]. Datasets containing the types of motion in Models
2 and 4 may or may not be discarded in a typical analysis due to excessive motion. However,
we wanted to evaluate how these different packages would be able to process these types of
data if discarding these subjects were impractical.

Using data from approximately 20 normal control subjects, we were able to fit three subjects’
motion each into Model 1, Model 2, and Model 4. Only one subject’s motion met the criteria
for Model 3. This resulted in 10 phantoms used in the following analyses of four commonly
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used fMRI software packages and three statistical methods. The characteristics of each
phantom are given in Table 1 along with the limits defining low, high, random and task-
correlated motion.

Analysis Packages
Each phantom was analyzed by each of the fMRI analysis packages in order to quantify its
ability to detect activation in the presence of various types of motion. All analyses were carried
out using the GLM capabilities of that package with the intent to employ the most uniform
analysis across packages as possible using the default options of the given package. The default
options were chosen because these are recommended by the developers of the software and
are most likely those used by the majority of the users. Other options customized for specific
needs can also be evaluated using the methods presented. The primary regressor used in the
GLM was the boxcar paradigm interleaving 10 volumes of rest and 10 volumes of stimulus
convolved with the hrf. This paradigm was the same used to determine correlation in the
stimulus-correlated motion datasets and to create the simulated activation in the phantom. No
slice timing correction was implemented prior to the statistical analyses because no slice timing
artifact was included in the phantom. Similarly, no spatial smoothing was implemented during
the preprocessing because the activation in this phantom was added in a constant magnitude
across all voxels in the region of activation. In future modifications of the phantom, the
activation may be added in a more realistic heterogeneous fashion across the region of
activation, which will require spatial smoothing. However, the method of adding activation
used here made the specific levels of activation known for each voxel. Each dataset was
analyzed individually, so no spatial normalization or co-registration was performed other than
for motion correction. The details of each package are described below.

The second goal of this work was to compare three different types of analyses relating to motion
correction on these phantoms containing various types of motion. These three types of analysis
are 1) analysis with no motion correction (UNCORR), 2) analysis with motion correction
(CORR), and 3) analysis with motion correction and using the motion parameters as regressors
in the GLM (CORR WITH PARAMS). All other aspects of the analyses remain constant within
the package. Therefore, an fMRI statistical analysis was performed on ten phantoms using four
packages with three motion correction analyses for a total of 120 trials performed in this study.

SPM2—The first commonly used fMRI software package evaluated in this study was SPM2
(http://www.fil.ion.ucl.ac.uk/SPM/SPM2.html), which is freely distributed, but requires
Matlab (The MathWorks, Inc., Natick, MA). The ten phantoms were originally designed in
ANALYZE© format (http://www.mrc-cbu.cam.ac.uk/Imaging/Common/analyze_fmt.shtml,
Mayo Clinic) making them inherently compatible with this program. The volumes were motion
corrected (CORR and CORR WITH PARAMS analyses only) using the realign and reslice
function for creating corrected volumes. This process realigns all the volumes to the first
volume using a least squares approach and a six parameter spatial transformation. The reslicing
interpolation is done using B-splines.

The GLM was created using the following inputs: interscan interval = 2 seconds, scans per
session = 100, specify design in scans, hrf basis set with no Volterra interactions, 1 condition,
vector of onsets = 11, 31, 51, 71, 91, duration = 10, no parametric modulation. For the
UNCORR and CORR analyses, no user-defined regressors were included. For the CORR
WITH PARAMS analyses, six user-defined regressors were added to the model using the six
columns of motion information (x, y, and z translations and rotations) from the rp_*.txt file
created during the motion correction process. The last regressor was automatically supplied
by SPM2 as a constant.
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The GLM was implemented using no global scaling, the default high-pass cutoff period of 128
seconds and AR(1) correction for serial temporal correlations. The SPM2 t-map was created
using the contrast of corresponding to the simulated task and the constant. The SPM2 software
automatically outputs this t-map in ANALYZE format. This t-map was then used as the input
to the sensitivity analysis.

AFNI—The second commonly used fMRI analysis software package evaluated in this study
was Analyses of Functional Neuroimages (AFNI) version 2.56e
(http://afni.nimh.nih.gov/afni) [30], which is a freely distributed package of C programs. AFNI
can be run from command lines. The commands for the analyses performed in this study are
given in the Appendix.

For the CORR and CORR WITH PARAMS analyses, each dataset was motion corrected using
the default iterated linearized weighted least squares approach with Fourier interpolation and
the motion parameters were saved. The GLM without the six motion regressors was
implemented for the UNCORR and CORR analyses using the 3dDeconvolve function with the
option num_stimts = 1. The 6 motion parameters (CORR WITH PARAMS analysis) were
incorporated using the option num_stimts = 7. The stimulus regressor file consisted of the time
course of the hrf created by SPM2 and was identical to the one used to create the phantom
activation time course. The output was the dataset that included the t-map. The t-map was
converted to ANALYZE format using the 3dAFNItoANALYZE function for use in the
sensitivity analysis program.

BV—The third fMRI software package evaluated in this study was Brain Voyager QX (BV)
version 1.2 (http://www.brainvoyager.de). This package is commercially available from Brain
Innovation B.V. (Maastricht, The Netherlands) and is written in C++ to run on all major
computing platforms. The data were entered directly into BV in ANALYZE format and
converted to BV format. For the UNCORR analysis, preprocessing included the default options
of temporal smoothing (low pass filter), linear trend removal and high pass filter with 3 cycles
in the time course. The GLM was performed as a single study analysis using the same block-
paradigm regressor as in the other packages and implementing the correction for serial
correlations using the remove AR(1) and refit GLM option. The .glm file was then saved using
the Overlay GLM function.

For the CORR analysis the data were motion corrected using the default parameters with
trilinear interpolation and the GLM was performed in the same way. For the CORR WITH
PARAMS analysis, the motion parameters (in a .rtc file) were added as regressors in GLM. A
Matlab program was written to convert the GLM results to t-maps for each .glm file for use in
the sensitivity analysis.

FSL—The last commonly used fMRI analysis software package evaluated in this study was
FSL version 3.2β (http://www.fmrib.ox.ac.uk/fsl) [31], which is freely distributed. To convert
from ANALYZE© format to a format recognized by FSL, we used the FSL tool avwmerge,
which merged the 100 individual volume .img and .hdr file pairs into a single 4D file pair. To
perform the analysis we used the FMRI Expert Analysis Tool v5.4 (FEAT). The data set was
entered with a total of 100 volumes, TR = 2 sec and the option of the default high pass filter
cutoff. The default McFLIRT [23] realignment uses the middle time volume as the template
and performs a coarse search and two finer searches to minimize the cost function and trilinear
interpolation. This was performed for CORR and CORR WITH PARAMS analyses only. Pre-
processing involved mean-based intensity normalization of all volumes by the same factor and
high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with
sigma=30.0s). These options are the default choices for this package.
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For the UNCORR and CORR analyses, the design matrix was defined using the simple model
setup entering 20 second blocks. This resulted in a design matrix consisting of the block design.
For the CORR WITH PARAMS analysis, the design matrix was defined using the full model
setup. A total of 7 regressors were added. The first was built using the following parameters:
basic shape = square, skip = 0s, off = 20s, on = 20s, phase shift = 0s, skip after = −1s, convolution
= gamma, phase = 0s, stdev = 3s, and mean lag = 6s. No temporal derivatives or filtering were
used. These default parameters created a regressor very similar, but not identical, to the
regressor used to create the phantom and used in the SPM2, AFNI and BV analyses. These
two regressors are shown in Figure 1. The other six regressors were taken from the file
prefiltered_func_data_mcf.par from the mc directory created during the motion correction step.
Each of the six columns of the file was used as each of the regressors without convolution,
temporal derivatives or temporal filtering. Time-series statistical analysis was carried out using
the FMRIB’s Improved Linear Modeling (FILM) using pre-whitening with local temporal
autocorrelation correction [32].

Sensitivity Analysis
The t-maps resulting from each of the analyses described above were used to perform a
receiver-operator-characteristic (ROC) type of analysis to objectively compare the sensitivity
of each package for each type of motion and analysis. The standard ROC curve used in medical
imaging applications is a plot of sensitivity (true-positives) versus specificity (false-positives)
with each point on the curve derived from a different “cut-point” in defining a positive or
negative result [5,6,33]. As the cut-point varies, the sensitivity will change inversely to the
specificity. In order to simplify the large number of comparisons possible with these data, we
have modified the standard ROC analysis to generate a point of information instead of a curve.
This was accomplished by determining a fixed false-positive rate assumed to be most useful
in the context of these data and then determining the sensitivity at this specificity value [33].
Although this does not allow comparisons at varying levels of specificity, it makes direct visual
comparisons of these data at a reasonable false-positive rate possible. It also makes
comparisons of the sensitivities of each region of interest with differing levels of signal change
possible.

We implemented this sensitivity analysis using programs developed in IDL (ITT Visual
Information Solutions, Inc., Boulder, CO) for this purpose. By ignoring all the voxels in the
regions of simulated activations (ROIs) and outside the brain, a t threshold was determined
that only 1% of the voxels exceeded. This 1% false-positive rate was selected as a reasonable
threshold of error for fMRI, and therefore, a reasonable cut point for our comparisons. Since
the location of each added activation region was known, it was possible to evaluate the number
of true-positive activations in each ROI as the number of voxels above the determined t
threshold. The percent true-positive rate (sensitivity) in an ROI was calculated as the number
of true-positive activations divided by the known number of voxels in the ROI multiplied by
100%.

The percent true-positive rate of the two regions of simulated activation at each signal change
level were averaged together in each phantom. For graphical purposes, the averaged true-
positive rate at each signal change level was then averaged across the three phantoms in each
motion category for Models 1, 2 and 4. Plots were made of percent true-positive activations
versus percent signal change in an ROI for the selected 1% false-positive rate for each of the
four packages and three analysis types. One plot was made for each of the four motion models
for qualitative comparison.

To further quantify these results, another parameter was defined to describe the sensitivity of
the trial over all the levels of percent signal change studied. This value, total sensitivity or TS,
was computed as the sum of the percent true-positive activations across all signal levels divided
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by the total possible 500 percent true-positive rate (5 signal levels X 100 percent true-positives
detected) for each phantom trial. This value has a range of 0 (no simulated activations detected)
to 1 (all simulated activations detected).

Comparison of Analysis Strategies
All statistical analyses were performed using SPSS (SPSS, Inc., Chicago, IL). To determine
the most sensitive analysis type for each of the four packages, a non-parametric equivalent of
the one-sample repeated-measures ANOVA test, the Friedman Test, was performed on the TS
values of the three analysis strategies for the particular package. In this analysis, the ten
phantoms were treated as ten independent measures with no regard to motion categories and
the TS for the three types of analysis were compared (UNCORR vs. CORR vs. CORR WITH
PARAMS). This analysis ranks the TS values across the three types of analysis for each
phantom (lower rank number = lower TS value) and then performs the statistical analysis on
the ranks to test the null hypothesis that the ranks are random across phantoms. If this test
determined a significant difference, then the non-parametric Wilcoxon Signed Ranks Test was
used to evaluate which of the three analyses resulted in the greatest TS for each package. If the
Friedman Test did not yield significance, then the analyses were not significantly different, but
the analysis with the highest mean rank was considered as the most sensitive for that package.

It is hypothesized that the models with correlated motion would benefit most from the CORR
WITH PARAMS analysis. To evaluate this, the difference between the TS of CORR and the
TS of CORR WITH PARAMS was calculated for each phantom for each package. This yielded
16 values of this difference for correlated motion Models 3 and 4 (4 phantoms X 4 packages)
and 24 values for this difference for the uncorrelated motion Models 1 and 2 (6 phantoms X 4
packages). A Mann-Whitney Test, a non-parametric test using rankings, was used to determine
whether the 16 correlated motion difference values were significantly higher than the 24
uncorrelated motion difference values.

Comparison of Analysis Packages
The Friedman Test was implemented across all ten phantoms using the TS value of the one
most sensitive analysis type (UNCORR, CORR, or CORR WITH PARAMS) of each of the
four packages to determine if any one package is most sensitive across all motion types. In this
analysis the ranks described the order of the TS values of the four packages for each phantom
(SPM2 vs. AFNI vs. BV vs. FSL). Again, all ten phantoms were treated independently. As
above, if the Friedman Test showed significant differences, then the Wilcoxon Signed Ranks
Test was used for pair-wise comparisons to determine the most sensitive package. Otherwise,
the highest average ranking package was considered the most sensitive.

Results
Figure 2 shows three voxel time courses from a Model 4 (high, correlated motion) phantom
without motion correction. Activation was determined by t > 4.67 (p<0.05 corrected for
multiple comparisons). The time course on top is from a voxel with simulated activation of 6%
(t=55.7). The middle shows a time course from a voxel with simulated activation of 2%
(t=4.72). On the bottom, a time course from a voxel with false-positive activation due to motion
(t=4.97) is given. Figures 3a through 3d show the results of the sensitivity analysis for each of
the four motion models. Each plot contains a separate line for each package and for each type
of analysis. Two regions were averaged at each signal change level.

Comparison of Analysis Strategies
The statistical rankings of each strategy for each package are given in Table 2 (higher rankings
meaning higher TS values). The Friedman Test showed that for SPM2, the CORR WITH
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PARAMS analysis has significantly higher TS than the other two analyses. For AFNI, the
results were similar with significantly higher TS with the CORR WITH PARAMS analysis.
For BV, there was no significant difference between the three analysis types across all
phantoms. However, the mean ranks showed the same trends as SPM2 and AFNI with CORR
WITH PARAMS having the highest mean rank. The results for FSL were very similar to BV.

The Mann-Whitney Test showed that the difference between the TS of the CORR WITH
PARAMS and the CORR analysis was greater in the phantoms with correlated motion than in
the phantoms with uncorrelated motion (p<0.001, mean difference in correlated motion
phantoms = 0.12±0.12, mean difference in uncorrelated motion models = 0.01±0.03). This test
was performed across all packages.

Comparison of Analysis Packages
From these results the CORR WITH PARAMS analysis was chosen as the most sensitive
statistical strategy for each package and used in the analysis to compare the four packages. The
Friedman Test showed that the four packages were significantly different in their TS across all
ten phantoms (Friedman: p=0.007, SPM2 mean rank = 3.50, AFNI mean rank = 2.30, BV mean
rank = 2.15, FSL mean rank = 2.05). The Wilcoxon Signed Ranks test showed that SPM2 was
more sensitive than AFNI (p=0.028), BV (p=0.018) and FSL (p=0.018).

Discussion
In this study we compared four commonly used fMRI software packages and three types of
fMRI analyses relating to motion correction in single-session studies. Our computer-generated
phantom with rigid and non-rigid body, low and high, random and stimulus-correlated motion
from real subjects allowed extensive evaluation of the motion related statistical capabilities of
each package.

In general, at 0.5% and 1% signal change, the results of the trials varied greatly across
phantoms, packages and analyses. In Model 1 (low, random motion), the true-positive rates
were in the range of approximately 87% and above, depending on the analysis (Figure 3a). The
lowest true-positive rates were seen in Model 4 (high, correlated motion) with rates as low as
6% (Figure 3d). At approximately 2% signal change and greater, most trials yielded 80% true-
positives in the ROI at the 1% false-positive rate. Figures 3a through 3d show that the general
trend was that the UNCORR analysis yielded the least sensitive results (red lines), while the
CORR WITH PARAMS yielded the most sensitive results (green lines) across signal change
levels.

The statistics showed that for SPM2 and AFNI, the CORR WITH PARAMS analysis was most
sensitive across phantoms (all types of motion). For BV and FSL, the analyses were not
significantly different (p>0.05), but the trend showed CORR WITH PARAMS as the most
sensitive technique. These results are consistent with the belief that when using the GLM,
including more regressors to describe your data is beneficial [15]. When comparing the four
packages using the CORR WITH PARAMS analysis results for each phantom, the statistics
showed that there was a significant difference between them and that SPM2 was significantly
more sensitive than the other packages across the ten phantoms.

These statistics are based on all the phantoms. We were not able to produce enough phantom
variations in each motion category to analyze each of these separately. However, Figures 3a
through 3d provide some insight into the differences between motion types.

When using the GLM it is assumed that the variance of the dataset can be divided into two
orthogonal or independent sources: those due to motion and those due to signal changes of
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interest [19]. When the motion is correlated with the stimulus, these two are not independent.
Bullmore et al. [19] suggests that a way to examine the effect of non-orthogonal regressors is
to compare the analyses CORR and CORR WITH PARAMS. We found that the change in
sensitivity using the CORR WITH PARAMS rather than the CORR analysis is greater in the
phantoms with stimulus-correlated motion than random motion. This was found across all four
packages. It might be expected that sensitivity would be decreased due to decreasing the power
of the experimental effect when using the motion parameters as regressors. However, our
results show increases in TS at the set false-positive rates using the CORR WITH PARAMS
analysis.

It should be noted that one primary difference between the four packages studied is in the way
each deals with the temporal autocorrelation of the noise of the data [32]. In general, the
versions of BV, FSL and SPM2 used in this study analyze the time course of each voxel twice.
First, the GLM is fitted without considering the serial correlations. Then, the residuals are
analyzed by computing an autocorrelation. The serial correlations are then removed
(prewhitening) and the GLM is fit again. The differences in these packages lie in the estimation
of the autocorrelation coefficients. FSL uses a local prewhitening approach involving Tukey
tapering, dividing the data into overlapping subsets that are Fourier transformed [32]. SPM2
uses restricted maximum likelihood estimates of the variance components [34]. BV uses
pseudogeneralized least squares to estimate the coefficients [35]. AFNI does not include any
correction for the temporal autocorrelations in their 3dDeconvolve function. The sources of
these autocorrelations include low frequency scanner drifts [16,36] and cardiac and respiratory
susceptibility changes [37,38]. These characteristics are not included in our current phantom;
therefore, the results of this study may have been different had these sources been present.

However, motion is a possible source of temporal autocorrelations which is included in the
phantom [15,16]. This effect is illustrated in Figures 4a and 4d, which show the average signal
of the brain through time without simulated activation for a phantom from Model 2 (high,
random motion) and Model 4 (high, correlated motion), respectively. Figures 4b and 4e show
the frequency spectrum of the time courses. The autocorrelations are shown in Figures 4c and
4f. Ideal autocorrelations of white noise would be an impulse at zero lag and zero at all other
lag times. The autocorrelations resulting from the data with random motion (Figure 4c) fall
mostly within the horizontal lines delineating the 95% confidence limits, indicating near
random data. The autocorrelations of the data with stimulus-correlated motion (Figure 4f) fall
outside the 95% confidence limits indicating a higher degree of autocorrelation due to motion.
Therefore, this implies that there are minor temporal correlations present in our stimulus-
correlated motion phantoms due to the periodicity of the motion. We looked at this issue by
analyzing all ten phantoms with and without the correction for temporal correlations
implemented in SPM2 using the CORR WITH PARAMS analysis. With the temporal
correlations, TS increased slightly (approximately 1.5%) in only 2 phantoms, both of which
were in Model 4 (high, correlated motion). No others were changed. Additional sources of
temporal correlations will need to be incorporated into the phantoms to adequately compare
the packages with respect to this issue.

There are several advantages of the computer-generated phantom used in this study over in
vivo subject data for the type of comparisons performed here. Most importantly, the computer-
generated phantom allows for measurement of true-positive and false-positive activations for
direct measurement of activation sensitivity for varying levels of activation and noise. The
phantom also contains head motion taken from in vivo studies, so that specific types of motion
that are of interest can be utilized (i.e. stimulus-correlated motion).

However, the disadvantage of these phantoms are that they do not include all of the
characteristics of data that would be found in analyzing in vivo subject data including varied
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hemodynamic responses [25], slice timing artifact [39], as well as susceptibility artifacts due
to motion and physiological noise [15,17,37,38] already mentioned. Therefore, the current
generation of phantom cannot be used to evaluate components of the software packages that
relate to these issues. Also, there is the possibility of systematic interpolation errors in adding
the motion to the phantoms. We did not examine this issue or any other types of interpolation
in this study. Although we did not specifically add a low frequency baseline drift [36], the
nature of our stimulus with a rest at the beginning and a task at the end, will introduce a slight
linear drift with a positive slope.

The current phantom also does not allow for multi-session analyses without some estimation
and modeling of inter-session variability. One study was found that compared SPM99 and FSL
v1.3 [4]. In this single subject, mutli-session study design, a single subject was scanned in 99
separate sessions performing motor, visual and cognitive tasks. Inter-session variability was
estimated as the difference between fixed effects variability (within-session) and simple mixed
effects variability (within-session and inter-session) for different combinations of SPM99 and
FSL for motion correction and statistics. Their findings were that FSL induced less inter-session
error than SPM99, thus implying that FSL was more efficient in performing these higher-level
analyses. Both the SPM99 and FSL packages used are earlier versions than those used in this
study.

In a study by Oakes et al., [12] real human subjects and phantoms containing varying levels
of real subject rigid body motion were used to compare the motion correction tools of five
fMRI analysis packages including the four studied here and automated image registration (AIR)
[40]. They found the most accurate motion correction results in the phantoms using AFNI
followed by SPM2 with AIR being the poorest. The GLM statistical results showed the highest
recovery of activation after motion correction with AFNI while BV had the least. This was true
for both block-design and event-related designs. In the human subjects, however, they did not
find significant differences between packages in the activation results, but the results from
Brain Voyager were slightly lower than the others. This study complements the present work,
by quantifying the motion correction, examining event-related designs, utilizing human data,
and comparing speed and usability of each package which we have not done. Our study utilizes
phantoms with non-rigid body motion, incorporates task-correlated motion, compares different
analysis strategies, evaluates different levels of signal intensity changes and examines the
differences in each package’s statistical processing of the GLM not addressed by Oakes et al.
Both studies agree that there are only minimal differences between all of these packages with
BV being slightly less accurate than the others in most cases.

In this paper we describe the results of a study to compare four commonly used fMRI software
packages and three analyses relative to motion correction in computer-generated phantoms
containing four different models of subject motion. In general, we have provided a framework
for comparative analyses of various fMRI analysis techniques using activation sensitivity as a
parameter of accuracy in single-session data. Our results suggest that the most sensitive analysis
technique we studied is to perform motion correction and then include these realignment
parameters as regressors in the general linear model. This applies to all four packages examined
and can be most beneficial when stimulus-correlated motion is present. Our results also suggest
that all four packages studied perform similarly in fMRI statistical analysis, however, SPM2
resulted in slightly higher sensitivities in these single session datasets. Therefore, we conclude,
like Oakes et al. [12], that selecting an fMRI processing package based on strong local support
and usability may be most beneficial.
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Summary
In previous work a set of computer-generated fMRI phantoms containing simulated activation
coupled with random and stimulus-correlated head motion taken from real subject datasets was
created. The objective of the current study was to use these phantoms to create a framework
for quantitative comparison of fMRI analysis of single subject data based on activation
detection (sensitivity). To demonstrate this we performed two investigations: 1) comparison
of the sensitivity of four commonly used fMRI software packages: SPM2, Brain Voyager,
AFNI and FSL, and 2) comparison of the sensitivity of three statistical analysis strategies with
respect to motion correction: no motion correction, with motion correction, and with motion
correction and including the rigid body motion parameters as regressors in the general linear
model. The sensitivity was defined as the percent of true-positives at a 1% false-positive rate.
The results suggest that all four packages perform similarly in fMRI statistical analysis with
SPM2 having slightly higher sensitivity, and that the most sensitive analysis technique is to
perform motion correction and include the realignment parameters as regressors in the general
linear model. This approach applies to all four packages examined and can be most beneficial
when stimulus-correlated motion is present.
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Appendix - AFNI command lines
• To motion correct and to output the new motion corrected dataset and the 6 time

courses of motion parameters similar to those from SPM2:
• 3dvolreg -prefix rPh1 -Fourier -verbose -1Dfile Ph1_motion.txt Ph1+orig
• To perform the GLM without the 6 motion regressors:
• 3dDeconvolve -input Ph1+orig -num_stimts 1 -stim_file 1 block10hrf.1D \
• -stim_label 1 task -tout -glt 1 contrast1.txt -glt_label 1 taskvrest \
• -bucket rPh1_glm
• To incorporate the 6 motion parameters (CORR WITH PARAMS analysis):
• 3dDeconvolve -input rPh1+orig -num_stimts 7 \
• -stim_file 1 block10hrf.1D -stim_label 1 task \
• -stim_file 2 Ph1_motion.txt[0]-stim_base 2 \
• -stim_file 3 Ph1_motion.txt[1] -stim_base 3 \
• -stim_file 4 Ph1_motion.txt[2] -stim_base 4 \
• -stim_file 5 Ph1_motion.txt[3] -stim_base 5 \
• -stim_file 6 Ph1_motion.txt[4] -stim_base 6 \
• -stim_file 7 Ph1_motion.txt[5] -stim_base 7 -tout –glt -bucket rPh1_glm.
• To convert t-map to ANALYZE format:
• 3dAFNItoANALYZE Ph1T rPh1_glm+orig[5]
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Figure 1.
Comparison of task regressors used in the GLM. The solid line represents the regressor used
in SPM2, AFNI, and BV, as well as the time course used to add simulated activation in the
phantoms. The dashed line represents the regressor created by using the defaults in FSL for
the 10 off/10 on block design.
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Figure 2.
Three voxel time courses from a Model 4 (high, correlated motion) phantom without motion
correction. (top) Voxel with simulated activation of 6% signal change. (middle) Voxel with
simulated activation of 4% signal change. (bottom) Voxel with false-positive activation caused
by motion. Volumes representing task simulations are in bold type.

Morgan et al. Page 16

Comput Med Imaging Graph. Author manuscript; available in PMC 2008 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Sensitivity analysis at 1% false-positive rate in a) Model 1 (low, random motion), b) Model 2
(high, random motion), c) Model 3 (low, correlated motion), and d) Model 4 (high, correlated
motion). Each line represents the average of three phantoms analyzed with the specific package
with the specific analysis type. At each level of percent signal change, two regions of activation
are averaged. The UNCORR results are shown in red lines, the CORR results in blue lines and
the CORR WITH PARAMS in green lines. The SPM2 results are shown in closed squares (▪),
the FSL in closed circles (●), the BV in closed triangles (▴) and the AFNI in open squares (□).
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Figure 4.
Analysis of temporal autocorrelations of two phantoms without simulated activation. ac)
Phantom from Model 2 (high, random motion). d–f) Phantom from Model 4 (high, correlated
motion). a,d) time course of average signal over whole brain. b,e) FFT of time course. c,f)
Autocorrelation of time course as a function of lag. The horizontal thick lines represent the
95% confidence limits.
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Table 2
Comparison of analysis types across all ten phantoms

Friedman UNCORR CORR CORR WITH PARAMS
P mean rank mean rank mean rank

SPM2 0.002 1.40 2.00* 2.60**
AFNI 0.014 1.45 1.95* 2.60**
BV 0.393 1.70 2.10 2.20
FSL 0.368 1.75 1.95 2.30

Note: UNCORR is analysis without motion correction, CORR is with motion correction, and CORR WITH PARAMS is motion correction with inclusion
of rigid body motion parameters in the statistical analysis.

*
indicates that CORR ranks were greater than UNCORR ranks (p<0.05)

**
indicates that CORR WITH PARAMS ranks were greater than CORR ranks (p<0.05)
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