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Abstract
Accuracy of results from mathematical and computer models of biological systems is often
complicated by the presence of uncertainties in experimental data that are used to estimate parameter
values. Current mathematical modeling approaches typically use either single-parameter or local
sensitivity analyses. However, these methods do not accurately assess uncertainty and sensitivity in
the system as, by default they hold all other parameters fixed at baseline values. Using techniques
described within we demonstrate how a multi-dimensional parameter space can be studied globally
so all uncertainties can be identified. Further, uncertainty and sensitivity analysis techniques can help
to identify and ultimately control uncertainties. In this work we develop methods for applying existing
analytical tools to perform analyses on a variety of mathematical and computer models. We compare
two specific types of global sensitivity analysis indexes that have proven to be among the most robust
and efficient. Through familiar and new examples of mathematical and computer models, we provide
a complete methodology for performing these analyses, both in deterministic and stochastic settings,
and propose novel techniques to handle problems encountered during this type of analyses.
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1. Introduction
Systems biology is the study of the interactions between the components of a biological system,
and how these interactions give rise to the function and behavior of the system as a whole. The
systems biology approach often involves the development of mathematical or computer
models, based on reconstruction of a dynamic biological system from the quantitative
properties of its elementary building blocks. The need to build mathematical and computational
models is necessary to help decipher the massive amount of data experimentalists are
uncovering today. The goal of the systems biologist or modeler is to represent, abstract, and
ultimately understand the biological world using these mathematical and computational tools.
Experimental data that are available for each system should guide, support, and shape the model
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building process. This can be a daunting task, especially when the components of a system
form a very complex and intricate network.

Paraphrasing Albert Einstein, models should be as simple as possible, but not simpler. A
parsimonious approach must be followed. Otherwise, if every mechanism and interaction is
included, the resulting mathematical model will be comprised of a large number of variables,
parameters, and constraints, most of them uncertain because they are difficult to measure
experimentally, or are even completely unknown in many cases. Even when a parsimonious
approach is followed during model building, available knowledge of phenomena is often
incomplete, and experimental measures are lacking, ambiguous, or contradictory. So the
question of how to address uncertainties naturally arises as part of the process. Uncertainty and
sensitivity (US) analysis techniques help to assess and control these uncertainties.

Uncertainty analysis (UA) is performed to investigate the uncertainty in the model output that
is generated from uncertainty in parameter inputs. Sensitivity analysis (SA) naturally follows
UA as it assesses how variations in model outputs can be apportioned, qualitatively or
quantitatively, to different input sources (Saltelli et al., 2000). In this work we review
uncertainty and sensitivity analysis techniques in the context of deterministic dynamical
models in biology, and propose a novel procedure to deal with a particular stochastic, discrete
type of dynamical model (i.e. an Agent-Based Model -ABM1).

By deterministic model, we mean that the output of the model is completely determined by the
input parameters and structure of the model. The same input will produce the same output if
the model were simulated multiple times. Therefore, the only uncertainty affecting the output
is generated by input variation. This type of uncertainty is termed epistemic (or subjective,
reducible, type B uncertainty, see (Helton et al., 2006)). Epistemic uncertainty derives from a
lack of knowledge about the adequate value for a parameter/input/quantity that is assumed to
be constant throughout model analysis. In contrast, a stochastic model will not produce the
same output when repeated with the same inputs because of inherent randomness in the
behavior of the system. This type of uncertainty is termed aleatory (or stochastic, irreducible,
type A, see (Helton et al., 2006)). This distinction has been and still is an area of interest and
study in the engineering and risk assessment community (see (Apostolakis, 1990; Helton,
1997; Helton et al., 2007; Parry & Winter, 1981; Pate'-Cornell, 1996)).

Many techniques have been developed to address uncertainty and sensitivity analysis:
differential analysis, response surface methodology (RSM), Monte Carlo Analysis, and
variance decomposition methods. See (Iman & Helton, 1988; Saltelli et al., 2000) for details
on each of these approaches and (Cacuci & Ionescu-Bujor, 2004; Draper, 1995; Helton,
1993; Saltelli et al., 2005) for more general reviews on uncertainty and sensitivity analysys.
Here we briefly illustrate the most popular, reliable, and efficient uncertainty analysis
techniques and sensitivity analysis indexes. In section 2, we describe two uncertainty analysis
techniques: a Monte Carlo approach and Latin hypercube sampling (LHS). In section 3, we
describe two sensitivity analysis indexes: partial rank correlation coefficient (PRCC) and
extended Fourier Aamplitude Sensitivity Test (eFAST): PRCC is a sampling-based method,
while eFAST is a variance-based method. In section 4, we perform US analysis on both new
and familiar deterministic dynamical models (quantifying epistemic uncertainty) from
epidemiology and immunology, and discuss results. Section 5 presents an ABM, where we
suggest a method to deal with the aleatory uncertainty that results from the stochasticity
embedded in the model structure, to facilitate the use of PRCC and eFAST techniques. We use
Matlab (Copyright 1984-2006 The MathWorks, Inc. Version 7.3.0.298 R2006b) to solve all
the differential equation systems of section 4 and to implement most of the US analysis

1IBM=Individual Base Modeling in fields like ecology
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functions described throughout the manuscript (available on our website,
http://malthus.micro.med.umich.edu/lab/usanalysis.html).

2. Uncertainty Analysis
Input factors for most mathematical models consist of parameters and initial conditions for
independent and dependent model variables. As mentioned, these are not always known with
a sufficient degree of certainty because of natural variation, error in measurements, or simply
a lack of current techniques to measure them. The purpose of uncertainty analysis is to quantify
the degree of confidence in the existing experimental data and parameter estimates. In this
section we describe the most popular sampling-based approaches used to perform uncertainty
analysis, Monte Carlo methods, and their most efficient implementation, namely the LHS
technique.

2.1. Monte Carlo simulation
Monte Carlo (MC) methods are popular algorithms for solving various kinds of computational
problems. They include any technique of statistical sampling employed to approximate
solutions to quantitative problems. A MC simulation is based on performing multiple model
evaluations using random or pseudo-random numbers to sample from probability distributions
of model inputs. The results of these evaluations can be used to both determine the uncertainty
in model output and to perform SA. A large body of literature exists on the use of expert review
processes to characterize epistemic uncertainty associated with poorly known model
parameters (see for example (Cooke, 1991; Evans et al., 1994; Hora & Iman, 1989; McKay &
Meyer, 2000)). For each parameter, sampling is guided by the specification of a probability
density function (pdf) (i.e. normal, uniform, lognormal, etc.), depending on existing data and
a priori information. If there are no a priori data, a natural choice is a uniform distribution
(assigning some hypothetical, but large range with minimum and maximum values for the
parameters). If biological knowledge exists suggesting a more frequent or expected value for
a parameter, a normal pdf would be the best choice (setting the variance of the distribution as
large as needed).

Several sampling strategies can be implemented to perform uncertainty analysis, such as
random sampling, importance sampling or LHS (Helton & Davis, 2003; Mckay et al., 1979).
To recreate input factor distributions through sampling, a large number of samples are likely
required. If too few iterations are performed, not all values may be represented in the samples
or values in the outer ranges may be under-sampled. The LHS algorithm was specifically
developed to address this problem and it is by far the most popular sampling scheme for UA
(Morris, 2000).

2.2. Latin Hypercube Sampling – LHS
Latin hypercube sampling (LHS) belongs to the MC class of sampling methods, and was
introduced by McKay et al. (Mckay et al., 1979). LHS allows an un-biased estimate of the
average model output, with the advantage that it requires fewer samples than simple random
sampling to achieve the same accuracy (Mckay et al., 1979). LHS is a so-called stratified
sampling without replacement technique, where the random parameter distributions are divided
into N equal probability intervals, which are then sampled. N represents the sample size. The
choice for N should be at least k+1, where k is the number of parameters varied, but usually
much larger to ensure accuracy. If the interval of variation for some parameter is very large
(several orders of magnitude), the sampling can be performed on a log scale to prevent under-
sampling in the outer ranges of the interval where the parameter assumes very small values
(see Supplement C and Figure C.1 and C.2 online).
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The LHS method assumes that the sampling is performed independently for each parameter,
although a procedure to impose correlations on sampled values has also been developed (Iman
& Conover, 1982; Iman & Davenport, 1982). The sampling is done by randomly selecting
values from each pdf (Figure 1A). Each interval for each parameter is sampled exactly once
(without replacement), so that the entire range for each parameter is explored (Figure 1A). A
matrix is generated (which we call the LHS matrix) that consists of N rows for the number of
simulations (sample size) and of k columns corresponding to the number of varied parameters
(Figure 1B). N model solutions are then simulated, using each combination of parameter values
(each row of the LHS matrix, Figure 1B). The model output of interest is collected for each
model simulation. Different model outputs can be studied if more than one model output is of
interest.

3. Sensitivity Analysis
Sensitivity analysis (SA) is a method for quantifying uncertainty in any type of complex model.
The objective of SA is to identify critical inputs (parameters and initial conditions) of a model
and quantifying how input uncertainty impacts model outcome(s). When input factors such as
parameters or initial conditions are known with little uncertainty, we can examine the partial
derivative of the output function with respect to the input factors. This sensitivity measure can
easily be computed numerically by performing multiple simulations varying input factors
around a nominal value. This technique is called a local SA because it investigates the impact
on model output, based on changes in factors only very close to the nominal values. In biology,
input factors are often very uncertain and therefore local SA techniques are not appropriate for
a quantitative analysis; instead global SA techniques are needed. These global techniques are
usually implemented using Monte Carlo simulations and are, therefore, called sampling-based
methods.

Different SA techniques will perform better for specific types of mathematical and
computational models. A natural starting point in the analysis with sampling-based methods
would be to examine scatter plots. Scatter plots enable graphic detection of nonlinearities, non-
monotonicities, and correlations between model inputs and outputs. See (Helton & Davis,
2002; Helton et al., 2006; Hora & Helton, 2003; Kleijnen & Helton, 1999; Storlie & Helton,
2008a; Storlie & Helton, 2008b) for a review on the indexes listed in the next paragraph.

For linear trends, linear relationship measures that work well are Pearson correlation coefficient
(CC), Partial Correlation Coefficients (PCC) and Standardized Regression Coefficients (SRC).
For nonlinear but monotonic relationships between outputs and inputs, measures that work
well are based on rank transforms2 such as Spearman Rank Correlation Coefficient (SRCC),
Partial Rank Correlation Coefficient (PRCC) and Standardized Rank Regression Coefficients
(SRRC). For nonlinear non-monotonic trends, methods based on decomposition of model
output variance are the best choice. Examples of these methods are the Sobol method and its
extended version based on (quasi) random numbers and an ad hoc design (see (Saltelli,
2002) for details), the Fourier Amplitude Sensitivity Test (FAST) and its extended version
(eFAST). Aside from those listed, there are alternative methods available that are less affected
by nonmonotonic relationships between the inputs and the output, e.g. common means
(CMNs), common distributions or locations (CLs), common medians (CMDs) and statistical
independence (SI). These methods are based on gridding (placing grids on a scatter plot) to
evaluate any non-randomness in the distribution of points across the grid cells and they are
generally less computationally expensive than variance-based methods (such as eFAST).

2Definition of rank-transformation: the smallest value of a variable is assigned a rank of 1, the next largest value is assigned a rank of 2,
tied values are assigned an average rank, and the largest value is assigned a rank equal to the sample size
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In general, the computational execution time of the model is the major concern when
performing US analysis. Screening methods, such as Morris (see (Morris, 1991)), are global
and computationally compatible: they represent adequate available tools to efficiently address
the problem, if the model is very large and the execution time is prohibitive (several hours or
days), as it is usually the case for Agent- Based Models (see below).

We will focus and implement only PRCC and eFAST as two examples of SA methods. PRCC
and SRRC appear to be, in general, the most efficient and reliable (giving similar results) among
the sampling-based indexes (see (Saltelli & Marivoet, 1990)) while eFAST has proven to be
one of the most reliable methods among the variance-based techniques (Saltelli, 2004),
although computationally expensive (see (Ratto et al., 2007; Tarantola et al., 2006)).

It is important to note that PRCCs and variance decompositions obtained with eFAST measure
two very different model properties. Specifically, PRCCs provide a measure of monotonicity
after the removal of the linear effects of all but one variable. In contrast, the results obtained
with eFAST returns measures of fractional variance accounted for by individual variables and
groups of variables. Ideally both indexes should be calculated in order to have a complete and
informative US analysis.

We review details for both PRCC and eFAST in the next section. We tested the correctness of
our matlab implementation of LHS\PRCC and eFAST by running similar experiments with
the softwares SaSat (see (Hoare et al., 2008)) and SimLab (see (SimLab, 2006)), or comparing
with known results for eFAST (see Ishigami function, pages 41-42 in (Saltelli et al., 2000))
(data not shown).

3.1. Partial Rank Correlation Coefficient (PRCC)
Correlation provides a measure of the strength of a linear association between an input and an
output. A correlation coefficient (CC) between xj and y is calculated as follows:

(1)

and varies between −1 and +1. Cov(xj,y) represents the covariance between xj and y, while Var
(xj) and Var(y) are respectively the variance of xj and the variance of y (x̄ and ȳ are the respective
sample means). If xj and y are the raw data, then the coefficient r is called sample or Pearson
correlation coefficient (Figure 1C). If the data are rank-transformed, the result is a Spearman
or rank correlation coefficient (Figure 1C). It is important to note that the process of rank-
transforming data assumes that sampled model inputs are real-valued or can adopt many
possible values. If a parameter takes only integer values and the range of possible values it can
assume is less than N, there is insufficient information to break ties during ranking, resulting
in poor correlations. We are currently pursuing methods to handle this problem3.

Partial correlation characterizes the linear relationship between input xj and output y after the
linear effects on y of the remaining inputs are discounted. The PCC between xj and y is the CC
between the two residuals (xj − x̂j) and (y − ŷ), where x̂j and ŷ are the following linear regression
models:

3The standard procedure when ties are encountered is to assign the tied values the average of what their values would have been if they
have been consecutive but not equal. We are indirectly addressing the problem of integer-valued parameters with very few values by a
single-parameter space exploration, holding them fixed during the UA and SA procedures.
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(2)

Similarly to PCC, Partial Rank Correlation performs a partial correlation on rank-transformed
data: xj and y are first rank transformed, then the linear regression models described in Eq. (2)
are built. PRCC is a robust sensitivity measure for nonlinear but monotonic relationships
between xj and y, as long as little to no correlation exists between the inputs (see Uncertainty
and sensitivity functions and implementation on our website
http://malthus.micro.med.umich.edu/lab/usanalysis.html for the use of scatter plot functions
to enable graphic detection of non-monotonicities).

By combining the uncertainty analyses with PRCC, we are able to reasonably assess the
sensitivity of our outcome variable to parameter variation (see for example (Blower &
Dowlatabadi, 1994; Saltelli, 2004)). Figure 2 shows an example of a standard LHS-PRCC
scheme, scatter plots with correlation indexes (Pearson, Spearman and PRCC, see Figure 2C)
and p-values (see the titles of the scatter plots in Figure 2C) based on a classic ODE in
population dynamics: a predator-prey (or Lotka-Volterra) model. The Lotka-Volterra model
is the simplest model of predator-prey interactions and was developed independently by Lotka
(1925) and Volterra (1926):

(3)

(4)

It has two state variables (Q, P) and several parameters. Q represents the density of prey, P
represents the density of predators, α is the intrinsic rate of prey population increase, β is the
predation rate coefficient, σ is the predator mortality rate, and δ is the reproduction rate of
predators per prey consumed. As an example, we assume that these four parameters follow
normal probability density functions (Figure 2A) with means given by

(5)

and initial conditions as shown in Eqs. (3)-(4). Standard deviations for parameters α and δ are
set very small (i.e. std=0.01) while parameters β and σ are varied in a larger range (i.e., std=0.2).
LHS is performed following the scheme below

(6)

The sample size N is set to 1000. Figure 2A shows the cumulative distribution functions (CDFs)
for each parameter, while Figure 2B shows the outputs ((Q(t)-prey and P(t)-predator) over time
corresponding to the LHS scheme illustrated in Figure 2A.

3.2. Inference on PRCCs
Significance tests can be performed to assess if a PRCC is significantly different from zero
(thus, even small correlations may be significant) and if two PRCC values are significantly
different from each other. Each PRCC (γ) generates a value T according to the following
statistic (see (Anderson, 2003), pp. 143)
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(7)

where T follows a t of Student distribution with (N−2−p) degrees of freedom. N is the sample
size and p is the number of inputs/parameters whose effects are discounted when the PRCC is
calculated. For example, if we vary 6 inputs/parameters (xi, i = 1, 2,…., 6) in LHS, p would be
equal to 5 (PRCC(xi, y) = γxiy/xj, j = 1,…,6 j≠i). Equation (7) is exact for linear partial correlation
when the inputs and output are normally distributed, but is a large-sample approximation
otherwise. Fisher showed that the following transformation of a sample Pearson correlation
coefficient r

(8)

is normally distributed with mean equal to the unknown Pearson correlation of the population

(μ) and standard deviation equal to . In order to test if two Pearson correlation
coefficients are different, the log transformation in Eq. (8) is applied to the respective sample
Pearson correlation coefficients r1 and r2 and the following statistic z is calculated (z-test):

(9)

where N1 and N2 are the respective sample sizes. Since the distribution of sample partial
correlation coefficients is of the same form as that of Pearson correlation coefficients, the z
statistic given in Eq. (9) can be used to compare them (after applying the log transformation
(8) to the partial correlation coefficients (pcc')):

(10)

where N1 and N2 are the respective sample sizes and p1 and p2 are the respective inputs/
parameters whose effects are discounted when pcc1 and pcc2 are calculated. The extension of
Eq. (10) to partial rank correlation coefficients can be inferred from Anderson (see (Anderson,
2003), pp. 144).

3.3. Extended Fourier Amplitude Sensitivity test – eFAST
Extended FAST (eFAST), developed by Saltelli et al. (Saltelli, 2004; Saltelli & Bolado,
1998; Saltelli et al., 2000; Saltelli et al., 1999), is based on the original Fourier Amplitude
Sensitivity Test (FAST) developed by Cukier et al. (Collins & Avissar, 1994; Cukier et al.,
1973; Schaibly & Shuler, 1973). eFAST is a variance decomposition method (analogous to
ANOVA): input parameters are varied, causing variation in model output. This variation is

quantified using the statistical notion of variance:  where N=sample size (or
equivalently, total number of model runs), yi=ith model output, ȳ =sample mean. The algorithm
then partitions the output variance, determining what fraction of the variance can be explained
by variation in each input parameter (i.e. partial variance). Partitioning of variance in eFAST
works by varying different parameters at different frequencies, encoding the identity of
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parameters in the frequency of their variation (see Supplement A.1 for details). Fourier analysis
then measures the strength of each parameter's frequency in the model output. Thus, how
strongly a parameter's frequency propagates from input, through the model, to the output serves
as a measure of the model's sensitivity to the parameter.

The sampling procedure implemented in eFAST defines a sinusoidal function of a particular
frequency for each input parameter (i.e. a search curve), x = f (j), j = 1,2,…, NS, that assigns a
value to x based on the sample number 1 through the total number of samples per search curve,
Ns. The choice of sinusoidal function depends on the distribution of parameter values desired
(e.g. uniform, normal, etc.). The frequencies assigned to parameters must meet several criteria
so that they can be distinguished during Fourier analysis. See Supplement A.1 for a detailed
discussion of how search curves are specified and frequencies are chosen. The minimum
recommended value for NS is 65 (see (Saltelli et al., 2000), p. 187). Due to the symmetry
properties of trigonometric functions, the sinusoidal function will eventually repeat the same
samples. A resampling scheme is implemented to avoid this inefficiency (Saltelli et al.,
1999): eFAST algorithm is repeated NR (the resampling size) times with different search curves
specified by introducing a random phase shift into each sinusoidal function. So, the total
number of model simulations, N, is given by N = NSx k x NR, where k is the number of parameters
analyzed.

As an example, in Figure 3, we illustrate the steps within the eFAST algorithm to the Lotka-
Volterra model described in section 3.1. We use 257 samples per search curve with no
resampling (i.e. NS =257, NR=1). Parameter σ is taken as the parameter of interest. The
algorithm assigns parameter σ a frequency of 31, and parameter β a frequency of 2. For
simplicity, parameters α (frequency = 1) and δ (frequency = 3) are not illustrated. Figure 3A
illustrates this sampling step. Each sampled parameter combination is then used to solve the
model (Figure 3B).

The primary advantage of the eFAST method over the original FAST is the ability to calculate
both the first-order sensitivity and total-order sensitivity of each input parameter (see
Supplement A.2 online for details). A first-order sensitivity index, Si, of a given parameter i,
is calculated as the variance at a particular parameter's unique frequency (and harmonics of
that frequency) divided by total variance (Figure 3D, white pie-slice). First, variance ( ) is
calculated from the Fourier coefficients at the frequency of interest, j,

(11)

then, the first-order Si is calculated as a fraction of total variance:

(12)

This index represents the fraction of model output variance explained by the input variation of
a given parameter. To estimate the total-order sensitivity index, STi, of a given parameter i,
eFAST first calculates the summed sensitivity index of the entire complementary set of
parameters (i.e. all parameters except i) using their identification frequencies (Figure 3D, black
pie-slice).

STi is then calculated as the remaining variance after the contribution of the complementary
set, Sci, is removed (Figure 3D, gray pie-slice):

(13)
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This includes higher-order, nonlinear interactions between the parameter of interest and the
complementary set of parameters. eFAST indexes can also be used to determine the degree of
additivity of a model (see Supplement A.3 online for details).

3.3.1. Inference on eFAST and the dummy parameter—Equation (7) allows statistical
inference on PRCCs. Since an equivalent test for variance-based sensitivity indexes is not
available, we propose a novel method based on dummy parameters for determining the
significance of eFAST first- and total-order indexes. The use of dummy parameters is a
standard practice in screening methods (see Chapter 4 in (Saltelli et al., 2000)), although, to
our knowledge, it has never been applied in the context of eFAST with the purpose of testing
the significance of first and total-order sensitivity coefficients.

eFAST implements random resampling (NR) of search curves for more efficient parameter
sampling. Because different search curves will produce different combinations of parameter
values, different search curves will lead to slightly different sensitivity measures. We take
advantage of these repeated measures to perform statistical tests comparing eFAST sensitivity
indexes. The algorithm already performs these repeated measures, thus the statistical tests entail
no additional computationally intensive model simulations.

The eFAST method artifactually produces small but non-zero sensitivity indexes for
parameters to which the model is completely independent. This is also true for the PRCC
method. To illustrate this point, we run an example sensitivity analysis where we include a
negative-control “dummy” parameter. This dummy parameter does not appear in the model
equations and thus does not affect the model in any other way, so should ideally be assigned
a sensitivity index of zero. Figure 4 shows eFAST and PRCC SA results with the use of a
dummy parameter on the Lotka-Volterra model discussed in Sections 3.1.

The eFAST algorithm assigns this dummy parameter a small but non-zero first-order sensitivity
index (Sdummy= 0.003), and total-order sensitivity index (STdummy) of approximately 0.11
(Figure 4A). The non-zero first-order index, Sdummy, likely derives from aliasing and
interference effects (see Supplement A.1 online). The assignment of a larger artifactual value
to the total-order index, STdummy, is more complicated, as this artifact is derived from imprecise
simplifying assumptions used to calculate the total-order index (see Supplement A.4 online).
Since we cannot test if those values are significantly different from zero, by taking a dummy
parameter as the parameter of interest, we propose a way to quantify these artifacts and test for
significance. Parameters with a total-order sensitivity index less than or equal to that of the
dummy parameter should be considered not significantly different from zero.

We propose using a two-sample t-test4 on data generated by resampling the eFAST search
curve to determine whether the sensitivity indexes of a parameter of interest are significantly
different from the indexes calculated for the dummy parameter. The t-test compares two

distributions, the  or  (j = 1, 2,…, NR) with the  or  (j = 1, 2,…, NR) (see
Supplement A.5 online for more details).

Since NR is usually small (for ease of computation), the adequacy of this t-test procedure is
limited, considering that the normality assumption4 is unlikely to hold for the first and total
order sensitivity indexes. However, it can indicate on whether a small total-order sensitivity
index should be considered an artifact of eFAST total-order estimation. The two-sample t-test
might also be used to determine whether the indexes of multiple parameters of interest are

4We use the matlab function ttest2 to perform the two-sample t-test. We assume the most conservative options, e.g. two tails and that
the two samples come from normal distributions with unknown and unequal variances. This is known as the Behrens-Fisher problem.
ttest2 uses Satterthwaite's approximation for the effective degrees of freedom.
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significantly different from each other, allowing qualitative comparisons of effect size. Figure
4A illustrates the use of resampling and statistical significance testing. The LHS/PRCC
algorithm (Figure 4B) assigns a PRCC value to the dummy parameter that is not significantly
different from zero (0.04054, p-value>0.05 according to the statistic (7)).

Although not relevant for our examples, multiple test corrections should be considered if a
large number of tests are performed in the US analysis (see Supplement B for details).

3.4. Is there an optimal choice for N?
There is no a priori exact rule for determining the adequate sample size for either LHS-PRCC
or eFAST. A minimum value is known for both: N=k +1 for LHS and NS=65 for eFAST, where
k is the number of uncertain parameters that are varied. A way to overcome the problem is to
systematically increase the sample size and check if the sensitivity index used (in our case
either PRCC or eFAST Si and STi) can consistently capture and rank a similar set of most
important effects. If that holds between two consecutive experiments, there is no evident
advantage in increasing the sample size, because the conclusions (in terms of US analysis) will
be the same. A measure of this type of correlation is given by the top-down coefficient of
concordance (TDCC).

TDCC is described in (Iman & Conover, 1980; Iman & Conover, 1987) where a concordance
measure is designed to be more sensitive to agreement on the top rankings from a set of h
different rankings. It is based on Savage scores (Savage, 1956), defined as follows:

(14)

where i is the rank assigned to the ith order statistic in a sample of size k5 (in our case k is the
number of parameters varied).

If h=2, the top-down correlation rT is the simple correlation coefficient computed on Savage
scores. If h>2, rT is the Kendall's coefficient of concordance (still computed on Savage scores).
TDCC asymptotically follows a normal distribution, specifically . We
implemented TDCC following (Iman & Conover, 1980; Iman & Conover, 1987), and it can
be used for two purposes:

i. Selecting for an optimal sample size for LHS-PRCC and eFAST (see examples in
section 4)

ii. Comparing PRCC and eFAST to see if they are in agreement (not implemented).

An alternative method to assess the adequacy of sample size in LHS is based on the use of t-
distribution with replicated sampling (see Sections 6 and 7 in (Helton et al., 2000)). The process
of ranking in the Partial Rank Correlation method refers to ranking the raw data from the LHS
matrix and model output in descending order to calculate the PRC coefficient. Here and
elsewhere, when we state that a set of parameters is the “most important” in significance
affecting model output, we mean that after listing the sensitivity indexes in descending order
by value for either PRCC or eFAST, these parameters are always greatest in absolute value.
PRC coefficients can be formally ranked by z-test (see Eq. (10)). We propose the use of a
pairwise t-test and a dummy parameter to rank Si and STi

6.

5If k=3,  and 
6The resampling size NR should be large enough to achieve accuracy in statistical significance.
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3.5. Time varying sensitivity indexes
PRCC and eFAST indexes can be calculated for multiple time points and plotted versus time.
This allows us to assess whether significances of one parameter occur over an entire time
interval during model dynamics (this is the usual presentation of SA indexes for dynamical
systems analysis). This analysis can be performed in two ways. If specific time points are
known to be crucial, then only those will be checked for significance. For example, a model
of acute virus dynamics will focus on the first days post-infection. If we model a slow-growing
pathogen (like Mycobacterium tuberculosis), we might be interested in later time points. If no
particular time effect is known, the analysis can be done in an exploratory way, looking for
any significant time-dependent relationships throughout the entire time course. Figure 5 shows
an example of PRCCs plotted over time: the US analysis is performed on the ODE model
described in Section 4.3 (only five parameters are shown). The grey area in Figure 5 indicates
PRCCs that are not significantly different from zero (based on the statistic (7)). A similar plot
can be displayed for eFAST indexes Si and STi (not shown).

In this example we see that the effect of parameter k2 (maximum rate of infection of resting
macrophages due to extracellular bacteria) changes with respect to bacterial load over time: it
is negatively correlated (very strong PRCC, almost perfect negative correlation) right after
infection (early time points), and then it becomes positively (very strongly) correlated as the
infection progresses to its steady state. The positive sign of its PRCC indicates that if we
increase parameter k2, bacterial load increases (and vice versa). The negative sign suggests
that if we increase it, bacterial load decreases (and vice versa). So, the rate of infection of
resting macrophages by M. tuberculosis (k2) is initially responsible for lowering the
extracellular bacterial load (likely due to bacterial uptake). Then it becomes the most important
source of infection, likely due to bacteria proliferation: the more bacteria internalized by
macrophages, the more bacteria are released into the extracellular domain due to
overproliferation and subsequent macrophage bursting or killing. Other mechanisms, such as
the maximum rate of immature dendritic cells (IDCs) activation/maturation/migration from
the lung to the lymph node compartment (δ10), only become significant later during infection
(from 300 days on, see Figure 5).

3.6. Standard versus explorative US analysis
US analysis can be implemented by choosing a specific reference output for calculating
sensitivity indexes (for example viral or bacterial load, if we track the progression of an
infection). We define this type of approach a standard US analysis.

US analysis can be run on a list of several possible model outputs and the results can then be
studied and classified depending on the goal of the analysis. We define this type of approach
an explorative US analysis. For example, if the model comprises variables at different scales
(e.g. intra-cellular vs extra-cellular, or molecular vs. cellular) or in different compartments (e.g.
different organs), we can choose outputs to investigate effects of parameter changes on different
scales or in different compartments (see section 4.3 for details). An intra-compartmental/intra-
scale US analysis investigates how certain outputs generated in a specific compartment (scale)
are affected by variations of parameters belonging to the same compartment (scale). An
example of intra-compartmental US analysis can be to study how the rate of infection of resting
macrophages in the lung affects the bacterial load in the lung (see Section 4.3).

Inter-compartmental US analysis explores how certain outputs generated in one compartment
in a multi-compartment/scale model are affected by variations of parameters belonging to a
different compartment/scale (for example how the percentage of particular immune cells
migrating from the lymph node - compartment 1 - affects the bacterial load in the lung -
compartment 2, see Section 4.3). The analysis can be performed either looking at specific inter-
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and intra-compartmental effects in which we are interested, or all the significant indexes can
be listed and then classified as inter- or intra-compartmental effects. An example of multiscale
sensitivity analysis can be found in (Chang et al., to appear in Infection and Immunity; 
Kirschner et al., 2007).

Whether a standard or an explorative US analysis is performed, the set of parameters that are
varied is always under investigation and the parameters are continuously varied. The difference
is in the goal of the analysis. Standard US analysis is applied for each of the examples shown
in section 4, while explorative US analysis is only applied to the two compartmental ODE
model of Mycobacterium tuberculosis infection (section 4.3).

4. Uncertainty and Sensitivity Analysis Examples
Since the relationship (including monotonicity) between parameters and outputs is not typically
known a priori, then in principle using both PRCC and eFAST methods is ideal. The drawback
is that issues related to accuracy of results and computational costs may arise. To illustrate the
differences between these methods we implement both PRCC and eFAST and compare the
results for different types of mathematical models in biology: three different ordinary
differential equation (ODE) systems (Lotka-Volterra, cell population dynamics in HIV
infection, and Mycobacterium tuberculosis infection), a delay differential equation (DDE)
system in theoretical immunology, and an agent-based model (ABM) of granuloma formation.
The results are model-specific. However, in the discussion at the end of the manuscript, we
suggest a general approach to balance accuracy of analysis and computational costs.

4.1. Emphasizing PRCC is not accurate when non-monotonicities are present: Lotka-Volterra
model

We now revisit the predator-prey (or Lotka-Volterra) model described in section 3.1. Our goal
is to focus on two of the four parameters of model (3)-(4) and show how PRCC and eFAST
give contradictory results, even with a simple prey-predator model. The cumulative distribution
functions (CDFs) of the parameter samples resulting from the LHS scheme are illustrated in
Figure 2A. We set the sample size N to 1000. Each parameter is independently sampled from
normal pdfs (see Eq. (5)) and the model described by Eqs. (3)-(4) is simulated for each
parameter combination. Figure 6A shows the Lotka-Volterra model outputs (Eq. (4), P(t))
corresponding to the LHS matrix and scheme defined in Eq. (5). The vertical dashed line
represents the time point chosen to perform the sensitivity analysis (time=9 days). In order to
test for non-linearities and non-monotonicities between input variations (parameter σ) and
output results (P(t) (predator), we produce scatter plots of the raw or ranked output (y axis)
versus raw or ranked input (x-axis, see Panel B, C and D of Figure 6).

Figure 6B shows the linear scatter plot of the 1000 output values at day 9 plotted versus input
variation. Figure 6C shows the linear scatter plot of the rank-transformed data, while the scatter
plot of two different residuals7 used to calculate PRCC is shown in Figure 6D (see Figure
legends for details). There is clearly a non-monotonic, nonlinear relationship between σ and
the output P(t) at time t=9 (Figure 6B-C-D) and the corresponding PRCC is not significantly
different from zero (Figure 6D, PRCC=-0.0575, p>0.06).

We designed the simulations varying parameters β and σ over large intervals, while parameters
α and δ are allowed to vary around their respective mean value following a normal pdf with a

7We want to model y (response or dependent variable) as a function of x (regressor or independent variable), i.e. y=f(x). The error we
make in the prediction is called residual (e=y-f(x)). In our case x is the parameter vector (α, β, δ, σ) and f is a linear combination of a
subset of x. Thus the x-axis of Panel D represents [ex=σ-f(α, β, δ)], the y-axis represent [ey=y-f(σ)]., where the dependent and independent
variables are rank-transformed.
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very small standard deviation (e.g. 0.01). We tested for significant PRCCs for all four
parameters of the Lotka-Volterra model. By construction, parameters α and δ should not
significantly affect the output (as confirmed by PRCC columns in Table I, where all PRCCs
for α and δ are between −0.05 and 0.05 and not significant, except for the PRCC of α for output
Q (-0.0916, p<0.004).

Parameters β and σ should significantly affect the output: confirmed for the model output Q(t)
(first PRRC column of Table I, 0.5586 and −0.7272, with p-values<0.001) but because of the
non-monotonicity shown in Figure 6D, PRCC of σ versus the output P(t) is not significant
(-0.0575, p-value>0.06).

On the other hand, the first- (Si) and total-order (STi) sensitivity indexes returned by eFAST
are the highest for σ (see Table I, eFAST columns), suggesting that the contribution of σ to the
variability of the output P(t) is in fact the most important. According to condition (A.9) in the
Supplement A.5, the sampling size for each curve (NS=65) ensures accurate Si and STi
estimates (average CV▽Si <6% and CV▽STi <2% for both outputs).

Summary—These contradictory results show how, even with a simple model, non-linear and
non-monotonic relationship between input and output variation can lead to misleading
conclusions during sensitivity analyses if PRCC is used.

4.2. Sampling (NS) and resampling (NR) in eFAST: an HIV-ODE model example
We next examine a model for the interaction of HIV with CD4+ T cells (see (Perelson et al.,
1993)). It describes four cell population concentrations in the blood: uninfected T cells (T),
latently infected T cells (T*, i.e. cells that contain the provirus but are not producing new virus),
actively infected T cells (T**, i.e. cells that are producing virus) and free virus (V). The model
comprises a total of nine parameters (see Table II) and the dynamics of the various populations
are given by

(15)

(16)

(17)

(18)

where T(0) = 1000 mm−3, T*(0) = T**(0) = 0 and V(0) = 10−3 mm−3. The model admits two
equilibrium solutions: an uninfected steady state (EB, with no virus present) and an endemically
infected steady state (EP). NV is a transcritical bifurcation parameter for EB, or in other words
the system converges to the uninfected steady state EB only if

(19)

The system (15)-(18) reaches the endemically infected steady state EP if NV> Ncrit. The ranges
over which parameters are varied (uniform pdfs) determine whether condition (19) is met or
not. So, the parameters NV, μT, μV, k1, k2 (those included in (19)) should appear significant in
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our uncertainty and sensitivity analysis, depending on the intervals defined in Table II
(Range column). Analytically, further conditions defined on other parameters play a role in
determining the stability of EP: whether they show up or not in the US analysis depends on the
range over which they are varied (see Supplement E for an example with PRCC).

Parameter values given in Table II (Baseline column) produce a stable EP, but stability can be
lost through Hopf bifurcations occurring for several parameter combinations (see (Perelson et
al., 1993) for details).

We ran LHS/PRCC and eFAST analyses for different sample sizes. For LHS/PRCC we used
the following sample sizes 100, 200, 300, 400, 500 and 1000, while for eFAST we set NS
respectively to 65, 129, 257, 513, 1025 and 2049 (with NR=5). We test the adequacy of the
sample size for both PRCC and eFAST with the top-down coefficient of concordance (TDCC).
The number of parameters varied is 8, so the TDCC gives only a trend (since the statistic is
only correct for large values of k, i.e. asymptotically). The results are summarized below, while
all the details can be found in Supplement D online (Table D.1-D.7).

4.2.1. PRCC and eFAST results for HIV model—PRCC results show how parameters
NV, k2, μv (-) are consistently significant and the most important, with k1 and μT (-) always in
fourth and fifth position (see Table D.1 online). TDCC suggests N=200 as the optimal sample
size (see Table D.2 online).

As mentioned before, use of a uniform or log-uniform distribution (i.e. log-scale sampling)
over a range spanning many orders of magnitude can produce very different results. In fact by
using a log-scale sampling scheme, parameters k1, NV and μT are now consistently significant
and the most important, with μV always in fourth position (see Table D.3 online). Thus, by
sampling on a log scale, PRCC results are very different. Only parameter NV is still selected,
while parameters k1 and μv are lost. The TDCC suggests again N=200 as the optimal sample
size (see Table D.4 online).

eFAST results (both Si and STi) confirm that parameters μV, NV and k2 are consistently
significant and the most important (see Table D.5 online). The TDCCs suggest NS=257 as the
optimal sample size, although increasing NS does not improve the agreement in the results,
except for NS=2049 (see Table D.7 online). The coefficients of variation (see Supplement A.
5 online for implementation) are always very high for the first-order sensitivity indexes Si
(likely because the values of Si are close to zero) and generally below 10-15% for the total-
order sensitivity indexes STi (see Table C.6 online for details). Increasing NS only improves
the coefficients of variation for STi. We did not implement a log-scale sampling for eFAST.

If we combine results from both PRCCs and eFAST Si and STi, parameters μT,, k1, k2, NV and
μV indeed are significant, suggesting how a properly designed US analysis should return
bifurcation parameters as significant. Note that in the original paper (Perelson et al., 1993)
these were shown analytically to be bifurcation parameters.

Summary: PRCC and eFAST measure different things. This example shows how results can
overlap for a subset of parameters (e.g. μV, NV and k2). However, the ranking of the most
important effects is not preserved between the two methods. The TDCC shows how PRCC
more efficiently (i.e. with a lower sample size) achieves a concordance in ranking the most
important effects, while eFAST may need larger sample sizes.

4.3. Standard and Explorative US analysis: a two compartmental ODE model
We now examine a more complex ODE to address the use of uncertainty and sensitivity analysis
in a multi-scale/multi-compartmental setting. As an example, we choose an ODE model of

Marino et al. Page 14

J Theor Biol. Author manuscript; available in PMC 2009 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mycobacterium tuberculosis (Mtb) infection in humans published by our group (Marino &
Kirschner, 2004): it comprises a total of 17 equations, and a much larger set of 90 parameters,
that describe dynamics between two physiological compartments (lymph node and lung). A
detailed description of the model can be found in (Marino & Kirschner, 2004; Marino et al.,
2004). Basic details on the biology are given in the Supplement E and Figure E.1.

We perform uncertainty and sensitivity analysis on the 12 parameters that are specifically
involved in establishing infection and linking the two anatomical compartments (see Table E.
1 for details). This set of parameters represents mechanisms whose action is elicited either in
the lung or in the lymph node compartment. A more comprehensive analysis would include
all the parameters of the model, or at least the uncertain ones. Here we focus on a subset for
the purpose of illustrating both a standard and explorative US analysis. As discussed in Section
3.6, whether a standard or an explorative US analysis is performed, the set of 12 parameters
varied is always under investigation and the parameters are continuously varied. The difference
between the two analyses is subtle. A standard US analysis lists all the parameters with a
significant sensitivity index with respect to one or more outputs of reference (in our example
the output of reference is the extracellular bacterial load - BE, see Table III, Panel A).

An explorative US analysis identifies which one of these effects (significant sensitivities) has
an impact in the same compartment (intra) of the output of reference, or in a different
compartment (inter). In our example, we examined two outputs in the lung compartment
(extracellular bacterial load – BE, type I T helper cells – Th1) and one output in the lymph
node compartment (mature dendritic cells –MDCs) (see Supplement E for details on the
biology). Then we computed both PRCC and eFAST coefficients and classified all the
parameters with significant sensitivity indexes either as intra- or inter-compartmental effects,
as having effects, depending on the output of reference.

We performed LHS/PRCC and eFAST analyses for different sample sizes. For LHS/PRCC
we used the following sample sizes 100, 200, 300, 400, 500 and 1000, while for eFAST we
set NS respectively to 65, 129, 257, 513, 1025 and 2049 (with NR=5). We tested the adequacy
of the sample size for both PRCC and eFAST with the top-down coefficient of concordance
(TDCC). The number of parameters varied is small (i.e., 12), so TDCC gives only a trend (as
in the previous example). Since analytical results are not available due to the size of the model
and the complexity of the equations, conclusions are not as straightforward as in the previous
examples. Standard US analysis results are shown in Table III Panel A, while an example of
inter- and intra-compartmental analysis at specific time points is given in Table III Panels B-
D. All the details can be found in Supplement E online. We analyze three different time points,
namely 100, 500 and 1000 days post infection. Table III rows show both PRCC and eFAST
Si and STi: they are ordered in descending order (the first listed have the largest absolute values
and are highlighted) and the sign of the PRCCs is in parenthesis.

Overall, this example shows how the sets of significant Si and STi returned by efAST is
consistent throughout the analysis, returning the same list of important parameters with the
same ranking. eFAST results suggest (generally smaller) sets of significant parameters that are
not always listed as significant by PRCC and are generally smaller. Moreover, when the same
set of parameters is returned, the ranking is frequently different between the two methods (see
Panel A).

Table III shows how the fraction of precursor T Helper cells (Th0) migrating out of the lymph
node compartment into the blood (ξ) and the maximum rate of immature dendritic cells (IDCs)
activation/maturation/migration from the lung compartment to the lymph node compartment
(δ10) are alternatively classified as significant inter- (Panel B and D) or intra-compartmental
(Panel C) parameters by PRCC and eFAST.
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However, they are not consistently returned as significant by both indexes. For example, in
Panel C, δ10 is significant only with PRCC and parameter ξ is listed as significant only by Si
and STi: both are ranked as the most important by each respective method. Another example
is given by parameter ξ in Panel D: only PRCC lists it as significant (while δ10 is returned as
very important by PRCC and eFAST Si and STi).

Summary—This example shows how on a large complex model, the use of both indexes is
recommended because often the set of the most important parameters is not consistent between
the two methods.

4.4. A delay differential model example
We next apply uncertainty and sensitivity analysis to a delay differential equation model
published by our group (see (Marino et al., 2007) for details). The model investigates the role
of delays in innate and adaptive immunity to intracellular bacteria infection. It tracks five
variables: uninfected target cells (XU), infected cells (XI), bacteria (B), and phenomenological
variables capturing innate (IR) and adaptive (AR) immunity. A detailed description of the model
is in (Marino et al., 2007). Here we only show the equations.

(20)

(21)

(22)

(23)

(24)

Two delays are included in the model. The delay for innate immunity, τ1, occurs on the order
of minutes to hours and τ2 is the delay for adaptive immunity on the order of days to weeks.
We assume that both responses are dependent solely on the bacterial load (f1 ≡ f2 = B(s)) in
the previous τi time units (i = 1,2), where the kernel functions wi(s) (i = 1,2) weight the past
values of the bacterial load, B(s).

We use a uniform kernel for innate immunity (with τ1 ≅ 1) and an exponential growth kernel
for adaptive immunity (with τ2 ≅ 20). System (20)-(24) is comprised of 20 parameters (15
independent parameters), 7 of which are directly involved in existence condition for
equilibrium solutions. Initial conditions for the model are given in Table G.1 (online
Supplementary Material). We solved the system numerically using the Matlab solver
dde238. The model admits two equilibria: boundary equilibrium EB (clearance of infection, no
bacteria) and a positive equilibrium EP (damped or sustained oscillatory bacterial levels,
depending on the values of τ1 and τ2). The positive equilibrium EP exists only if the following
condition holds:

8(Version 6.5, R13, Copyright 1984-2002, The MathWorks, Inc)
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(25)

We sampled eight parameters simultaneously (τ1, τ2, α1, α2, α3, α 4, α 20,σ), defining uniform
probability density functions for their distributions. The remainder of the parameters is held
constant at their default values (see Table G.1 online). Table G.1 is used to initialize the
sampling procedure (see Value column) and to define intervals for uncertainty analysis (see
Range column). We set the dimension of the sample in LHS to N=1000, while eFAST is
performed for 3 different NS (i.e. 65, 129 and 257) and resampling size to NR=5 (for inference
on Si and STi), except for the sample NS=65 where we increased NR to 20 to improve accuracy
(see Table G.3 online).

Some parameter combinations do not satisfy the existence condition for EP (i.e., condition
(25).); thus, we calculate PRCCs both on the entire LHS dataset and on the subset of samples
fulfilling condition (25)). In contrast, the same procedure cannot be applied to eFAST. Because
of its unique sampling technique, eFAST must process the whole sampled dataset at once, and
we can only compare the sensitivity indexes calculated on the whole parameter space.

We summarize the main US analysis results below, while all the details can be found in Tables
G.2 and G.3 online. The indexes are evaluated at 5 different time points (10, 30, 50, 100 200
days) and the model output chosen for sensitivity analysis is bacterial load (Eq. (22)). Condition
(A.9) is never satisfied by the choice of NS and NR (see Table G.3 online). Panels A, B and C
(in Table G.2 online) show PRCC results, while Panels D and E show eFAST results. Both
PRCC and eFAST suggest that bacterial load levels over time are mainly affected by variations
in the parameters α3 and α20. PRCC scatter plots of these two parameters versus the bacterial
load are shown in Figure 7 (using the whole LHS matrix), where the strong correlations are
confirmed. Parameter α4 is found consistently significant only with the PRCC analysis
(although the correlation is weak). Extended FAST (Table G.2 Panels D and E) and PRCC list
delays τ1 and τ2 as important sources of variation for bacterial load (PRCC predicts they are
significant with small negative correlations). Both delays are significant only with the subset
of LHS matrix satisfying (25) (Table G.2 Panel C online), in line with analytical results where
τ1 and τ2 play a role only when EP exists (τ1 and τ2 define the nature of the equilibrium, with
either sustained or damped oscillations). The effect of τ2 is lost if the whole LHS matrix is used
(Table G.2 Panel A, online) and both are lost (Table IV Panel B) if only the subset of LHS
matrix not satisfying (25) is used (in fact EB is not affected by changes in τ1 and τ2). PRCC
scatter plots (see Figure 7) do not show any clear nonlinear non-monotonic relationship
between variations in the parameters τ1, τ2, α1 and the output (bacterial load). PRCC and eFAST
confirm indirectly our analytical results: they return as significant those parameters that are
involved in the existence condition (25) for equilibrium solutions.

Summary—This example shows how PRCC and eFAST results can overlap. However, since
the nature of the relationship between inputs and output is not known a priori, PRCC and eFAST
should be used together (as in this example), if eFAST computational cost is not prohibitive.

5. Uncertainty and Sensitivity Analysis in Agent-Based Models
Agent-Based Models (ABMs, also called “individual-based models”, IBMs) are a formalism
evolved from early research in cellular automata and artificial life. The defining feature of
ABMs is that elements of the system are represented as discrete agents that move and interact
according to defined rules, in an explicitly defined spatial environment. Stochasticity enters
the model as some decision-making rules can be based on random chance, such as a random
walk movement of cells. In an ABM, the individual, possibly stochastic, interactions between
agents give rise to global, system-wide dynamics and patterns. Thus, ABMs are ideal for
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studying complex systems in which stochasticity, and spatial and temporal heterogeneity are
important, such as biological systems.

Stochastic models, such as the ABM we consider here, pose unique challenges to uncertainty
and sensitivity analysis. Most uncertainty and sensitivity analysis techniques have been
developed for use with deterministic models, such as those presented in previous sections of
this work. To our knowledge, very few researchers have attempted extensive and systematic
uncertainty and sensitivity analysis on ABMs (Lempert et al., 2002; Riggs et al., 2008;
Segovia-Juarez et al., 2004).

To perform uncertainty and sensitivity analysis on an ABM, it is critical to keep in mind the
distinction between aleatory and epistemic uncertainty during model building. In this analysis,
epistemic uncertainty is handled by holding a parameter to a fixed value during a particular
model simulation, but allowing probabilistic variation between model simulations to reflect
uncertainty. In contrast, stochastic components vary randomly from moment to moment within
a single ABM simulation. Some studies have applied a stochastic component to otherwise
deterministic models by sampling a random sequence of values prior to running a model
simulation (Helton, 1999; Helton & Breeding, 1993; Helton et al., 1995). However, this
approach cannot be easily applied to ABMs as presented here: stochastic decisions made by
each agent at each time step are based on conditional probabilities that depend on both random
chance and the state of other interacting agents. Therefore it is impossible to correctly specify
a random sequence of agent decisions prior to running the simulation. When performing
uncertainty analysis on an ABM, epistemic uncertainty and aleatory uncertainty become
conflated in the model output. It is difficult to know whether variability in model outcome is
due to experimentally introduced variation in input parameters (epistemic uncertainty) or to
the inherent stochastic components of the model (aleatory uncertainty). Therefore, it is difficult
to apportion variability to input parameters during sensitivity analysis. In this section, we
perform uncertainty and sensitivity analysis on an ABM, identify the strengths and weaknesses
of the PRCC and eFAST techniques in dealing with aleatory uncertainty, and propose an
averaging method to reduce the influence of aleatory uncertainty.

5.1. An agent-based model example
As an example, we present a published ABM describing granuloma formation during
Mycobacterium tuberculosis infection (Segovia-Juarez et al., 2004). This was the first ABM
to use a modification of a US analysis using PRCC. In this model, the spatial environment
represents a 2mm square section of lung tissue. This area is subdivided into a 100×100 lattice
of 20μm square micro-compartments. Agents (cells) populate this environment, representing
resident or infiltrating macrophages and T-cells. Bacteria and chemokines also exist in the
model, but are treated as a continuous quantity rather than discrete agents. Each micro-
compartment can contain at most one macrophage and one T-cell agent (and a quantity of
bacteria/chemokines, as these are assumed to have negligible size). Some micro-compartments
are designated as vascular source compartments, through which new macrophage and T-cell
agents arrive from the blood.

A simulation is initiated by distributing an initial population of resting macrophages randomly
on the lattice and an initial load of extracellular bacteria in the center of the lattice. The
simulation evolves by a series of discrete time steps, during which rules are evaluated governing
the diffusion of chemokines, infection and replication of bacteria, and arrival, movement,
interaction, and change in phenotype of immune cells. Parameters that we will analyze by US
methods control initial conditions and rates or probabilities used to evaluate rules (Table IV).
See (Segovia-Juarez et al., 2004) for a more detailed description of the model.
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5.2. Aleatory Uncertainty
It is impossible to entirely separate model output variability due to either aleatory or epistemic
uncertainty. However, it is useful to crudely quantify aleatory uncertainty in the absence of
variability due to epistemic uncertainty by repeatedly solving the model, holding all parameters
constant. Figure 8 represents two typical scenarios: containment of infection and dissemination.
The baseline set of parameter values differs between the two scenarios (see (Segovia-Juarez
et al., 2004) for definitions of these scenarios and baseline parameters). The variability around
each scenario is determined by aleatory uncertainty, while epistemic uncertainty causes the
emergence of this bimodal outcome. We find that the containment scenario produces a
moderate level of aleatory uncertainty. To roughly quantify aleatory uncertainty, we calculate
the coefficient of variation of 10 replicates, holding all parameters constant at their average
values (middle value of the Range column in Table IV). For this model, coefficients of variation
of the output for the containment scenario (extracellular bacterial load) are 3.5% at day 500
and 62.4% at day 30. The coefficient of variation at day 30 is much larger than at day 500,
meaning that aleatory uncertainty at this early time point will more strongly mask any
variability due to epistemic uncertainty introduced in subsequent analysis steps. We will focus
our analysis on day 30, as this time point is analyzed in (Segovia-Juarez et al., 2004), providing
a reference point to compare our results to, and because aleatory effects should be most
problematic at this time point due to the high coefficient of variation.

5.3. Replication and averaging scheme for ABM
To study aleatory uncertainty, we propose a replication and averaging scheme that can be
applied with either PRCC or eFAST. First, parameter combinations are created using the LHS
or eFAST internal sampling algorithm. Next, multiple model simulations are repeatedly run
for each parameter combination (replication step). Note that when using a pseudorandom
number generator in the algorithm, we reinitialize the random seed for each model simulation.
Finally, the sensitivity coefficients are calculated using the average of model outputs across
replicates. By comparing these results with the sensitivity coefficients obtained from each
replicate individually, we can assess whether US analysis is robust at a specific sample size.
One caveat to this approach is that using the average to characterize the distribution of output
values over aleatory uncertainty is reliable only if the output values are clustered around a
central value (i.e. unimodal). We apply the replication and averaging scheme to the Segovia-
Juarez ABM.

5.4. LHS/PRCC results
When aleatory uncertainty is moderate, as is in this example, LHS/PRCC produces consistent
results at large LHS sample size: in the original analysis of this model, Segovia-Juarez et al
use an LHS sample size of 1000. As sample size is reduced to less than approximately 200-300,
two effects occur: first, PRCC becomes less reliable due to the influence of aleatory uncertainty;
second, statistical power for PRCC significance is reduced due to the smaller sample size;
therefore weakly correlated parameters are not found to be significant.

Next, we explore whether averaging replicates can reduce effects of aleatory uncertainty,
allowing fewer computationally intensive model simulations. We find that averaging replicates
has two beneficial effects. First, PRCC becomes reliable at smaller sample sizes due to the
removal of some of the variability induced by aleatory uncertainty. Specifically, by using
replicates (4 replicates in this case), a similar set of parameters with significant PRCC is
achieved with a smaller number of samples (at least 50) compared to the standard scheme
without replicates (at least 300 samples). Second, parameter values and model output becomes
more tightly correlated due to the removal of some confounding aleatory noise, resulting in
PRCC of greater magnitude (see Figure 9). This increase in PRCC magnitude that occurs by
averaging is apparent even when PRCC is already reliable due to large sample size, e.g. 1000
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samples (not shown). These benefits come at a cost, however: if the total number of model
simulations is held constant, performing replicates reduces the number of samples available
for statistical tests (e.g. 300 parameter samples simulated once, versus 100 parameter samples
replicated 3 times, then averaged, yielding 100 sample averages). In Figure 9, we show that
there are some situations where the gain in PRCC magnitude due to averaging is favorable
despite the loss in statistical power. In the original analysis of this model, using a sample size
of 1000 with no replication, Segovia-Juarez et al (Segovia-Juarez et al., 2004) find 9 significant
parameters, including parameters αBI and λ. Reducing sample size to 300 with no replication
(Figure 9, black bars), for a total of 300 model simulations, parameters αBI and λ are not
significantly different from zero. Using 100 samples and averaging 3 replicates (Figure 9, gray
bars), for a total of 300 model simulations, however, successfully identifies αBI and λ as
significant, yielding performance similar to that of 1000 samples used by Segovia-Juarez et
al. Therefore, for this ABM we suggest that performing replicate simulations of each parameter
sample and averaging these replicates is a useful strategy that can provide better performance
with fewer computationally intensive model simulations.

5.4.1. eFAST results—To our knowledge, eFAST has been used to analyze an ABM once
before (Lempert et al., 2002), but details of the methodology used are lacking. To explore the
suitability of the eFAST method in analysis of stochastic models, we analyze the Segovia-
Juarez model, described above, taking advantage of the replication and averaging scheme
(described in the previous section) and of the use of a dummy parameter (as developed in
section 3.3.1). Extended FAST is performed using 257 samples per search curve (i.e., NS=257,
chosen to satisfy condition (A.9)), a resampling size of 4 (i.e., NR=4), and 4 replicates for
averaging. By allowing eFAST to partition variance to a dummy parameter, we find that the
first-order index is relatively unaffected (Figure 10A). However, eFAST severely mishandles
the variability induced by aleatory uncertainty by incorrectly partitioning it to the total-order
sensitivity index, resulting in a large artifactual STi=24.3% (Figure 10B, dummy parameter,
black bar). Thus, use of a dummy parameter to quantify this artifact reveals that parameters
with a total-order STi in the range of ∼20-30% are likely artifactual. Using replication and
averaging to limit variability induced by aleatory uncertainty successfully reduces this artifact
by more than half (Figure 10B, dummy parameter, gray bar): this allows 7 of the 8 significant
parameters identified by LHS/PRCC to exceed the dummy parameter background value for
Si (Figure 10A). Increasing NS and NR, as well as performing averaging with additional
replicates will likely further improve the limit of detection. Performing significance testing in
combination with replication and averaging, we find that 8 of the 9 parameters identified as
significant by LHS/PRCC are also identified by eFAST first-order Si (Figure 10A), while the
STi coefficients are significantly different from the dummy only for 4 of the 8 parameters listed
by LHS/PRCC (Figure 10B). Note that eFAST result come at a much higher computational
cost: 53456 total model simulations using eFAST, as opposed to 300 total model simulations
with LHS/PRCC.

Summary: This specific ABM example shows how LHS/PRCC and eFAST are typically in
agreement, identifying a similar set of important parameters (with the eFAST sets of important
parameter being smaller than PRCC, as shown in some of the deterministic model examples
in section 4). However, these two methods have different relative strengths and weaknesses.
eFAST requires many more model simulations, which is a particular problem as ABMs are
often more computationally intensive than deterministic models. Also, when analyzing
stochastic models, eFAST produces an artifact whereby aleatory variance is inappropriately
partitioned to the total-order sensitivity index. Therefore, this example suggests how LHS/
PRCC method (with the modifications presented here) can perform better than eFAST for a
specific time point, reaching the same conclusions with much less computational cost.
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The eFAST method has the strength of identifying non-monotonic sensitivities, however.
Though we see no evidence of this strength in the ABM we analyze here, there is no a priori
way of knowing if non-monotonic sensitivities are present in a model. Therefore, if
computational cost is not prohibitive, use of eFAST on stochastic models can complement
LHS/PRCC results. In this case, one should take steps to reduce the artifact of eFAST
mishandling aleatory variance in the total-order sensitivity index, or one should rely solely on
the first-order index, as it is unaffected by the artifact.

6. Discussion and Conclusion
Uncertainty and sensitivity analyses offer a way to assess the adequacy of models and establish
what factors affect model outputs. We reviewed and compared two specific types of global
sensitivity analysis indexes that have proven to be among the most reliable and efficient,
namely a sampling-based method (Partial Rank Correlation Coefficient-PRCC) and a variance-
based method (extended Fourier Amplitude Sensitivity Test-eFAST). All functions used
throughout the paper are available on our website
(http://malthus.micro.med.umich.edu/lab/usanalysis.html).

PRCC provides answers to questions such as how the output is affected if we increase (or
decrease) a specific parameter (linearly discounting the effects of the uncertainty over the rest
of the parameters). Thus PRCC can be informative on what parameters to target if we want to
achieve specific goals (e.g., control or regulatory mechanisms). For example, the most
significant set of parameters can be used to determine how to efficiently reduce viral load or
increase immune response (by both timing and magnitude). eFAST, and all variance-based
methods in general, indicate which parameter uncertainty has the greatest impact on output
variability. In other words, our predictions will be strengthened if we can reduce uncertainty
and get better estimates on specific parameters of the model (i.e., the ones with highest Si and
STi sensitivity coefficients). This will also enhance any additional PRCC or sampling-based
analysis, because any regulatory or control strategy will be more reliable.

A general finding was that a properly designed US analysis returns a set of bifurcation
parameters as significant; thus US analysis can be an adequate alternative when an analytical
solution to a mathematical system is not possible. This holds true for both sample and variance-
based methods (at least if we consider the examples of section 4).

One critical point is the selection of adequate pdfs and the choice of parameter ranges used for
sampling. The selection of probability distributions for the uncertain parameters depends in
part on whether the intent of the analysis is an exploration of variable effects (i.e., a sensitivity
analysis) or a propagation of uncertainty to assess the uncertainty in the outcomes of interest
(i.e., an uncertainty analysis). For meaningful uncertainty analyses, the selected distributions
are chosen based on the degree of our understanding of biology with respect to the appropriate
values of model parameters. In contrast, the distributions might be selected simply to fully
explore potential variable effects in a sensitivity analysis.

The choice of parameter range should also be guided by the available knowledge of the
biological problem. If a parameter range is completely outside the biological realm, the
practical relevance of the US analysis is lost. Unfortunately, exact or even hypothetical
biological ranges are many times unknown. Unless the choice of very small ranges for certain
parameters is guided by some a priori knowledge, the sampling should be performed within
the whole range of plausible values, since US analysis results can be quite different (see
Supplement F for examples of how PRCC and eFAST results can be affected by sampling
different ranges). Moreover, if the range of variation for some parameter spans several orders
of magnitude and we want to avoid under-sampling in the outer ranges of parameter space, the
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implementation of a logarithmic sampling scheme (for example, a log-uniform in place of a
uniform pdf) would achieve the goal, but the final results will be affected (as shown in
Supplement D online).

Our examples showed how PRCC and eFAST could give different results, where nonlinear
and non-monotonic relationships between inputs and output lead to misleading conclusions,
even with a simple prey-predator model (see section 4.1). eFAST is more general than PRCC
(it deals with any type of relationship between inputs and outputs of a model) with one major
drawback: its computational cost, especially for computing STi. Our examples highlight how
a large number of iterations are needed to achieve a recommended degree of accuracy in eFAST
(as also shown in Figure 8.9 at page 190 of (Saltelli et al., 2000)).

We designed a new method (together with an heuristic for its accuracy) to check for significant
eFAST Si and STi. This new method is based on a two-sample t-test approach and uses a re-
sampling scheme to compare each sensitivity index with that of a dummy parameter. The use
of dummy parameters is a standard practice in screening methods (see Chapter 4 in (Saltelli
et al., 2000)), although, to our knowledge, it has never been applied in the context of eFAST.

We built several functions to display scatter plots of sampled parameters versus the output
under study (given on our website, see
http://malthus.micro.med.umich.edu/lab/usanalysis.html): they can be extremely useful to
detect non-monotonicities and non-linearities (as shown in section 4) and possibly explain why
PRCC and eFAST results are different.

In the context of ABM, we also implemented a new averaging strategy to efficiently and
reliably perform US analysis within the context of this particular class of stochastic models.
By running the ABM multiple times with the same set of parameters and then averaging the
output, we are able to attenuate the effect of aleatory uncertainty, obtaining more reliable results
both for PRCC and eFAST.

We also implemented a concordance measure (top-down coefficient of concordance – TDCC)
that informed on the adequacy of the sample size and can check if PRCC and eFAST return a
similar set of important parameters.

Throughout our examples, we found that the set of significant first order Si and total order
STi sensitivity indexes returned by eFAST is consistent and with the same ranking. eFAST
generally returns smaller sets of parameter with significant Si and STi, compared to the set of
parameters with significant PRCC. Also, eFAST often returns Si and STi for parameters that
are not listed as significant by PRCC and, when a similar set of parameters is returned, the
order of importance is frequently different between the two methods.

Based on the examples shown, we conclude that PRCC and eFAST Si and STi should both be
computed, keeping in mind that they measure different things, and that eFAST is generally
computationally more expensive. If the computational cost is not too high (i.e. cpu time per
one model run), more efficient methods are available (e.g. methods that are less affected by
non-monotonicities). A lower computational cost can be achieved by reducing NS and NR, (i.e.
the total number of runs) but the accuracy of the results might be affected. To increase the
accuracy of eFAST results, in general, it is better to increase NS first (and check for the top-
down coefficient of concordance (TDCC) to see if that sample size is sufficient to capture a
similar set of most important parameters), and then eventually increase NR (to improve the
accuracy of inference on the indexes). We found that values and significances of first-order
Si are affected by increasing NS: the values of the not significant Si get smaller, as does the
dummy parameter Sdummy, making the t-test more reliable. Increasing NS does not affect STi
values, although the t-test becomes more precise.
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In general, the computational execution time of the model is the major concern when
performing US analysis (although it was not a major issue for the examples given in section 4
and for the ABM). Models with several parameters and many complex nonlinear mechanisms
likely result in high computational costs. Screening methods are available to address this
problem. Within the class of screening methods, Morris (or elementary effects) is the most
popular (see (Morris, 1991)): it is global, computationally efficient and should be implemented
as a first preliminary US analysis when the execution time of the model is prohibitive (several
hours or days).

In summary, characterizing uncertainty in parameter values and initial conditions in
mathematical models in biology is attainable and is dependent on the type of system under
study. For the math biology community to continue to gain a foothold and have an impact in
important biology problems, it is clear that identifying uncertainty in our models is of key
importance. By the very act of classifying this uncertainty, we can simultaneously identify the
parameters (i.e. biological mechanisms) that are driving system outputs. These mechanisms
can then be posed to the experimental community to test. This close interaction between
theorists and experimentalists provides the greatest opportunity for the use of mathematical
models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scheme of uncertainty and sensitivity analysis performed with LHS and PRCC methods. The
mathematical model is represented as an ordinary differential equations system, where x is the
vector of state variables in a n-dimensional space ¡ n (n=2 in this example and θ is the parameter
vector in ¡ k (k=3 in this example). For ease of notation, the output y is unidimensional and it
is a function of x and θ.
Panel A: mathematical model specification (dynamical system, parameters, output) and the
corresponding LHS scheme. Probability density functions (pdfs) are assigned to the parameters
of the model (e.g. a, b, c). We show an example with sample size N equal to 5. Each interval
is divided into 5 equiprobable subintervals, and independent samples are drawn from each pdf
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(uniform and normal). The subscript represents the sampling sequence. Panel B: the LHS
matrix (X) is then built by assembling the samples from each pdf. Each row of the LHS matrix
represents a unique combination of parameter values sampled without replacement. The model
x = g(x, θ) is then solved, the corresponding output generated, and stored in the matrix Y. Each
matrix is then rank-transformed (XR and YR).
Panel C: The LHS matrix (X) and the output matrix (Y) are used to calculate Pearson
correlation coefficient (CCPearson). The rank-transformed LHS matrix (XR) and output matrix
(YR) are used to calculate the Spearman or rank correlation coefficient (RCC) and the Partial
Rank Correlation Coefficient (PRCC) (see section 3.1)

Marino et al. Page 27

J Theor Biol. Author manuscript; available in PMC 2009 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
general LHS scheme and PRCC performed on the Lotka-Volterra model (model equations and
parameters are as described in Section 3.1).
Panel A: Cumulative Distribution Functions – CDFs of 1000 samples independently drawn
from normal pdfs (initialized following eqns. (3)) for the four parameters (α, β, σ, δ) of the
Lotka-Volterra model described in Section 3.1, equations (1)-(2).
Panel B: outputs of the Lotka-Volterra model over time (days) corresponding to the parameter
combinations of the LHS scheme illustrated in Panel A.
Panel C: Example of sampling-based correlation indexes calculated on the LHS matrix
resulting from Panel A and from the output matrix resulting from Panel B. The reference output
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is the variable Q(t)-prey at time t=9 and it is shown on the ordinate. Parameter σ is taken as
the parameter of interest and it is represented on the abscissa. Each dot represents the output
value Q(9) for a specific sampled value of parameter σ.
Note that at each step of processing (correlation, rank correlation, partial rank correlation), the
linear relationship between parameter and output variations becomes more apparent.
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Figure 3.
eFAST performed on the Lotka-Volterra model. Model equations and parameters are as
described in Section 3.1. Panel A: Input Parameter Sampling: Parameters are varied according
to a sinusoidal function based on run number. Note that the shapes of these search curves result
in normal distribution of parameter values (see Eq. (6) for details) when sampled (horizontal
histograms). σ is assigned a frequency of 31, and β is assigned a frequency of 2. α and δ are
sampled at frequencies 1 and 3, respectively (not shown). These frequencies are chosen
automatically to meet the criteria described in Appendix A.1. Panel B: Model Output: The
model is solved for each parameter combination from Panel A. The number of prey at t=9 is
taken as the model output. Note that both high- and low-frequency components are evident by
inspection. Panel C: Fourier analysis and Variance Spectrum: The variance at each frequency
is calculated from the model ouput (see text) and normalized to total variance. The variance at
frequency 2, 31, and higher harmonics of frequency 31 are indicated (arrows). Panel D:
Sensitivity Indexes: Taking parameter σ (varied at frequency 31) as our parameter of interest,
first-order sensitivity index (Si) is calculated by the sum of variance at frequency 31 and higher
harmonics, normalized to total variance (white pie slice). The sensitivity of the complementary
set of parameters is calculated similarly (black pie slice). The remaining variance is assumed
to be the result of non-linear higher-order interaction between parameters (gray pie slice). The
total-order sensitivity index (STi) is calculated by the sum of Si and higher-order effects (white
+ gray pie slices).
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Figure 4.
Dummy parameter on eFAST and PRCC performed on the Lotka-Volterra model. Model
equations and parameters are as described in Section 4.1 and Table I. The reference output is
Q(t)-prey Eq. (3), at t=9. Panel A: eFAST results with resampling and significance testing.
Search curves were resampled 5 times (NR=5), for a total of 1285 model evaluations (NS=257).
First-order Si and total-order STi are shown for each parameter, including a dummy parameter,
as described in the text. Error bars indicate +/- 2 S.D on the mean of resamples. Parameters
with first- or total-order indexes significantly different (p<0.01) from those of the dummy
parameter are indicated with asterisks (*). Panel B: PRCC results. Sample size N=1000. (*)
denotes PRCCs that are significantly different from zero.
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Figure 5.
PRCCs of the two compartmental model US analysis performed in section 4.3, plotted over a
time course. The gray area represents PRCC values that are not statistically significant. Note
how the sensitivity of parameters change as system dynamics progress.
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Figure 6.
Panel A: plot of the output (1000 runs) of the Lotka-Volterra model. The y axis represents
variable P(t), x axis represents time (days). Panel B: scatter plot (linear scale) of parameter σ
(x axis) and the “slice” of the output of Panel A at time=9 (rPearson =-0.15257, p<0.001). Panel
C: linear-linear plot of the rank-transformed data of Panel B (rSpearman =-0.0638, p>0.04, where
rSpearman is the rPearson coefficient calculated on the data of Panel C.). Panel D: linear-linear
plot of the residuals of the linear regressions of the parameter σ versus all the other parameters
of the model (x-axis) and the residuals of the linear regression of the output versus parameter
σ (y-axis) (PRCC =-0.0575, p>0.06). PRCC is the Pearson correlation coefficient calculated
on the data of Panel D. Scatter plots of Panel B, C and D remains qualitatively invariant for
different LHS simulations. The input parameter (and its rank-transformed values) shown on
the x-axis is σ, although all four parameters are varied simultaneously.
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Figure 7.
PRCC scatter plots of parameters τ1, τ2, α1 α3, α4 and α20 (calculated at day 200, all 8 parameters
are varied simultaneously). Sample size N=1000. The abscissa represents the residuals of the
linear regression between the rank-transformed values of the parameter under investigation
versus the rank-transformed values of all the other parameters. The ordinate represents the
residuals of the linear regression between the rank-transformed values of the output versus the
rank-transformed values of all the parameter under investigation The title of each plot
represents the PRCC value with the corresponding p-value (see Table G.2 at 200 days in
Supplementary Material online)
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Figure 8.
Variation in ABM output due to epistemic uncertainty and aleatory uncertainty. Differences
in parameter values lead to either containment of extracellular bacterial load (solid lines), or
dissemination of bacteria (dotted lines), as described previously in (Segovia-Juarez et al.,
2004). Within each parameter combination, inherent stochasticity within the model causes
aleatory uncertainty. At time points earlier than approximately day 150, aleatory uncertainty
masks the epistemic difference that USA methodologies seek to measure.

Marino et al. Page 35

J Theor Biol. Author manuscript; available in PMC 2009 September 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Effect of aleatory uncertainty on LHS/PRCC and the benefit of averaging replicates. Model
parameters were sampled 300 (black bars) or 100 times (gray bars). For the 100 sample
condition, the 3 replicate model simulations were performed for each sample and averaged.
Parameters with a PRCC significantly (p<0.005) different from zero are indicated with (*).
Parameters with discordant statistical significance between the two experimental conditions
are indicated (arrow).
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Figure 10.
Performance of eFAST on the stochastic agent-based model of Segovia-Juarez et al. (Segovia-
Juarez et al., 2004) Panel A: eFAST first-order sensitivity index Si. Replication and averaging
(gray bars) has a small effect on Si, allowing additional parameters (indicated by arrow) to be
identified as statistically significant (*). Panel B: eFAST total-order sensitivity index STi.
eFAST artifactually assigns aleatory variance to the total-order index, resulting in a high
dummy parameter background value (dummy parameter, black bar). Replication and averaging
(gray bars) partially reduces this artifact, allowing an additional parameter (indicated by arrow)
to be found significant (*).
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Table II
parameter definitions and values of the HIV model described in Eqs. (15)-(18)

Parameter Description Range Baseline

s Rate of supply of CD4+ T cells from precursors [1e-2, 50] 10
μT Death rate of uninfected and latently infected CD4+ T cells [1e-4, 0.2] 2e-2
r Rate of growth for the CD4+ T cell population [1e-3, 50] 0.03

k1 Rate constant for CD4+ T cells becoming infected by free virus [1e-7, 1e-3] 2.4e-5
k2 Rate latently infected cells convert to actively infected [1e-5, 1e-2] 3e-3
μb Death rate of actively infected CD4+ T cells [1e-1, 0.4] 0.24
NV Number of free virus produced by lysing a CD4+ T cell [1, 2e3] 1200
μV Death rate of free virus [1e-1, 1e1] 2.4

Tmax Maximum CD4+ T cell population level 1500 1500
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Table III
PRCC and eFAST results on the 2-compartmental ODE model. This table summarizes results shown in great detail in
Supplement E online, where different sample sizes are used for both LHS/PRCC and eFAST. The time points tested
are [100 500 1000]. The sign of PRCC is shown in parenthesis. The top two or three parameters are highlighted. The
order they are listed reflect the magnitude of the coefficient (in absolute value, going from high to low). [(*): significant;
i.e., p<0.01]. Panel A: PRCC and eFAST results grouped by significance over time. Bacterial load is the output of
interest. Panel B: Inter and Intra-compartmental effects. PRCC and eFAST results for BE at time 1000. Panel C: Inter
and Intra-compartmental effects. PRCC and eFAST results for MDC at time 500. Panel D: Inter and Intra-
compartmental effects. PRCC and eFAST results for Th1 at time 100.

Sensitivity index Parameter with a significant sensitivity index
Day 100 Day 500 Day 1000

PRCC sIDC(-), δ10, k2(-),k4(-), δ6 (-), k14(-) k2(-), sIDC (-), k4, k3, k14(-),
δ10, δ8, ξ(-)

k2 (-), δ10, k3, k4, sIDC(-), ξ(-),
k14(-)

eFAST - Si
(*) k2 k14, ξ, k2, k3, sIDC k3, k14, k2, sIDC, ξ

eFAST - STi
(**) k2 k14, ξ, k2, k3, sIDC, k4 k3, k14, k2, sIDC, ξ, k4

Panel A: US analysis for extracellular bacterial load (BE) over three time points

Sensitivity index Parameter with a significant sensitivity index
Inter-compartment Intra-compartment

PRCC δ10, ξ(-) k2(-), k3, k4, sIDC(-), k14(-)
eFAST - Si

(*) ξ k3, k14, k2, sIDC
eFAST - STi

(**) ξ k3, k14, k2, sIDC, k4

Panel B: US analysis for extracellular bacterial load (BE) at time 1000 days post infection

Sensitivity index Parameter with a significant sensitivity index
Inter-compartment Intra-compartment

PRCC sIDC, k2, k3(-), δ9 (-) δ10
eFAST - Si

(*) k14, k4, k3, sIDC ξ
eFAST - STi

(**) k14, k4, k3, sIDC, k2 ξ
Panel C: US analysis for mature dendritic cells (MDC) at time 500 days post infection

Sensitivity index Parameter with a significant sensitivity index

Inter-compartment Intra-compartment

PRCC ξ, δ10 k3, k2, sIDC, δ4, k14(-)
eFAST - Si

(*) δ10 k2, sIDC
eFAST - STi(**) δ10 k2, sIDC, δ8

Panel D: US analysis for T Helper cells type I (Th1) at time 100 days post infection
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Table IV
Parameters analyzed in US analysis.

Symbol Description Range of uniform pdf

λ Chemokine diffusion coefficient [0.4, 0.8]
δ Chemokine degradation coefficient [2.8811×10-4, 0.0011]
αBI Intracellular growth rate [0.002, 0.006]
Trecr Probability of T cell recruitment [0.10, 0.40]
Tmove Probability of T cell movement [0.01, 0.20]
Tactm Probability of T cell activating macrophage [0.05, 0.20]
Minit Initial number of macrophages [40, 400]
Mrecr Probability of macrophage recruitment [0.20, 0.70]
Masp Activated macrophage speed [200, 8000]
Ntact Number of T cells needed to activate macrophage [1, 6]

pk Probability of bacteria killed by resting macrophage [0.01, 0.10]
pTk Probability of T cell kills a macrophage [0.01, 0.10]
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