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Abstract

Differences in immune control of HIV-1 infection are often attributable to the highly variable HLA
class I molecules that present viral epitopes to cytotoxic T-lymphocytes. In our immunogenetic
analyses of 429 HIV-1 discordant Zambian couples (infected index partners paired with cohabiting
seronegative partners), several HLA class | variants in index partners were associated with
contrasting rates and incidence of HIV-1 transmission within a 12-year study period. In particular,
A*3601 on the A*36-Cw*04-B*53 haplotype was the most unfavorable marker of HIV-1
transmission by index partners, while Cw*1801 (primarily on the A*30-Cw*18-B*57 haplotype)
was the most favorable, irrespective of the direction of transmission (male to female or female to
male) and other commonly recognized co-factors of infection, including age and genital ulcer/
inflammation. The same HLA markers were further associated with contrasting viral load levels in
index partners, but they had no clear impact on HIV-1 acquisition by the seronegative partners. Thus,
HLA class | gene products not only mediate HIV-1 pathogenesis and evolution but also influence
heterosexual HIV-1 transmission. {This is an author-produced version of a manuscript accepted for
publication in The Journal of Immunology (The JI). The American Association of Immunologists,
Inc. (AAI), publishers of The JI, holds the copyright to this manuscript. This manuscript has not been
copyedited or subjected to editorial proofreading by The JI; hence it may differ from the final version
published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this
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As molecules responsible primarily for antigen presentation and immune surveillance, human
leukocyte antigen (H LA)4 products are best known for their extensive allelic diversity (1-4),
which is considered essential to the constant combat with a wide range of human pathogens
(5). Epidemiologic and experimental analyses of patients with chronic or terminal HIV-1
infection have revealed multiple HLA class I alleles that can differentially regulate virologic,
immunologic and clinical outcomes, often through their preferential targeting of conserved or
variable HIV epitopes for cytotoxic T-lymphocyte (CTL) responses (6-8). Such CTL responses
also lead to predictable HIV-1 mutations and immune escape, as documented in patients from
Australia (9,10), Sub-Saharan Africa (10,11), and North America (8,12).

The profound impact of diverse HLA alleles (designated by 4 digits) and allele groups
(designated by 2 digits or serologic specificities) on HIV-1 evolution and pathogenesis is best
illustrated by B57, which is by far the most favorable HLA factor in the context of HIV-1
infection (reviewed in refs. 13,14). Regardless of HIV-1 clade (e.g., subtypes A, B, and C),
B57 (mostly B5701 and B5703) predominantly and persistently directs CTL recognition of
highly conserved HIV-1 Gag epitopes (e.g., IW9 and KF11) (8,15). As the infection progresses,
viruses with mutations within and around these epitopes accumulate. Despite diminished
immune protection, viremia often remains low, as viral replication fitness is apparently
compromised. Upon transmission to individuals without B57 and closely related alleles like
B5801, viruses with the mutated Gag epitopes usually regain the wild-type sequence (11,16).
In contrast, unfavorable alleles like B35 and B53 preferentially respond to Nef epitopes (8);
subsequent Nef mutations are typically associated with disease progression (12). Thus,
heterogeneity in immune control and rate of disease progression following HIV-1 infection is
to some degree related to pathways mediated by HLA products.

Favorable HLA factors with a clear impact on HIV-1 viral load directly benefit the infected
individual by delaying disease progression (13,14), in a manner and degree similar to that
observed with HIV-specific monotherapy (reviewed in ref. 17). These HLA factors may further
benefit seronegative individuals who are at high risk of acquiring infection because viral load
in plasma or genital secretions of a seropositive partner is highly predictive of HIV-1
transmission potential (18,19). Our study of HIV-1 discordant couples (infected index partners
paired with cohabiting seronegative partners) from Lusaka, Zambia has yielded clear evidence
that viral transmission from index to seronegative partners can vary according to specific HLA
class I alleles or haplotypes, often as a result of their influences on plasma viral load of the
index partners.

4Abbreviations used in this paper: ageA, age difference; Cl: confidence interval; D', relative linkage disequilibrium; EM, expectation-
maximization; ESN, exposed seronegative; Freq, frequency; FTM; female-to-male; FUT, follow-up time; GUI, genital ulcer/
inflammation; HIV-1, human immunodeficiency virus type 1; HIV*, HIV-1 seropositive (infected); HIV ™, HIV-1 seronegative
(uninfected); HLA, human leukocyte antigen; HWE, Hardy-Weinberg equilibrium; LD, linkage disequilibrium; MTCT, mother-to-child
transmission; MTF, male-to-female; NA, notapplicable; OR, odds ratio; PIP, paired index partner; RH, relative hazard; SC, seroconverter;
TPI: transmission pair index; NTI; non-TPI.
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Materials and Methods

Study population and HIV-1 transmission as the primary outcome

From 1995 to 2006, HIV-1 discordant Zambian couples were identified and enrolled
continuously by investigators who are now part of the Rwanda/Zambia HIV-1 Research Group
in Lusaka, Zambia. Procedures for initial screening, voluntary counseling and testing, as well
as prospective (quarterly) medical examination have been described elsewhere (19,20). As the
primary outcome measure, heterosexual HIV-1 transmission within couples was determined
every three months by rapid serological tests (the Dipstick HIV-1/HIV-2 antibody screening
assay and the Capillus latex aggregation confirmatory test), coupled with the Uni-Gold
Recombigen HIV test (Trinity Biotech USA, St Louis, MO), and followed by viral sequencing
and phylogenetic analyses to identify viral subtype (clade) and to confirm viral linkage within
couples (19,21). This work was approved by local institutional review boards and informed
consent was obtained from all study participants according to the human experimentation
guidelines set forth by the US Department of Health and Human Services. With longitudinal
data censored on 31 December 20086, all couples with >9 months (274 days) of follow-up
without any antiretroviral treatment within that interval were eligible for primary analyses of
HIV-1 transmission by the index partners. Of 566 HIV-1 discordant couples enrolled, 429
remained after exclusions due to a) unlinked/ambiguous viruses in newly infected
(seroconverted) partners, b) antiretroviral treatment of index partners during follow-up, c)
insufficient follow-up, or d) lack of usable biologic specimens (for HLA typing or viral
sequencing) (Fig. 1a).

HIV-1 viral load (RNA copies per mL of plasma) in index partners as secondary outcome

HIV-1 RNA copies in patient plasma were measured universally by the Roche Amplicor 1.0
assay (Roche Diagnostics Systems Inc., Branchburg, NJ) in laboratories certified by the
Virology Quality Assurance Program of the AIDS Clinical Trials Group. The assay was highly
comparable with other commercial viral assays (Chiron Quantiplex HIV-1 branched DNA,
Roche Amplicor version 1.5, and nucleic acid sequence-based amplification - NASBA HIV-1
RNA QT) (22), with a lower limit of detection at 400 RNA copies per ml of plasma. In earlier
analyses (19), index partners with medium (104-10° copies/ml) and high (>10°) concentrations
of HIV-1 RNA transmitted viruses more readily than those with low-level viremia (<10*
copies/mL). Thus, these three categories of viral load were treated as a separate outcome for
secondary analyses (Fig. 1b) and they were further assessed as predictive covariates in analyses
of primary outcome.

PCR-based genotyping of HLA class | variants

Genomic DNA was extracted from whole blood or buffy coats using QlAamp blood kits
(QIAGEN Inc., Chatsworth, CA). HLA class I genotyping was performed using a combination
of PCR-based techniques, including PCR with sequence-specific primers (SSP) (Dynal/
Invitrogen, Brown Deer, WI), automated reference-strand conformation analysis (RSCA)
(Dynal/Invitrogen), automated sequence-specific oligonucleotide (SSO) probe hybridization
(Innogenetics, Alpharetta, GA), and automated sequencing-based typing (SBT) (Abbott
Molecular, Inc., Des Plaines, IL). These techniques achieved medium- to high-resolution
typing of HLA class | alleles in the study population (23-26). Novel alleles and ambiguities
were also resolved by confirmatory SBT using capillary electrophoresis and the ABI 3130xI
DNA Analyzer (Applied Biosystems, Foster City, CA). Occasionally, alleles could not be
distinguished by their exon 2 to exon 3 sequences that encode the peptide-binding groove. In
these circumstances, a letter “g” (for group) was added to the most probable allele in assignment
and reported as such (e.g., Cw*1701g for alleles Cw*1701, Cw*1702, and Cw*1703) (27).
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Manual and computational assignment of local and extended HLA haplotypes

Common HLA-B (B) and HLA-C (C) haplotypes were initially assigned manually according
to known patterns of strong linkage disequilibrium (LD) for well-documented and fully
resolved alleles observed in African-Americans (28) and for medium-resolution typing results
from a native African (Rwandan) population (29). Observation of common B—C haplotypes in
homozygous state provided additional assurance of accuracy in manual haplotype assignment.
Infrequent or rare haplotypes were inferred after the common haplotypes were assigned.
Further evaluation of haplotypes involving alleles from two loci (pairwise) or all three class |
loci used the expectation-maximization (EM) algorithm in SAS Genetics (SAS Institute, Cary,
NC), with relative LD (D’) and correlation coefficients (r) as key measures. Haplotypes with
a statistical probability >75% in the EM algorithm were considered reliable on an individual
basis. For those with lower probabilities, the predicted probability values were incorporated in
the overall estimate of probable haplotype frequencies.

Analyses of HLA genotypic heterogeneity and associations

Results

Software packages in SAS (version 9.1.3) and SAS Genetics (SAS Institute, Cary, NC) were
used to test: 1) Hardy-Weinberg equilibrium (HEW) of HLA class | alleles at each locus, before
and after stratification by HIV-1 transmission or acquisition status (global log likelihood %2
tests), 2) genetic heterogeneity between patient groups (global log likelihood y? tests),
especially for transmission pair index (TPI) partners versus non-transmission pair index (NTI)
partners, 3) primary analyses to determine associations of local and extended HLA haplotypes
or their component alleles with time to or status of heterosexual HIV-1 transmission (several
procedures, see below), 4) secondary (confirmatory) analyses to test the relationships of HLA
variants to low, medium and high HIV-1 viral load in chronically infected index partners (TPI
+ NTI) (logistic regression models), 5) tertiary analyses of HIV-1 acquisition by the initially
seronegative partners. With an overall focus on HIV-1 transmission by index partners, several
analytic strategies (Fig. 1b) were applied to test the main hypothesis that HLA class | alleles
(2- or 4-digit specificities) or haplotypes mediate heterosexual HIV-1 transmission, probably
through regulation of HIV-1 viral load. The magnitude and strengths of HLA-associated effects
were gauged by: 1) time-dependent hazard ratios and 95% confidence intervals (Cls) defined
by Cox proportional hazard models; 2) relative odds of becoming HIV-1 transmitters during
the 12-year study period, as calculated from 2 by 2 contingency tables of population
frequencies, with 95% Cls obtained from the SAS FREQ procedure; 3) deviation from
proportional distribution among index partners with low, medium, and high viral load. Reduced
multivariable models were used to determine the relative impact of HLA and other recognized
factors relevant to HIV-1 transmission and viral load. In particular, non-genetic factors,
including age, direction of HIV-1 transmission (MTF for male-to-female and FTM for female-
to-male), and genital ulcer/inflammation (GUI) in index and initially seronegative partners
(seroconverters = SCs; exposed seronegatives = ESNs) were treated as covariates. As
homozygosity with any individual HLA variant is rare, all these tests assumed dominant/
codominant HLA function, with provisional statistical significance set at the nominal p value
of <0.050 in univariate analyses. To reduce the number of statistical tests (and the chance for
spurious associations), analyses targeted only major HLA variants (alleles and haplotypes)
found at frequency >0.01 (out of 2N, i.e., number of chromosomes) or in >10 individuals. The
selective tertiary analyses of HIV-1 acquisition were confined to HLA factors identified by
primary analyses of HIV-1 transmission.

Classification and characteristics of Zambian couples at the end of follow-up

Using data from 10,278 person-visits for the initially seronegative (non-index) partners, 429
couples eligible for primary analysis here were classified into 205 virologically linked
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transmission pairs and 224 non-transmission pairs (involving 108 female and 116 male index
partners) (Table I). For the 205 transmission pair index (TPI) partners and 224 non-transmission
pair index (NTI) partners, enroliment dates were highly comparable, as were within-couple
age differences (ageA, 6.8 + 4.2 years in the TPI group and 7.5 + 5.2 years in the NTI group,
p >0.10). On the other hand, mean and median follow-up time (FUT) of NTI was nearly double
that of TPI (p <0.001).

Consistent with earlier observations in the Zambian study population (19), male-to-female
transmission (124 pairs) was more common than female-to-male transmission (81 pairs) (Table
I). Among index partners of the transmission couples, 48.3% had genital ulcer/inflammation
(GUI) within the 6 months prior to seroconversion of the non-index (recipient) partners. In
contrast, GUI was less common among the non-transmitting index partners (21.9%, in the 6
months before end of follow-up) (p <0.001). The proportion of GUI was also statistically
different between recipient partners who became infected (seroconverted = SC group, 45.9%)
and those who remained uninfected (exposed seronegative = ESN group, 10.7%) (p <0.001).
These differences persisted in stratified analyses of female-to-male and male-to-female
transmission (Table I). Accordingly, GUI in all partners was retained as a covariate in
subsequent analyses of HLA genotypes.

Global tests of HLA class | variants at the 2-digit resolution (allele group)

At 2-digit resolution, which is largely equivalent to serologic specificity, 12 HLA-A alleles, 18
HLA-B alleles, 11 HLA-C alleles, 21 local (HLA-B-HLA-C = B-C) haplotypes, and 25 extended
(3-locus = A-B-C) haplotypes were found at frequencies >0.10 in the 429 Zambian couples
(1716 chromosomes). Within the 429 paired index partners (858 chromosomes), the respective
numbers (12, 17, 11, 23, and 22) were similar. The major B—-C haplotypes assigned manually
correlated extremely well with haplotypes inferred using the EM algorithm, with correlation
coefficients (Pearson and Spearman) all exceeding 0.99 in analyses of overall data from the
429 Zambian couples and in analyses of either index (TPI + NTI) or initially seronegative (ESN
+ SC) Zambians.

Three global tests generated evidence for a high level of heterogeneity in the frequencies of
HLA class | genotypes between TPI and NT1 subjects as a result of HIV-1 transmission. First,
overall distribution of extended haplotypes differed between TPI and NTI subjects (p = 7.1 x
10712 by log likelihood y? tests), mostly due to the major haplotypes with predicted frequencies
>0.010 (p = 4.4 x 1079, Table I1). Second, in tests of 22 extended (A—B—C) haplotypes with
individual frequencies >0.010, four differed in their distribution between the two patient groups
(p <0.010) (Table II). Third, distribution of HLA-A diplotypes in the TPI (rather than NTI)
patients deviated from HWE (p <0.001), whereas the distribution of HLA-B and HLA-C
diplotypes all conformed to HWE in the two patient groups (data not shown — available upon
request).

Global tests based on all members of 429 couples also indicated that LD between HLA-B and
HLA-C variants (p <1.0 x 107140) was much stronger than LD between HLA-A and HLA-B
variants (p = 1.1 x 10759 or HLA-A and HLA-C variants (p = 1.1 x 10723), as reflected by
pairwise tests of individual 2-digit allele groups from each locus (Table 111). For the index
partners alone, LD patterns were the same, with p values ranging from 3.4 x 10116 (B_C LD)
to 0.005 (A-C LD). A total of 30 pairs of HLA variants had p <0.0001 in tests of correlation
coefficient (r) and relative LD (D") (Table 111); the strongest LD was between B*42 and Cw*17
and between B*14 and Cw*08 in the entire cohort (r = 0.94, D' =1.00 and r = 0.85, D’ = 0.95,
respectively), as well as in the subset of index partners (r =0.93, D’=1.00 and r =0.85, D’ =
0.91, respectively). The strength of LD provided strong rationale for analysis of major
haplotypes (local and extended) as separate entities in association analyses.
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HLA class | variants in index partners in relation to heterosexual HIV-1 transmission

In univariate analyses of all major HLA variants, only A*36 showed a positive association
with HIV transmission at p <0.01 (for proportional hazard analysis). At p <0.05, haplotype
A*36-B*53-Cw*04 also showed positive association. Two other variants, B*57 and Cw*18,
and their haplotype, B*57-Cw*18, were negatively associated with HIV-1 transmission.
Multivariable models demonstrated that A*36 and Cw*18 were the two major factors
independently associated with HIV-1 transmission (adjusted RH = 1.79 and 0.64, p = 0.002
and p =0.043, respectively) (Fig. 2). Within the study period, 69% of index partners with A*36
transmitted HIV-1 to their seronegative partners (median transmission-free time = 899 days,
95% CI = 454 to 1,235 days), while 35% of index partners with Cw*18 and without A*36 did
so (median transmission-free time = 1,823 days, 95% CI = 1,460 to >4,000 days). These
estimates of infection-free time differed between the two patient groups in both log-rank (p
<0.001) and Wilcoxon (p <0.001) tests; they further differed from those (median = 1,560 days,
95% CI = 1,327 to 2,458 days) for the remainder of index partners without A*36 or Cw*18
(p <0.041 and <0.019 by log-rank and Wilcoxon tests, respectively). After further statistical
adjustment for age difference within couples, direction of viral transmission (MTF and FTM),
and GUI, these contrasting HLA relationships remained intact (Table 1V). Replacement of
Cw*18 by B*57 led to very similar findings (Table IV and Fig. 3b). In addition, all but one
individual who had both A*36 and Cw*18 (n = 4) or A*36 and B*57 (n =5) behaved just like
those with A*36 alone (data not shown).

A reduced logistic regression model confirmed the relationships of A*36 and Cw*18 to HIV-1
transmission (Table IV). For A*36, the adjusted odds ratio (OR) for HIV-1 transmission status
was 2.62 (95% confidence interval or Cl = 1.30-5.27) and for Cw*18, the OR was 0.57 (95%
C1=0.31-1.03). Age, direction of transmission, and GUI also showed independent associations
based on multivariable analyses (adjusted p <0.034 for all). In an alternative logistic regression
model, the relationship of B*57 to HIV-1 transmission status (Fig. 3a) was somewhat weaker
(adjusted OR =0.66, 95% CI = 0.33-1.32) in the presence of other more prominent factors
(adjusted p <0.035 for all).

HLA class | variants in relation to HIV-1 viral load in index partners

In 202 TPIs and 218 NTIs, HIV-1 viral load was measured at a median interval of 546 days
after enrollment. Consistent with earlier observations (19), TPIs more frequently had high
(>10°) or medium (10%-10° copies/ml) than low (<10 copies/mL) concentrations of viral RNA
in plasma, while the opposite was seen in NTIs. For example, 106 (52.3%) of TPIs and 65
(29.8%) of NTIs had high viral load (p <0.0001). Patients with very high viral load (>5.0 x
10° copies/mL), which might be indicative of acute-phase or late-stage infection, was also
more common in TPIs (13.9%) than NTIs (4.6%) (p = 0.0001).

Index partners with A*36, which was associated with accelerated HIV-1 transmission, were
over-represented in the subgroups defined by high and medium viral load when compared with
patients defined by low viral load (univariate p = 0.037 in test for trend) (Table V). The
association of A*36 with viral load diminished after statistical adjustments for age, sex, and
membership of patient groups (TPl and NTI) (p = 0.072). Association with the A*36-B*53-
Cw*04 haplotype did not better account for these findings. Likewise, patients with HLA class
I alleles and haplotypes showing association or a tendency toward association with delayed
HIV-1 transmission were always enriched among index partners with low viral load, as
reflected by analyses of Cw*18 alone (adjusted p <0.0001), Cw*18 without B*57 (p = 0.002),
Cw*18 without B*81 (p = 0.007), and B*81 alone (p = 0.011) (Table V).

The association of Cw*18 with low viral load could not be fully captured by B*57 and B*81
despite their tight LD with Cw*18 (r = 0.88, D’ = 0.97 when the two HLA-B alleles were treated
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as one entity). For example, 16 patients with the two HLA-B variants but without Cw*18 (i.e.,
Cw*18—, B*57+, or B*81+) were in viral load categories comparable with the categories of
patients without those alleles (adjusted p = 0.256) (Table V). No informative test could be done
for the two patients who had Cw*18 in the absence of B*57 or B*81 (data not shown), but data
from the 24 patients with Cw*18 and without B*57, along with 43 others with Cw*18 and
without B*81, all seemed to suggest that the effect of Cw*18 on viral load was almost
exclusively due to the two haplotypes, i.e., B*57-Cw*18 and B*81-Cw*18 (adjusted p = 0.020
and 0.001, respectively) (Table V). In the simplest multivariable model derived from analyses
of HIV-1 transmission status (Fig. 2 and Table IV), Cw*18 remained as a major predictor of
low viral load (p <0.0001).

Joint analyses of host and viral factors in index partners in relation to HIV-1 transmission

A close relationship between viral load in index partners and the likelihood of HIV-1
transmission status during follow-up was recognized earlier in the Zambian cohort (19). When
high and medium index partner viral load (relative to the reference low level) were included
in regression models as co-factors for HIV-1 transmission, only age, GUI, and HLA-A*36
were retained as independent contributors (adjusted RH for A*36 = 1.71, 95% Cl = 1.17-2.49;
OR =2.42,95% CI = 1.21-4.85) (Table VI, reduced model). In contrast, neither B*57 nor
Cw*18 or its haplotype remained as independent contributor (protective factor) when viral
load was included in the multivariable model (e.g., adjusted RH for Cw*18 = 0.75, p = 0.212)
(Table VI, full model).

Other confirmatory analyses

Several alternative analytic strategies confirmed the major HLA associations presented above.
For example, the relationships of A*36 and Cw*18 to HIV-1 viral load in index partners were
confirmed in linear regression models in which log,q-transformed viral load was treated as a
continuous outcome measure (no deviation from normal distribution). The quantifiable viral

load differences (i.e., adjusted beta estimates) independently attributable to A*36 and Cw*18
were always within 0.50 logyg (data not shown).

Tertiary analyses of HIV-1 acquisition among the initially seronegative Zambians

In selective analyses of the 429 initially seronegative Zambians (ESNs + SCs), GUI in either
partner contributed to HIV-1 acquisition (p <0.0001), with adjusted RH >4.37 and OR = 7.14
in two multivariable models (data available from J.T.). In contrast, neither A*36 nor Cw*18
nor B*57 carried by the initially seronegative Zambians was associated with acquisition of
infection, although again A*36 tended to be unfavorable, with adjusted RH <1.45 (p >0.071)
in proportional hazard models and OR <1.85 (p >0.066) in logistic regression models (extra
Table available from J.T.).

Discussion

Our immunogenetic evaluation of epidemiologic and clinical data collected continuously on
HIV-1-discordant Zambian couples produced the first evidence that HLA class | genotypes in
the index partners might differentially influence the occurrence and rate of heterosexual HIV-1
transmission during a 12-year study period. In particular, primary analyses clearly pointed to
A*36 and Cw*18 in index partners as the major predictors of viral transmission, while
secondary analyses revealed contrasting levels of viral load attributable to these HLA
genotypes. Overall, these findings extend the well-established role of HLA class | molecules
in HIV-1 pathogenesis (13,14,17,30) and viral evolution (31) to include their further impact
on viral transmission from index to seronegative partners. Our work also implies that current
understanding of “resistance” and “susceptibility” to HIV-1 infection, as inferred typically
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from analyses comparing exposed and seronegative individuals with exposed SCs (32), is
incomplete insofar as partner characteristics are missing in such studies.

As documented earlier for the Zambian cohort (23-26), A*3601 is the lone allele in the A*36
group. The allele is rare in Asian and European populations, with frequencies close to zero
(27,28,33); it is also rare in African-Americans (28) and South Africans (34). Thus, little is
known about its functional attributes. In terms of linkage disequilibrium, A*3601 does not
seem to tag (i.e., r2 >0.80) any particular non-HLA variants (single nucleotide polymorphisms
or SNPs) in the HLA class | region (4), but detection of A*3601 on the extended haplotype
A*36-Cw*04-B*53 in Zambians implies that B*53 may be a potential contributing factor,
since B*53 has been considered unfavorable in at least one African (Rwandan) cohort, as well
as in Caucasians (13,26). However, B*53 itself (exclusively B*5301 in Zambians) did not show
appreciable impact on HIV-1 transmission or index partner viral load. Thus, the mechanisms
underlying the strong relationship of A*3601 in index partners to heterosexual HIV-1
transmission deserve further investigation.

Notably, the association of A*3601 with increased rate as well as incidence of heterosexual
HIV-1 transmission remained strong even after statistical adjustment for viral load and other
independent co-factors of infection. The weak association between A*3601 and viral load was
also seen in our earlier analyses of 168 index partners and 91 SCs (23). While index partner
viral load categories can fluctuate from time to time and for various reasons during the study
interval, our incorporation of viral load as a categorical variable should be insensitive to modest
(<5-fold) changes in viral load. Of course, a more critical evaluation of A*3601 or its related
haplotype on index partner viral load may require serial and frequent sampling, especially for
the few patients who appeared to have low or medium level viral load despite having
A*3601 (Table V). Collection of longitudinal viral load data from A*3601-positive
seroconverters should yield that valuable information. In addition, multiple studies (35-43)
have demonstrated that viral shedding in the genital tract, rectal mucosa, and semen can be
independent of plasma viral load. Those observations raise the alternative possibility that the
dynamics of local viral shedding may differ in some of the Zambians with A*3601. For
example, local flora, mucosal innate immunity, and co-infection with other pathogens like
herpes simplex virus type 2 (44) are key factors in viral shedding that may be influenced by
HLA genotypes.

For Cw*18, which is equivalent to Cw*1801 in Zambians (23), the association with reduced
rate and incidence of HIV-1 transmission was almost entirely attributable to two haplotypes
involving B*57 and B*81, respectively, in the index partners and to the collective impact of
these haplotypes on index partner viral load. B*57, especially B*5701 and B*5703, have been
widely recognized as favorable factors in HIV-1-infected individuals (reviewed in refs. 13,
14,17), whereas B*81 (exclusively B*8101 in Zambians) has been considered favorable in
more recent studies of native Africans (25,34,45). In Caucasian populations, B*5701 on the
B*5701-Cw*0602 haplotype (no Cw*18) is tagged by a SNP (rs2395029) at the HCP5 locus
(4,46), but experimental studies have repeatedly demonstrated that B*5701 is responsible for
effective and often long-lasting immune control of HIV-1 infection (8,47,48). The protein
products of B*5703 and B*8101 (B5703 and B8101, respectively) are capable of presenting
HIV-1 epitopes (Gag epitopes in particular) known to be restricted by B5701 (15,49,50).
Therefore, in the same Zambian population where both B*5703 and B*8101 are in tight LD
with Cw*1801, Cw*1801 actually tracks the effect of two favorable HLA-B alleles that can
target conserved HIV-1 epitopes for protective cytotoxic T-lymphocyte responses (15,34,45,
50) and related function (51). As a cautionary note, Zambians with Cw*18 and without B*57
or B*8101 were too infrequent to allow a clear separation of HLA-B alleles from the two B-C
haplotypes (e.g., Table V). Moreover, two independent research teams have already identified
four Cw1801-restricted epitopes: VI9 and FF9 in p24 Gag, VL9 in integrase, and Y19 in gp160
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(6,34,52), suggesting that the Cw1801 allele itself can also play an important role in mediating
CTL responses. Thus, a combination of favorable HLA-B and HLA-C alleles likely underlie
the apparent relationships of Cw*1801 to HIV-1 transmission and viral load in more than 60
index partners (Tables IV to VI).

By conventional univariate analyses, HLA-B*57 and the B*57-Cw*18 haplotype were also
negatively associated with HIV-1 transmission in Zambians. These relationships were first
consistent with the well-recognized role of the B57 product in HIV-1-specific CTL responses
and then supported by the association of B*57 with index partners’ HIV-1 viral load (Table
V). Although multivariable models dismissed HLA-B*57 and the B*57-Cw*18 as major
contributors when the stronger effect (risk) of A*36 and index partner viral load were treated
as co-factors, HIV-1 transmission events within the first six to seven years (i.e., 2,192-2,557
days) of follow-up did indicate a clear advantage of B*57 and the B*57-Cw*18 haplotype, as
can be inferred from Fig. 3. The relative contribution of B*57 and other favorable HLA class
I alleles (like B*8101 and Cw*1801) to immune control of HIV-1 infection is expected to
diminish with time, due to viral immune escape and accumulation of compensatory mutations
during chronic infection (11,12,53-55). Accordingly, it may be particularly important to
concentrate on HIV-1-related outcomes (i.e., viral load and transmission) during early infection
in the effort to identify favorable HLA factors and other correlates of protective immunity.

Viral load during untreated, chronic HIV-1 infection reflects the equilibrium between viral
replication and the effect of host adaptive immunity. Population-based studies have clearly
established the predictive value of plasma (cell-free) viral load for heterosexual HIV-1
transmission (18,19) as well as time to AIDS, especially in Caucasian males (56-58). Assuming
that viral load in most of the chronically infected Zambians (i.e., index partners) can serve as
a proxy for set-point viral load, patients with low viral load because of Cw*18 or its linked
HLA-B alleles may experience a more benign course of disease. However, quantifying the dual
impact of viral load on heterosexual transmission and HIV-1 pathogenesis will be difficult in
populations where antiretroviral therapy has become increasingly available in the past few
years. Confirmatory research will likely depend on analysis of other well-established cohorts
of HIV-1 discordant couples with no or limited access to treatment.

Very high levels of viral load (often millions of RNA copies per ml of plasma) during the brief
period (usually within the first nine weeks) of acute-phase infection (59) have been associated
with highest rates of HIV-1 transmission per coital act (60). Since index partners in the Zambian
cohort were identified by serology rather than viral load or p24 antigen tests, our work here
might have missed acutely infected patients, although some index partners (4.6% NTIs and
13.9% TPIs) indeed had viral load greater than 500,000 copies per ml of plasma. However,
unlike set-point viral loads that differ greatly from one chronically infected patient to another,
acute-phase viral loads are so uniformly high that they would likely overwhelm any differential
effect of genetic variation. Moreover, our use of viral load as a categorical variable is supported
by the recent notion that viral transmission potential in chronically infected Zambians and
Ugandans (61) does not increase substantially once set-point viral loads reach 100,000 copies/
mL.

In other studies of paired HIVV-1 donors and recipients, mother-to-child transmission (MTCT)
has provided some unique models for evaluating the varying roles of HLA class | alleles,
haplotypes, and diversity (heterozygosity) in HIV-1 infection and/or pathogenesis (62—68).
Although consensus findings remain elusive, several maternal HLA class | (mostly HLA-B)
alleles, maternal HLA homozygosity, as well as the degree of allele sharing between mothers
and infants, seem to influence MTCT in one way or another (62,63,66,68). Neither A*36 nor
Cw*18 has been reported as critical to vertical HIV-1 transmission, which differs from viral
transmission among discordant couples (adults) in two ways: 1) MTCT recipients (infants) and
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donors always share not only 50% or more of their HLA class | alleles but many other genetic
traits throughout the nuclear genome as well and 2) the immature immune system in the infants
probably expedites HIV-1 transmission, especially when HLA-adapted viral mutants are being
transmitted (67,69). In any case, maternal HLA alleles previously associated with vertical
HIV-1 transmission have invariably differed from infant HLA alleles associated with
acquisition of infection. Likewise, the two HLA class | alleles (A*3601 and Cw*1801) strongly
implicated in our analyses of viral transmission by the index partners clearly lack association
with HIV-1 acquisition by seronegative Zambians. Therefore, within paired donors and
recipients, there is more to be learned about the mechanisms of adaptive and innate immunity
that control the process of viral transmission as distinct from those that mediate viral
acquisition.
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a

Transmission pairs with linked viruses
—205 transmission pair index (TPI) partners

—205 seroconverters (SCs)

Included couples

Non-transmission pairs with 29 months follow-up
= [ —224 non-transmission pair index (NTI) partners
—224 exposed seronegatives (ESNs)

Miscellaneous groups

: —28 pairs had unlinked HIV-1

Excluded couples | — i —27 pairs received treatment

—18 pairs remained discordant, follow-up <9 months

i —64 pairs without adequate samples (lost or partners died)

[ox

Time to HIV-1 transmission (TPI + NTI)
—Kaplan-Meier curves & Cox proportional hazard models

Primary analyses —

Transmission (TPI) versus non-transmission (NTT)
—Logistic regression (univariate & multivariable models)

S d : i Index partner (TPI + NTI) viral load (low, medium, high)
cecondary analyses ! —Logistic regression (univariate & multivariable) models

; i HIV-1 acquisition (SCs + ESNs) !
! —Kaplan-Meier curves & logistic regression models

FIGURE 1.

Classification of 566 Zambian couples (1132 individuals) enrolled for longitudinal study from
1995 to 2006 (Panel a), along with the statistical approach to analyzing correlates of HIV-1
transmission and acquisition (Panel b). Characteristics of 429 (205 + 224) couples included in
the final analyses are detailed in Table I. For all association analyses, HLA class | factors
(common haplotypes or their component alleles) serve as the independent variables, while non-
genetic factors (age, direction of HIV-1 transmission, genital ulcer/inflammation) are treated
as covariates. Of note, tertiary analyses of HIV-1 acquisition are restricted to HLA factors
identified by primary analyses of HIV-1 transmission.
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0.00 T T T 1
0 1000 2000 3000 4000
Duration (days) of follow-up
Number of index partners remaining at various follow-up intervals (days)
Grouping Events 0 500 1000 1500 2000 2500 3000 3500 4000
A*36 36 (69%) 52 33 18 9 5 2 2 1 0
Cw*18 23 (35%) 65 51 34 20 14 11 8 5 0
Others 146 (47%) 312 206 131 82 56 39 30 9 5
Total 205 (48%) 429 290 183 111 75 52 40 15 5
FIGURE 2.

HLA class | factors (A*36 and Cw*18) with the most contrasting relationships to heterosexual
HIV-1 transmission among 429 discordant Zambian couples. Both log-rank and Wilcoxon tests
of significance are shown. For index partners grouped according to HLA profile, multivariable
relative hazards (RH) of HIV-1 transmission are based on Cox proportional hazards models.
Four individuals with both A*36 and Cw*18 are treated as part of the A*36 group as they
behave like A*36+ instead of Cw*18+ patients. Estimates of RH and OR for A*36 and Cw*18
remain statistically significant (adjusted p <0.05) when the four patients with both A*36 and
Cw*18 are either moved to the A36- and Cw*18- reference group or excluded from
multivariable analyses.
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Others
Total

Grouping  Events
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36 (69%)
16 (36%)
153 (46%)
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52 33 18 9 5 2 2 1 0
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332 222 140 86 60 42 31 11

5
429 290 183 111 75 52 40 15 5

Kaplan-Meier curves showing the relationship of HLA-B*57 to heterosexual HIV-1

transmission among 429 HIV-1-infected Zambians with cohabiting seronegative partners.

Relative hazards (RH) of HIV-1 transmission are based on Cox proportional hazards models,
before (panel a) and after (panel b) considering the opposing effect of HLA-A*36. Five
individuals who have both A*36 and B*57 behave like A*36-positive patients (with three

transmission events). For clarity, they are treated as part of the A*36 group (panel b).
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Multivariable models that account for both host and viral factors provisionally associated with differential HIV-1
transmission from 429 index Zambians to their seronegative partners

Models accounting for host and/or viral Relative hazard (95% (:|)b Adjusted p| Odds ratio (95% CI) Adjusted p|

factors®

Reduced model
A*36 1.71(1.17-2.49) 0.005 242 (1.21-4.85) 0.013
AdgeA (per year) 0.96 (0.94-0.99) 0.008 0.95 (0.91-1.00) 0.039
GUIC 2.23 (1.67-2.98) <0.001 3.24 (2.10-5.00) <0.001
Viral load: hiqhd 2.41 (1.47-3.95) <0.001 4.18 (2.19-7.98) <0.001
Viral load: mediumd 1.78 (1.07—2.95) 0.027 2.16 (1.13—4.11) 0.020

Full model
A*36 1.74(1.18-2.57) 0.005 2.48(1.19-5.17) 0.016
cw*18 € 0.75 (0.47-1.18) 0.212 0.81 (0.43-1.53) 0.521
AdeA (per year) 0.96 (0.94-0.99) 0.007 0.96 (0.91-0.999) 0.045
GUI® 2.24 (1.68-2.99) <0.001 3.08 (1.97-4.83) <0.001
Viral load: hiqhd 2.24 (1.36-3.72) 0.002 3.98 (2.05-7.71) <0.001
Viral load: medium® 1.73 (1.04-2.89) 0.036 2.11 (1.10-4.07) 0.025

aOther putative factors tested earlier (Tables I-11 and I\V-V) drop out the final models (adjusted p >0.05).

b . .
Based on the Wilcoxon proportional hazards models.

In either index (initially seropositive) or nonindex (initially seronegative) partners.

dThree categories of HIV-1 viral load in the index partners are defined as high (>1O5 copies/ml), medium (104—105), and low (<104, which serves as the

reference group).

eIn tight LD with both B*57 (primarily B*5703) and B*81 (Table III).
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