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Abstract
Bcl-2 is a multifunctional protein that protects against cell death induced by a wide variety of stimuli.
The best characterized antiapoptotic Bcl-2 mechanism of action involves direct binding to
proapoptotic proteins, e.g., Bax, inhibiting their ability to oligomerize and form pores in the
mitochondrial outer membrane, through which soluble mitochondrial proapoptotic proteins, e.g.,
cytochrome c, are released into the cytosol. Bcl-2 also exerts antiapoptotic and antinecrotic effects
that are mediated by its influence on cellular redox state and apparently independent of its interaction
with proapoptotic proteins. Bcl-2 expression increases cell resistance to oxidants, augments the
expression of intracellular defenses against reactive oxygen species, and may affect mitochondrial
generation of superoxide radicals and hydrogen peroxide. This review focuses on the protective
effects of Bcl-2 related to changes in mitochondrial redox capacity. Antioxid. Redox Signal. 7, 508–
514.

INTRODUCTION
THE bcl-2 oncogene was first described in a lymphoblastic leukemia cell line (42,53) and
found to promote cell proliferation, tumor generation, and resistance against cell death (45,
54). The product of this gene, Bcl-2, is an integral membrane protein targeted to the outer
mitochondrial membrane (41), although it may also associate with other cellular membranes
(16,19,38). Overexpression of this protein protects against both apoptotic and necrotic cell
death induced by a variety of agents, including chemotherapeutic drugs, irradiation, oxidants,
and glutathione depletion (17,21,29,52; see Table 1). The range of cell death protocols in which
Bcl-2 is found to be protective is indicative of the multifunctional character of this protein.
Indeed, Bcl-2 has been shown to regulate transcription (36,56), interact with proapoptotic
members of the Bcl-2 family, e.g., Bax (31,43), regulate caspase activation (11,20), have pore-
forming properties (47), alter intracellular Ca2+ homeostasis (28,33,39), and increase cellular
resistance to oxidative stress (10,17,22,25,40). This review focuses on the redox mechanisms
through which Bcl-2 protects against cell death.

Bcl-2 PROTECTS AGAINST OXIDANT-INDUCED CELL DEATH
The concept that Bcl-2 increases cellular redox capacity was first suggested by Hockenbery
et al. (17), based on the observation that this protein is located at the mitochondrion, a primary
intracellular site of reactive oxygen species (ROS) generation. These authors also observed
that Bcl-2 protects against cell death induced by oxidants, e.g., hydrogen peroxide (H2O2) and
menadione, in a manner similar to antioxidant molecules and enzymes, e.g., N-acetylcysteine
and glutathione peroxidase. Finally, they found that classical apoptotic signals increased
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cellular lipid peroxidation in a manner prevented by Bcl-2. Their suggestion that Bcl-2 protects
against oxidative stress was supported by the finding that Bcl-2 knockout mice displayed a
43% greater level of oxidized brain proteins, 27% fewer cerebellar neurons, and defective
melanin synthesis and polycystic kidney disease, phenotypes consistent with chronic oxidative
stress (15,55).

Following these initial findings, many groups demonstrated that Bcl-2 overexpression protects
cells against oxidant-mediated damage promoted by γ-irradiation, H2O2, tert-butyl
hydroperoxide, cyanide plus glucose deprivation, and ischemia/reperfusion (17,21,29,40,49,
52,59; see Table 1). Overexpression of ced-9, the nematode homologue of Bcl-2, or the
antiapoptotic protein Bcl-xL is also protective against oxidative damage and cell death (6),
suggesting that this effect is a general role of the antiapoptotic members of the Bcl-2 family.

Bcl-2 expression also correlates with protection against the depletion of cellular glutathione
(21,35,36,57), a peptide whose sulfhydryl groups serve as the major source of antioxidant
reducing power (34). Removing glutathione in Bcl-2-overexpressing cells restores sensitivity
to cell death without affecting Bcl-2 levels (1,36), suggesting that Bcl-2 protects against
oxidants indirectly by increasing redox capacity. Some Bcl-2-overexpressing cell lines do, in
fact, exhibit elevated levels of H2O2-removing enzymes, e.g., glutathione and thioredoxin
peroxidase (10). Moreover, overexpression of these antioxidant systems protects against cell
death, independent of Bcl-2 expression levels (14,60) (See Fig. 1).

Bcl-2 INCREASES CELLULAR REDOX CAPACITY
The initial observation that Bcl-2 protects against lipid oxidation and cell death promoted by
oxidants, but does not inhibit the generation of ROS, suggested an increased ability to remove
ROS in Bcl-2-overexpressing cells (17). Subsequent work revealed that Bcl-2-overexpression
increased the antioxidant capacity of neural cell lines through elevation of either catalase,
glutathione peroxidase, glutathione reductase, or reduced glutathione and NAD(P)H (10; see
Table 2). Mirkovic et al. (36) found that depleting intracellular glutathione reversed the
protection conferred by Bcl-2 against radiation-induced apoptosis, suggesting this protection
was independent of the presence of the protein itself. The same effect was observed with cells
overexpressing Bcl-xL, a protein with antiapoptotic and molecular characteristics similar to
Bcl-2 (2). The correlation between Bcl-2, glutathione, and protection against cell death was
subsequently well established in many cell death protocols and different Bcl-2-overexpressing
cell lines (1,35,57; for review, see 56).

We and others have also found that Bcl-2 overexpression results in increased intracellular and
mitochondrial NAD(P)H (10,12,22), another important redox source, responsible for the
regeneration of reduced glutathione and thioredoxin (see below and 18). In mitochondria,
increased levels of NAD(P)H prevent oxidation of inner mitochondrial membrane proteins that
modulate the mitochondrial permeability transition (PT) (for review, see 23). The PT causes
mitochondrial inner membrane depolarization and uncoupling of oxidative phosphorylation.
Moreover, the net influx of solutes into the mitochondrial matrix through the PT pore causes
large amplitude osmotic swelling, rupture of the mitochondrial outer membrane, and release
of proapoptotic proteins, e.g., cytochrome c, from their normal exclusive location within the
space between the inner and outer membranes (5,7,32,63). Consequently, PT may trigger
necrosis or “accidental apoptosis,” such as that which occurs when a necrotic event is
insufficiently powerful to lead to immediate cell death, but sufficient to activate apoptotic
pathways, e.g., release of proapoptotic proteins from mitochondria (8). In Bcl-2-
overexpressing cells, PT is inhibited (22,32,49). The mechanism by which Bcl-2 inhibits the
PT is indirect and mediated by a resistance of mitochondrial NAD(P)H to undergo oxidation
in Bcl-2-overexpressing cells. Thus, we demonstrated that, in the presence of a relatively low
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concentration of tert-butyl hydroperoxide (0.2 mM), NAD(P)H is oxidized and PT occurs in
wild-type GT1–7 neural cells, but neither event is observed in Bcl-2-overexpressing cells (Fig.
2) (22). However, when digitonin-permeabilized cells are exposed to a high concentration of
tert-butyl hydroperoxide (0.8 mM), mitochondria within both normal and Bcl-2-
overexpressing cells undergo the PT in response to extensive NAD(P)H oxidation. The
sensitivity of wild-type cell mitochondria to PT is decreased and therefore similar to that of
Bcl-2 mitochondria when exogenous reducing power is used to minimize the oxidation of NAD
(P)H caused by the peroxide. These findings are in agreement with the observation that
although Bcl-2 protects against PT and cell death promoted by tert-butyl hydroperoxide, a
NAD(P)H oxidant, Bcl-2 is ineffective against thiol cross-linking agents, e.g., diamide and
phenylarsine oxide, that directly oxidize thiol groups responsible for PT opening in a manner
independent of NAD(P)H redox state (22,59).

The molecular mechanism by which Bcl-2 increases mitochondrial and cellular redox capacity
remains unknown. However, the observation that different cell lines overexpressing Bcl-2
exhibit different patterns of elevated antioxidant defense systems (10) suggests that these
phenotypes are a general response to effects of Bcl-2 on the normal intracellular environment,
rather than a direct regulation of the transcription of these proteins by Bcl-2.

HOW DOES Bcl-2 INCREASE REDOX CAPACITY?
Although the increased redox capacity of Bcl-2-overexpressing cells is well established, the
cause of this increased antioxidant expression is still poorly understood. One approach to this
problem is to assess the regulatory mechanisms responsible for determining the expression of
redox-related genes, and to determine what relationship they may have to Bcl-2 expression.

The p53 tumor-suppressing gene is a well-known regulator of redox-related genes (44) and
promotes cellular formation of ROS and cell death. Moreover, p53 acts upstream of Bcl-2
expression (37), and therefore it is highly unlikely that antioxidants are increased in Bcl-2-
overexpressing cells due to p53 down-regulation. There is also no evidence that Bcl-2 regulates
gene transcription by any mechanism other than its effects on glutathione levels and distribution
(56). Therefore, it is probable that Bcl-2 alters some other cellular parameter, which then affects
glutathione synthesis and redox-related gene expression.

Another known regulator of cellular redox capacity is local oxygen tension (3,27,62). As Bcl-2
is a mitochondrial protein, it could potentially affect respiration and therefore intracellular
oxygen tension, resulting in changes in antioxidant levels. However, experiments conducted
by our group and others have not observed any significant differences in the quantity of
mitochondria or rates of respiration in Bcl-2-overexpressing cells (39,49).

Antioxidant proteins are also expressed in response to increased production of intracellular
H2O2 (9,13). Although the increase in ROS generation that occurs in response to apoptotic
stimuli is blunted in Bcl-2-overexpressing cells (5,17,21,58), the effects of Bcl-2 on steady-
state mitochondrial H2O2 release under physiological conditions are not well characterized.
Hockenbery et al. (17) did not find any differences in ROS release in Bcl-2-overexpressing
cells. However, other publications reported that Bcl-2-overexpressing cells generate more ROS
than Bcl-2(−) controls under physiological conditions (1,12). Indeed, we have also found that
mitochondria isolated from Bcl-2 and Bcl-xL-overexpressing cells generate higher rates of
H2O2 (Fig. 3). Esposti et al. (12) suggested that the lack of previous detection of higher levels
of ROS release in Bcl-2-overexpressing cells was due to the use of less sensitive probes. We
have also found (25) that the presence of higher intracellular antioxidant levels in Bcl-2(+)
cells can compensate for higher mitochondrial ROS release, resulting in the detection of similar
ROS levels in intact cells.
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The presence of chronically higher levels of mitochondrially generated ROS could certainly
account for the larger expression of antioxidants in Bcl-2(+) cells. As a result, these cells are
protected against acute oxidative insults, and exhibit lower ROS accumulation when subjected
to conditions that normally lead to oxidative stress (5,17,21,58). However, the mechanism
through which Bcl-2 increases mitochondrial ROS release is undetermined.

POSSIBLE MECHANISMS BY WHICH Bcl-2 INCREASES MITOCHONDRIAL
ROS PRODUCTION

Esposti et al. (12) correlated the increase in ROS measured in Bcl-2(+) cells with increased
NAD(P)H levels, a finding compatible with data from our group indicating that Bcl-2(+) cells
and mitochondria contain larger quantities of NAD(P)H (10,22). Armstrong and Jones (1)
found that rotenone increased ROS release levels, a result also compatible with a significant
role of NADH. Rotenone leads to the accumulation of electrons removed from NADH in the
iron-sulfur centers of the mitochondrial electron transport chain Complex I, increasing
superoxide radical formation at or prior to this site (4). Recent work performed with highly
sensitive fluorescent probes for H2O2 indicates that even in the absence of Complex I inhibition,
NADH-dependent respiration supports significant mitochondrial ROS production regulated
by both NADH redox state and mitochondrial membrane potential (26,50). Based on these
findings, we hypothesize that elevated mitochondrial NAD(P)H redox state in Bcl-2-
overexpressing cells is caused by altered electron transport chain dynamics.

Mitochondrial NADH redox state is intimately related to the inner membrane potential and
respiratory rates. No differences in respiratory rates between Bcl-2(+) and Bcl-2(−)
mitochondria are apparent. However, Bcl-2(+) mitochondria accumulate greater quantities of
membrane-potential probes, a finding initially interpreted as an indication of larger inner
membrane potentials (22,49). We recently reported that the membrane potential is identical in
Bcl-2(+) and Bcl-2(−) mitochondria, but that these mitochondria respond differently to
membrane potential probes (24). Flow cytometry measurements indicate that Bcl-2 expression
results in increased mitochondrial size and membrane structural complexity, possibly reflecting
larger membrane content. These structural differences explain the altered response these
mitochondria exhibit in response to membrane potential probes (24).

A change in mitochondrial size and membrane content may also explain the increased NADH
levels and ROS release in Bcl-2(+) cells. It is possible that Bcl-2 expression results in an
increased ratio of mitochondrial matrix volume/membrane surface area, which could explain
higher total matrix NAD(H) with equal respiratory activity. Under these conditions, the
presence of higher levels of electron donors with equal electron transport rates could increase
the probability of electron leakage at the respiratory chain or other mitochondrial redox sites,
generating superoxide radicals and other ROS. A larger mitochondrial matrix volume could
also support higher quantities of matrix enzymes, such as pyruvate, α-ketoglutarate, malate,
glutamate, and isocitrate dehydrogenases, which could lead to more rapid NADH synthesis.
Indeed, Bcl-2(+) mitochondria not only present increased total quantities of NADH and
NAD+, but also are more resistant to NADH oxidation (22). Based on these results and
suppositions, we propose that increased NADH levels, possibly attributable to a larger matrix
volume in Bcl-2(+) mitochondria, cause a subtoxic increase in mitochondrial ROS generation,
ultimately increasing antioxidant capacity in Bcl-2(+) mitochondria and cells.

SUMMARY
The proposed effects of Bcl-2 on mitochondrial redox capacity, sensitivity to PT, release of
cytochrome c caused by Bax or PT, and the relationship of these effects to cytoprotection are
summarized in Fig. 1. Bcl-2 can inhibit the release of cytochrome c and other proapoptotic
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mitochondrial proteins by two mechanisms. One involves a direct interaction with proapoptotic
proteins, e.g., Bax and Bad, that localize or redistribute to the mitochondrial outer membrane.
The other mechanism of inhibition is suppression of outer membrane disruption caused by the
PT. Inhibition of PT by Bcl-2 is due to the increase in mitochondrial redox capacity afforded
by Bcl-2 expression. In addition to decreasing the sensitivity of mitochondria to oxidant-
induced PT, the increased redox capacity can protect against either necrotic or apoptotic cell
death induced by oxidative stress through detoxification of ROS via glutathione reductase/
peroxidase and other antioxidant systems. Finally, the dual mechanisms for inhibition of
cytochrome c release by Bcl-2 also indirectly inhibit oxidative stress as extensive loss of
cytochrome c results in a dramatic accumulation of electrons within mitochondrial redox
components and stimulation of mitochondrial ROS generation (5,26,51).
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FIG. 1. Protection by Bcl-2 against cell death mediated by both anti-Bax and antioxidant
mechanisms
CytC, cytochrome c.
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FIG. 2. Bcl-2(+) mitochondria in digitonin (dig)-permeabilized PC12 cells are more resistant to
membrane potential (Δψ) decreases (upper panels) and NAD(P)H oxidation (lower panels)
promoted by tert-butyl hydroperoxide (t-bOOH), added at the concentrations indicated
Adapted from reference 22, with permission.
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FIG. 3. Mitochondria isolated from GT1-7, PC12, and MM 8226 cells (as shown) were incubated
in the presence of NADH-linked substrates and oligomycin, under experimental conditions similar
to those described in references 24 and 25
H2O2 release was measured by following Amplex red oxidation in the presence of horseradish
peroxidase, as described in references 25 and 50. Numbers in parentheses indicate H2O2 release
rates, in nmol/min/mg of protein.
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Table 1
Protection Against Oxidative Cell Death by Bcl-2 Family Members

Cell/animal type Form of cell death References

T cells from bcl-2 transgenic mice γ radiation, H2O2, menadione 17,48,52
Burkitt's lymphoma cell line transfected with bcl-2 C6-ceramide, TNF-α, resulting in cellular oxidative

stress
12

Saccharomyces cerevisiae expressing bcl-2, ced-9, or bcl-xl Menadione, H2O2 6
SY5Y neuroblastoma cell line overexpressing Bcl-xL H2O2 30
T cells transfected with bcl-2 tert-Butyl hydroperoxide 59
GT1-7 and PC12 cell lines overexpressing Bcl-2 Glutathione depletion, menadione, tert-butyl

hydroperoxide, cyanide/aglycemia
21,40,61

HeLa, MCF-7, and mouse lymphoma cell lines overexpressing
Bcl-2

Glutathione depletion, γ radiation 35,36,46

TNF-α, tumor necrosis factor-α.
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Table 2
Effect of Bcl-2 on Cellular Redox Status

Cell type GSSG/(GSSG + GSH) NAD+/NADH Catalase SOD

PC12 Bcl-2(−) 0.95 ± 0.10 9.8 17.0 ± 1.0 120 ± 12
PC12 Bcl-2(+) 0.25 ± 0.15 3.0 29.0 ± 1.4 220 ± 22
GT1-7 Bcl-2(−) 1.40 ± 0.25 34.0 34.0 ± 0.6 145 ± 10
GT1-7 Bcl-2(+) 0.70 ± 0.15 18.0 31.0 ± 0.3 164 ± 13

Ratios of oxidized over total glutathione [GSSG/(GSSG + GSH)], oxidized over reduced pyridine nucleotides (NAD+/NADH), and catalase and superoxide
dismutase (SOD) activities (in units/mg of protein) were measured in PC12 and GT1-7 neural cell lines overexpressing Bcl-2. Adapted from reference
10, with permission.
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