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Abstract
Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and
accumulated toxic effects for an organism. Current investigations further suggest the significant
disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a
number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic
strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative
stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the
treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes
through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal
transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase
B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead
transcription factors, caspases, and nuclear factor κB. Yet, the biological effects of erythropoietin
may not always be beneficial and may be poor tolerated in a number of clinical scenarios,
necessitating further basic and clinical investigations that emphasize the elucidation of the signal
transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.
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OXIDATIVE STRESS
Initial work in pathways that can lead to oxidative stress by early investigators observed that
increased metabolic rates could be detrimental to animals in an elevated oxygen environment.
More current studies point to the potential aging mechanisms and accumulated toxic effects
for an organism that are tied to oxidative stress (Maiese, et al., 2008a). Oxygen consumption
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in organisms, or at least the rate of oxygen consumption in organisms, has intrigued several
investigators. Pearl proposed that increased exposure to oxygen through an increased metabolic
rate could lead to a shortened life span (Pearl, 1928). Subsequent work by multiple investigators
has furthered this hypothesis by demonstrating that increased metabolic rates could be
detrimental to animals in an elevated oxygen environment (Muller, et al., 2007). When one
moves to more current work, oxygen free radicals and mitochondrial DNA mutations have
become associated with oxidative stress injury, aging mechanisms, and accumulated toxicity
for an organism (Yui and Matsuura, 2006).

Oxygen free radicals can be generated in elevated quantities during the reduction of oxygen
and subsequently lead to cell injury and apoptosis. Oxidative stress occurs as a result of the
development of reactive oxygen species that consist of oxygen free radicals and other chemical
entities. These agents can involve superoxide free radicals, hydrogen peroxide, singlet oxygen,
nitric oxide (NO), and peroxynitrite (Chong, et al., 2005e). Most species are produced at low
levels during normal physiological conditions and are scavenged by endogenous antioxidant
systems that include superoxide dismutase, glutathione peroxidase, catalase, and small
molecule substances such as vitamins C and E. Other closely linked pathways to oxidative
stress may be tempered by different vitamins, such as vitamin D3 (Regulska, et al., 2007) and
the amide form of niacin or vitamin B3, nicotinamide (Chlopicki, et al., 2007, Chong, et al.,
2002d, Feng, et al., 2006, Hara, et al., 2007, Ieraci and Herrera, 2006, Lin, et al., 2000, Maiese
and Chong, 2003).

Throughout the body, cell survival and lifespan is tied to the presence of oxidative stress and
the subsequent induction of apoptotic cell injury (Chong, et al., 2006a, De Felice, et al.,
2007, Lin and Maiese, 2001). It has recently been shown that genes involved in the apoptotic
process are replicated early during processes that involve cell replication and transcription,
suggesting a much broader role for these genes than originally anticipated (Cohen, et al.,
2007). Apoptotic induced oxidative stress in conjunction with processes of mitochondrial
dysfunction can contribute to a variety of disease states such as diabetes, ischemia, general
cognitive loss, Alzheimer’s disease, and trauma (Chong, et al., 2005e, Chong, et al., 2005f,
Harris, et al., 2007, Leuner, et al., 2007, Okouchi, et al., 2007). Oxidative stress can lead to
apoptosis in a variety of cell types that involve neurons, endothelial cells (ECs),
cardiomyocytes, and smooth muscle cells through multiple cellular pathways (Chong, et al.,
2004a, Chong, et al., 2007b, Harris, et al., 2007, Kang, et al., 2003b, Karunakaran, et al.,
2007, Verdaguer, et al., 2007).

Oxidative stress can impair mitochondrial permeability and function. Mitochondrial membrane
transition pore permeability is increased (Chong, et al., 2003a, Di Lisa, et al., 2001, Kang, et
al., 2003b, Lin, et al., 2000) and leads to a significant loss of mitochondrial NAD+ stores and
subsequent apoptotic cell injury (Chong, et al., 2005g, Maiese and Chong, 2003). In addition,
mitochondria are a significant source of superoxide radicals that are associated with oxidative
stress (Chong, et al., 2005e, Maiese and Chong, 2004). Blockade of the electron transfer chain
at the flavin mononucleotide group of complex I or at the ubiquinone site of complex III results
in the active generation of free radicals which can impair mitochondrial electron transport and
enhance free radical production (Chong and Maiese, 2007b, Li, et al., 2006a). Furthermore,
mutations in the mitochondrial genome have been associated with the potential development
of a host of disorders, such as hypertension, hypercholesterolemia, and hypomagnesemia (Li,
et al., 2004b, Wilson, et al., 2004). Reactive oxygen species also may lead to the induction of
acidosis-induced cellular toxicity and subsequent mitochondrial failure (Chong, et al.,
2005f). Disorders, such as hypoxia (Roberts and Chih, 1997), diabetes (Cardella, 2005,
Kratzsch, et al., 2006), and excessive free radical production (Ito, et al., 1997, Vincent, et
al., 1999a, Vincent, et al., 1999b) can result in the disturbance of intracellular pH.
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Apoptotic cell death is a dynamic process that entails both early and late events. Membrane
phosphatidylserine (PS) externalization is an early event during cell apoptosis (Maiese, et
al., 2000, Mari, et al., 2004) and can become a signal for the phagocytosis of cells (Chong, et
al., 2005a, Li, et al., 2006b, Lin and Maiese, 2001). As an example, externalization of
membrane PS residues occur in neurons during anoxia (Maiese, 2001, Maiese and Boccone,
1995, Vincent and Maiese, 1999a), nitric oxide exposure (Chong, et al., 2003f, Maiese, et
al., 1997), and during the administration of agents that induce the production of reactive oxygen
species, such as 6-hydroxydopamine (Salinas, et al., 2003). Membrane PS externalization on
platelets also has been associated with clot formation in the vascular cell system (Leytin, et
al., 2006). The translocation of membrane PS residues from the inner cellular membrane to
the outer surface is a necessary component under most conditions for the removal of apoptotic
cells (Maiese, et al., 2003, Maiese and Vincent, 2000a, Maiese and Vincent, 2000b). The loss
of membrane phospholipid asymmetry leads to the externalization of membrane PS residues
and assists microglia to target cells for phagocytosis (Chong, et al., 2003d, Kang, et al.,
2003a, Kang, et al., 2003b, Maiese and Chong, 2003, Mallat, et al., 2005). This process occurs
with the expression of the phosphatidylserine receptor (PSR) on microglia during oxidative
stress (Li, et al., 2006a, Li, et al., 2006c), since blockade of PSR function in microglia prevents
the activation of microglia (Chong, et al., 2003b, Kang, et al., 2003a).

In contrast to the early externalization of membrane PS residues, the cleavage of genomic DNA
into fragments (Maiese, et al., 1999, Maiese and Vincent, 2000a, Maiese and Vincent,
2000b) is considered to be a later event during apoptotic injury (Dombroski, et al., 2000,
Jessel, et al., 2002, Kang, et al., 2003b, Maiese and Vincent, 2000b). Endonucleases lead to
DNA degradation and have been differentiated based on their ionic sensitivities to zinc
(Torriglia, et al., 1997), magnesium (Sun and Cohen, 1994), and calcium (Maiese, et al.,
1999), an important regulator that can independently impair cell survival. In the nervous
system, three separate endonuclease activities are present. These include a constitutive acidic
cation-independent endonuclease, a constitutive calcium/magnesium-dependent
endonuclease, and an inducible magnesium dependent endonuclease (Chong, et al., 2005f,
Vincent and Maiese, 1999b, Vincent, et al., 1999a). In the consideration of oxidative stress-
induced pathways (Arcasoy, 2008, Maiese, et al., 2008c), erythropoietin (EPO) offers a unique
opportunity to prevent the exposure of membrane PS residues, inhibit the committed stages of
genomic DNA destruction, and block cell injury.

EPO EXPRESSION, STRUCTURE, AND RECEPTOR ROLE IN CELLS AND
TISSUES

EPO can be found in the breath of healthy individuals (Schumann, et al., 2006), suggesting its
broad availability in the body (Maiese, et al., 2007a, Maiese, et al., 2007c). In addition, it has
been suggested that EPO may provide developmental cognitive support in humans with the
recent observations that elevated EPO concentrations during infant maturation have been
correlated with increased Mental Development Index scores (Bierer, et al., 2006). The primary
organs of EPO production and secretion are the kidney, liver, brain, and uterus. EPO production
and secretion occurs foremost in the kidney (Fliser and Haller, 2007). The kidney peritubular
interstitial cells are responsible for the production and secretion of EPO (Fisher, 2003). With
the use of cDNA probes derived from the EPO gene, peritubular ECs, tubular epithelial cells,
and nephron segments in the kidney also have been demonstrated to be vital cells for the
production and secretion of EPO (Lacombe, et al., 1991, Mujais, et al., 1999). During periods
of acute renal failure, EPO may provide assistance for the protection of nephrons (Sharples, et
al., 2005, Sharples and Yaqoob, 2006). Secondary sites of EPO production and secretion occur
in the liver and the uterus (Chong, et al., 2002a). Hepatocytes, hepatoma cells, and Kupffer
cells of the liver can produce EPO (Fisher, 2003) and, in turn, EPO may provide a protective
environment for these cells (Schmeding, et al., 2007). In relation to the uterine production of
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EPO, it is believed that the occurrence of neonatal anemia that can take place in the early weeks
after birth may partly result from the loss of EPO production and secretion by placenta
(Davis, et al., 2003).

The Food and Drug Administration has approved EPO for the treatment of anemia. However,
recent work has shown that EPO is not only required for erythropoiesis, but also functions in
other organs and tissues, such as the brain, heart, and vascular system (Chong, et al., 2003b,
Chong, et al., 2002b, Chong and Maiese, 2007a, Mikati, et al., 2007, Moon, et al., 2006,
Um, et al., 2007). It is the discovery of EPO and its receptor in the nervous and vascular systems
that has resulted in great interest and enthusiasm for the potential clinical applications of EPO,
such as in Alzheimer’s disease, cardiac insufficiency (Assaraf, et al., 2007, Palazzuoli, et al.,
2006), and cardiac transplantation (Gleissner, et al., 2006, Mocini, et al., 2007). In the nervous
system, the major sites of EPO production and secretion are in the hippocampus, internal
capsule, cortex, midbrain, cerebral ECs, and astrocytes (Digicaylioglu, et al., 2004, Genc, et
al., 2004, Maiese, et al., 2004, Maiese, et al., 2005c). Further work has revealed several other
organs as secretory tissues for EPO that include peripheral ECs (Anagnostou, et al., 1994),
myoblasts (Ogilvie, et al., 2000), insulin-producing cells (Fenjves, et al., 2003), and cardiac
tissue (Fliser and Haller, 2007, Maiese, et al., 2005c).

The EPO glycoprotein is 30.4 kDa with approximately half of its molecular weight derived
from carbohydrates that can vary among species (Maiese, et al., 2005c). EPO contains four
glycosylated chains including three N-linked and one O-linked acidic oligosaccharide side
chains. N-linked glycosylation sites occur at the positions 24, 38, and 83 of aspartyl residues,
while the O-linked glycosylation site is at Serine126. Three N-glycan chains of human EPO
consist of the tetra-antennary structure with or without N-acetyllactosamine repeating units
(Tsuda, et al., 1988). The O-linked sugar chain is composed of Gal-GalNAc and sialic acids
(Sasaki, et al., 1987). The production and secretion of the mature EPO also relies upon the
integrity of the N- and O-linked chains. The EPO gene is located on chromosome 7, exists as
a single copy in a 5.4 kb region of the genomic DNA, and encodes a polypeptide chain
containing 193 amino acids (Jacobs, et al., 1985). During the production and secretion of EPO,
a 166 amino acid peptide is initially generated following the cleavage of a 27 amino acid
hydrophobic secretory leader at the amino-terminal (Imai, et al., 1990). In addition, a carboxy-
terminal arginine in position 166 is removed both in the mature human and recombinant human
EPO (rhEPO) resulting in a circulatory mature protein of 165 amino acids (Chong, et al.,
2002a). The glycosylated chains are important for the biological activity of EPO and can protect
EPO from oxygen radical degradation. The carbohydrate chains stabilize EPO (Toyoda, et
al., 2000) and the oligosaccharides in EPO may protect the protein from oxygen radical activity
(Uchida, et al., 1997). The N-glycosylated chains are believed to contribute to the thermal
stability of EPO (Tsuda, et al., 1988). In addition, the N- and O-linked chains may be necessary
for the production and secretion of the mature EPO (Krantz, 1991). Replacement of asparagines
38 and 83 by glutamate or serine 126 by glycine can decrease the production and secretion of
EPO (Dube, et al., 1988). The presence of the carbohydrates also are important in the control
of the metabolism of EPO, since EPO molecules with high sialic acid content can be easily
cleared by the body through specific binding in the liver (Tsuda, et al., 1990).

The biological activity of EPO also relies upon two disulfide bonds formed between cysteines
at positions 7 and 160 and at positions 29 and 33 (Li, et al., 2004a). The requirement of these
disulfide bridges has been demonstrated by the evidence that reduction of these bonds results
in the loss of the biologic activity of EPO. Alkylation of the sulfhydryl groups results in
irreversible loss of the biological activity of EPO. Re-oxidization of EPO after reduction by
guanidine restores eighty-five percent of the biological activity of EPO (Wang, et al., 1985).
Replacement of cysteine 33 with proline also reduces the biological function of EPO.
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Following cloning of the EPO gene (Jacobs, et al., 1985, Lin, et al., 1985), the EPO receptor
(EPOR) was found to be expressed in both normal and transformed erythroid cells (D’Andrea
and Zon, 1990). The EPOR is part of the type 1 super-family of cytokine receptors and is
activated via homodimerization (Bazan, 1990, Watowich, et al., 1994). This receptor family
shares a common domain structure consisting of an extracellular ligand-binding domain, a
transmembrane domain, and an intracellular domain. The extracellular domain is necessary for
the initial binding of EPO and the intracellular domain is responsible for the transduction of
intracellular signaling (Mulcahy, 2001).

EPO controls bone marrow erythroid cell proliferation, differentiation, and survival through
its binding to an erythroid progenitor cell surface EPOR. The EPOR also is expressed in
numerous non-erythroid blood lines that include neurons, microglia, astrocytes, and in cerebral
ECs (Anagnostou, et al., 1994, Fliser and Haller, 2007, Genc, et al., 2004, Maiese, et al.,
2004, Maiese, et al., 2005c) as well as on myelin sheaths of radicular nerves in human
peripheral nerves (Hassan, et al., 2004), suggesting both a developmental and potential
protective role for EPO in the central and peripheral nervous systems. The EPOR also is
expressed in primary cerebral ECs (Chong, et al., 2003a, Chong, et al., 2003c) as well as in
human umbilical veins, bovine adrenal capillaries, and rat brain capillaries (Anagnostou, et
al., 1994, Yamaji, et al., 1996).

Production of EPO and the expression of its receptor are altered during development. Elevated
expression of the EPOR occurs in early embryonic neuronal tissues at levels similar to that
observed in the adult spleen and bone marrow (Liu, et al., 1994). Yet, the level of endogenous
EPOR expression is significantly reduced following the maturation of the brain (Liu, et al.,
1997). During gestation, EPO production is increased, but later becomes suppressed following
birth to be regulated by the tissue oxygen supply (Chong, et al., 2002c). A deficiency in tissue
oxygen results in the production of EPO and an increase in the expression of the EPOR not
only in peripheral organs (Fliser and Haller, 2007, Li, et al., 2004a, Maiese, et al., 2004,
Maiese, et al., 2005c), but also in the brain (Li, et al., 2007a) that may be responsible for
hypoxic tolerance in some species (Ravid, et al., 2007). EPO secretion in the brain appears to
be more sustained than in peripheral organs such as the kidney (Chikuma, et al., 2000),
suggesting that EPO production may originate in the brain and possibly cross the blood-brain
barrier to reach the blood and peripheral organs (Li, et al., 2004a). Work performed in vivo
with subjects exposed to hypoxia also demonstrates an increase in expression of EPO and
EPOR mRNA following reduced oxygenation (Marti, et al., 1996). Furthermore, both primary
neurons (Chikuma, et al., 2000, Liu, et al., 2006) and neuronal cell lines (Stolze, et al., 2002)
have been found to retain the capacity to express EPO in an oxygen-dependent manner.
Although EPO is recognized as a critical modulator of erythropoiesis, a low concentration of
red blood cells alone does not directly stimulate EPO production, but requires the presence of
a diminished oxygen tension. Once a hypoxic stimulus is received, EPO is subsequently
released into the peripheral blood circulation and upon arrival in the bone marrow, EPO binds
to its receptor that is highly expressed on the surface of erythroid progenitor cells and leads to
erythropoiesis (Broudy, et al., 1991). This results in an elevation in the number of mature
erythrocytes and the improvement of oxygen supply. EPO also functions to stimulate colony-
forming erythroid cells to induce these cells to proliferate, mature into erythrocytes, and
possibly assist with reticulocyte release to the blood (Sathyanarayana, et al., 2007).

Hypoxia-inducible factor 1 (HIF-1) controls expression of EPO and EPOR during periods of
reduced oxygen content. HIF-1 is essential for the production and secretion of EPO in response
to hypoxia (Ikeda, 2005). At the transcriptional level, the hypoxia- dependent gene
transcription of EPO and EPOR directly results from the activation of the HIF-1 pathway under
hypoxic conditions. Gene transcription of EPO is mediated by the transcription enhancer
located in the 3′-flanking region of the EPO gene that specifically binds to HIF-1 (Wang and
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Semenza, 1995). HIF-1 is a basic helix-loop-helix heterodimeric transcription factor containing
two subunits, HIF-1α and HIF-1β. HIF-1β is a constitutively expressed 91–94 kDa subunit that
was characterized previously as aryl hydrocarbon receptor nuclear translocator (ARNT)
(Hoffman, et al., 1991). HIF-1α is a 120 kDa oxygen-labile subunit that is degraded through
the ubiquitin-proteasome pathway under normoxic conditions (Huang, et al., 1998). During
hypoxia or conditions such as iron chelation that can mimic hypoxia, blocking HIF-1α
association with von Hippel-Lindau protein impairs degradation of HIF-1α (Maxwell, et al.,
1999). HIF-1α subsequently translocates to the nucleus and heterodimerizes with HIF-1β to
form a stable HIF-1 complex. The HIF complex then binds to the conserved sequence (5′
RCGTG3′) near the 5′ end of the hypoxia-responsive enhancer of the EPO gene to up-regulate
EPO gene transcription (Bunn, et al., 1998). Increased DNA binding activity of HIF-1 occurs
in rat cortical neurons during oxidative stress, suggesting that HIF-1 may function as oxygen
sensor regulating adaptive gene transcription and resulting in the production and secretion of
the EPO protein during hypoxia in the nervous system (Maiese, et al., 2004, Maiese, et al.,
2005c). It is important to note that each of the HIF family members HIF-1α, HIF-1β, and
HIF-3α play important roles in regulating the expression of EPO and the EPOR to foster
protection against hypoxic cell injury (Heidbreder, et al., 2003).

Reduced oxygen content is not the only factor responsible for the expression of EPO and the
EPOR. The production and secretion of EPO in female reproductive organs is estrogen-
dependent. During the cyclic development of the uterine endometrium, 17β-estradiol can lead
to a rapid and transient increase in EPO mRNA in the uterus (Yasuda, et al., 1998), oviducts,
and ovaries (Masuda, et al., 2000). Hypoxic induced EPO mRNA expression in uterine tissue
occurs only in the presence of 17β-estradiol. EPO mRNA expression by hypoxia in the uterus
is less pronounced than the EPO expression that occurs in the kidney and the brain
(Chikuma, et al., 2000). Interestingly, a variety of cellular disturbances may lead to either
increased or decreased EPO expression through the control of HIF, such as hypoglycemia,
cadmium exposure, raised intracellular calcium, or intense neuronal depolarizations generated
by mitochondrial reactive oxygen species (Chong, et al., 2002c, Genc, et al., 2004, Obara, et
al., 2003). Anemic stress, insulin release, and several cytokines, including insulin-like growth
factor, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)
(Nagai, et al., 2001) also can lead to increased expression of EPO and the EPOR (Maiese, et
al., 2004, Maiese, et al., 2005c).

EPO AND CELLULAR SIGNAL TRANSDUCTION
EPO cellular signal transduction requires the activation of the EPOR. Once EPO is bound to
the EPOR, the EPOR activates Janus-tyrosine kinase 2 (Jak2) through phosphorylation. Jak2
is a member of a family of Janus-type proteintyrosine kinases including Jak1, Jak2, Jak3, and
Tyk2 that are characterized by a kinase domain in the carboxyl portion, a kinase-like domain,
and a large amino-terminal domain (Wilks, et al., 1991). The amino-terminal domain of Jak2
is responsible for the binding of Jak2 with the β-subunit of the EPOR at a region proximal to
the membrane that contains the Box 1 sequence (Zhao, et al., 1995). EPO can prevent apoptotic
injury through its reliance on Jak2 phosphorylation (Kawakami, et al., 2001, Sharples, et al.,
2004), since loss of Jak2 activity reduces protection by EPO (Digicaylioglu, et al., 2004,
Lipton, 2007).

The signal transducer and activator of transcription (STAT) proteins are direct substrates of
Janus kinases. Seven mammalian STAT genes encoding proteins exist and are considered to
be latent DNA binding factors that can be activated by tyrosine phosphorylation (Reich,
2007). Activation of Janus kinases results in tyrosine phosphorylation and dimerization of
STATs. Once activated, STATs translocate to the nucleus and bind to specific DNA sequences
in the promoter regions of responsive genes to lead to gene transcription. Closely linked to
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these transcription pathways are the mitogen-activated protein kinases that include the
extracellular signal-related kinases (ERKs), the c-Jun-amino terminal kinases, and p38 MAP
kinase that can oversee erythroid proliferation and differentiation (Nagata, et al., 1998).
However, in regards to cytoprotection, EPO has been shown to not only activate STAT 3
(Asaumi, et al., 2007, Chong and Maiese, 2007a, Parsa, et al., 2003), STAT 5 (Chong and
Maiese, 2007a, Menon, et al., 2006b, Moon, et al., 2006, Um and Lodish, 2006, Wei, et al.,
2006), and ERK 1/2 (Bullard, et al., 2005, Menon, et al., 2006a), but also to employ these
pathways for cell development and cell protection. EPO activates STAT3, STAT5, and ERK
1/2 in primary cerebral vascular cells, suggesting that EPO may require these cellular pathways
to confer EC cytoprotection during oxidative stress (Chong and Maiese, 2007a). In addition,
activation of STAT5 also can modulate EPO proliferation as well as protection against cellular
apoptosis (Damen, et al., 1995). In erythroleukemic cell lines, EPO-dependent cell survival is
accompanied by sustained STAT5 DNA-binding activity. Stable expression of the truncated
STAT5a has been shown to enhance STAT5-DNA binding activity and reduce the induction
of apoptosis (Bittorf, et al., 2000). In contrast, induction of apoptosis can be observed in cells
that lack STAT5 (STAT5a−/−/5b−/) function (Socolovsky, et al., 2001). For example,
STAT5a−/−5b−/− fetal liver erythroid progenitors show higher levels of apoptosis and are less
responsive to the presence of EPO (Socolovsky, et al., 1999).

Downstream from Janus kinases, STATS, and the ERKs are the apoptotic pathways of the
caspase family. Caspases are composed of three domains including an N-terminal prodomain,
a large subunit, and a small subunit (Earnshaw, et al., 1999). As a result of their activation
sequence, caspases are classified as either initiator caspases (also known as apical caspases)
or effector caspases (Li, et al., 2006a, Maiese, et al., 2005a, Okouchi, et al., 2007). An initiator
caspase cleaves and subsequently activates an effector caspase. The apoptotic-associated
caspases include initiator caspases, such as caspase 2, 8, 9, and 10, that activate downstream
effector caspases, resulting in an amplification of cascade activity. The initiator caspases
consist of long N-terminal prodomains that contain caspase recruitment domains (CARDs) in
caspase 2 and caspase 9 or death effector domains (DEDs) in caspase 8 and caspase 10
(Hofmann, et al., 1997). The effector caspases consist of caspase 3, 6, and 7 that function to
directly cleave crucial cellular protein substrates to result in cell destruction. The caspases 1
and 3 have each been linked to the independent apoptotic pathways of genomic DNA cleavage
and cellular membrane PS exposure (Chong, et al., 2003a, Chong, et al., 2003e, Takahashi, et
al., 1999). These caspases, in addition to caspase 8 and 9, are also tied to the direct activation
and proliferation of microglia (Chong, et al., 2003b, Kang, et al., 2003a, Kang, et al., 2003b).
Caspase 1 is believed to be principally responsible for the externalization of membrane PS
residues in several cell systems that can subsequently activate microglial phagocytosis (Maiese
and Vincent, 2000b, Vanags, et al., 1996). Furthermore, caspase 9 is activated through a process
that involves the cytochrome c -apoptotic protease-activating factor-1 (Apaf-1) complex
(Chong, et al., 2004b, Li, et al., 1997). In addition, caspase 8 serves as an upstream initiator
of executioner caspases, such as caspase 3, and also leads to the mitochondrial release of
cytochrome c (Engels, et al., 2000, Stegh, et al., 2002). Following caspase 8 and caspase 9
activation, caspase 3 directly leads to genomic DNA degradation.

The ability of EPO to prevent specific caspase 1 and caspase 3-like activities appears to play
a significant role in its cellular protection (Chong, et al., 2003b, Chong, et al., 2002b,
Chong, et al., 2003e, Digicaylioglu, et al., 2004, Li, et al., 2007a, Okutan, et al., 2007, Wu, et
al., 2007a). In regards to caspase 1, EPO prevents PS externalization primarily through the
inhibition of caspase 1 -like activity and, to a lesser degree, through other caspases such as 3,
8, and 9 (Chong, et al., 2003a, Chong, et al., 2003b, Chong, et al., 2002b, Chong, et al.,
2003e). EPO also can block genomic DNA degradation through the inhibition of cytochrome
c and the subsequent inhibition of caspase 3 - like activity (Chong, et al., 2003b). EPO prevents
cellular apoptosis through parallel pathways that prevent the induction of Apaf-1, caspase 8,
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and caspase 9 as well as by preserving mitochondrial membrane potential in conjunction with
enhanced Bcl-xL expression (Chong, et al., 2003a, Chong, et al., 2003b, Chong, et al.,
2003e, Sharples, et al., 2004)

The ability of EPO to enhance cell survival during injury also directly relies upon the
phosphatidylinositol 3-kinase (PI 3-K) pathway through the serine-threonine kinase protein
kinase B (Akt). Phosphorylation of Akt in conjunction with EPO administration leads to its
activation and protects against genomic DNA degradation and membrane PS exposure
(Chong, et al., 2003a, Chong, et al., 2003b, Chong, et al., 2003e). Up-regulation of Akt activity
during multiple injury paradigms, such as vascular and cardiomyocyte ischemia (Miki, et al.,
2006, Parsa, et al., 2003), free radical exposure (Chong, et al., 2003b, Matsuzaki, et al.,
1999), matrix detachment (Rytomaa, et al., 2000), neuronal axotomy (Namikawa, et al.,
2000), N-methyl-D-aspartate toxicity (Dzietko, et al., 2004), hypoxia (Chong, et al., 2002b,
Zhang, et al., 2007), β-amyloid toxicity (Chong, et al., 2005d, Martin, et al., 2001), DNA
damage (Chong, et al., 2004a, Chong, et al., 2002b, Henry, et al., 2001, Kang, et al., 2003a),
metabotropic ligand (Anjaneyulu, et al., 2008, Maiese, et al., 2005a) and receptor signaling
(Chong, et al., 2005a, Chong, et al., 2006b, Maiese, et al., 2005a), cell metabolic pathways
(Chong, et al., 2005g, Maiese and Chong, 2003), and oxidative stress (Chong, et al., 2004a,
Kang, et al., 2003a, Kang, et al., 2003b) increases cell survival. Akt also can directly control
microglial activation through the prevention of Bcl-xL degradation (Chong, et al., 2004a) and
the inhibition of caspase 1-, 3-, and 9-like activities (Chong, et al., 2005a, Kang, et al.,
2003a, Kang, et al., 2003b).

Akt also appears to be a vital component for EPO cytoprotection especially during
inflammatory cell activation, since inhibition of Akt activity blocks cellular protection and
anti-inflammatory mechanisms by EPO (Chong, et al., 2003a, Chong, et al., 2003b, Chong, et
al., 2003e). Activation of Akt is usually cytoprotective, such as during free radical exposure
(Chong, et al., 2003b, Matsuzaki, et al., 1999), hyperglycemia (Anitha, et al., 2006),
endothelial cell hypoxia (Chong, et al., 2002b), β-amyloid toxicity (Chong, et al., 2007a,
Chong, et al., 2005d), cardiomyopathy (Kim, et al., 2008), and oxidative stress (Chong, et
al., 2004a, Kang, et al., 2003a, Kang, et al., 2003b). EPO uses the PI 3-K/Akt pathway in a
variety of experimental models of injury (Bahlmann, et al., 2004, Chong, et al., 2003b,
Chong, et al., 2002b, Chong, et al., 2003e, Chong and Maiese, 2007a, Li, et al., 2006b, Miki,
et al., 2006, Parsa, et al., 2003, Sharples, et al., 2004, Um, et al., 2007, Um and Lodish,
2006, Wu, et al., 2007b). These can involve transcription factor regulation (Chong and Maiese,
2007a), maintenance of ΔΨm, prevention of cytochrome c release (Chong, et al., 2003a,
Chong, et al., 2003b, Chong, et al., 2003e), and blockade of caspase activity (Chong, et al.,
2003a, Chong, et al., 2003b, Chong, et al., 2002b).

Several novel pathways that may mediate the ability of EPO to prevent cellular apoptosis are
intimately tied to Akt. Akt is a primary mediator of phosphorylation of the mammalian forkhead
transcription factors of the O class (FoxOs), FoxO1, FoxO3a, and FoxO4 (Chong, et al.,
2005b, Maiese, et al., 2007b). More than 100 forkhead genes and 19 human subgroups that
range from FOXA to FOXS are now known to exist since the initial discovery of the fly
Drosophila melanogaster gene forkhead (Maiese, et al., 2007b). The fork-head box (FOX)
family of genes is characterized by a conserved forkhead domain commonly noted as a
“forkhead box” or a “winged helix” as a result of the butterfly-like appearance on X-ray
crystallography (Clark, et al., 1993) and nuclear magnetic resonance (Jin, et al., 1998). All Fox
proteins contain the 100-amino acid winged helix domain, but it should be noted that not all
winged helix domains are Fox proteins (Larson, et al., 2007). FoxO proteins are expressed
throughout the body and are found in the ovary, prostate, skeletal muscle, blood vessels, brain,
heart, lung, liver, pancreas, spleen, thymus, and testis (Maiese, et al., 2008b, Maiese, et al.,
2007b). Of the FoxOs, FoxO3a is one member that has emerged as a versatile target for a
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number of disorders. Akt can prevent cellular apoptosis through the phosphorylation of FoxO
proteins. Post-translational phosphorylation of FoxO proteins will maintain FoxO transcription
factors in the cytoplasm by association with 14-3-3 proteins and prevent the transcription of
proapoptotic target genes (Chong and Maiese, 2007a, Maiese, et al., 2005c). In the absence of
inhibitory Akt1 phosphorylation, FoxO3a is activate, can translocate to the nucleus, and
controls a variety of functions that involve cell cycle progression, cell longevity, and apoptosis
(Lehtinen, et al., 2006, Li, et al., 2006a, Maiese, et al., 2007a). As a result, control of FoxO3a
is considered to be a viable therapeutic target for agents such as metabotropic glutamate
receptors (Chong, et al., 2006b, Maiese, et al., 2005a), neurotrophins (Zheng, et al., 2002), and
NAD+ precursors (Chong, et al., 2004c, Li, et al., 2006a, Li, et al., 2006b) to increase cell
survival. In addition, FOXO3a interfaces with several pathways that regulate cellular lifespan
and function to control neoplastic growth (Li, et al., 2007b). EPO controls the phosphorylation
and degradation of FOXO3a to retain it in the cytoplasm through binding to 14-3-3 protein and
foster vascular cell protection during oxidative stress (Chong and Maiese, 2007a). Regulation
of caspase 3 - like activity by EPO also has recently been linked to a unique regulatory
mechanism that blocks the proteolytic degradation of phosphorylated forkhead transcription
factors by caspase 3. Given that specific proapoptotic transcription factors, such as FoxO3a,
have been shown to be a substrate for caspase 3-like proteases at the consensus sequence
DELD304A (Charvet, et al., 2003), studies have shown that blockade of caspase 3 - like activity
prevents the destruction of the inactive phosphorylated FoxO3a during oxidative stress to
increase cell survival (Chong and Maiese, 2007a).

Akt also is associated with proteins are derived from the Drosophila Wingless (Wg) and the
mouse Int-1 genes (Chong, et al., 2007a, Chong, et al., 2007c, Li, et al., 2006c, Speese and
Budnik, 2007). The Wnt proteins are secreted cysteine-rich glycosylated proteins that can
control cell proliferation, differentiation, survival, and tumorigenesis (Chong and Maiese,
2004, Li, et al., 2006c). More than eighty target genes of Wnt signaling pathways have been
demonstrated in human, mouse, Drosophila, Xenopus, and zebrafish. These genes are present
in several cellular populations, such as neurons, cardiomyocytes, endothelial cells, cancer cells,
and pre-adipocytes (Maiese, 2008b). At least nineteen of twenty-four Wnt genes that express
Wnt proteins have been identified in the human (Li, et al., 2005, Li, et al., 2006c, Maiese, et
al., 2008d).

Wnt proteins are generally divided into functional classes based on their ability to induce a
secondary body axis in Xenopus embryos and to activate certain signaling cascades that consist
of the Wnt1 class and the Wnt5a class (Maiese, 2008b, Maiese, et al., 2008d). These involve
intracellular signaling pathways are critical for Wnt signal transduction (Maiese, 2008a,
Maiese, 2008b). One Wnt pathway involves intracellular calcium release and is termed the
non-canonical or Wnt/calcium pathway consisting primarily of Wnt4, Wnt5a, and Wnt11. The
non-canonical system functions through non-β-catenin-dependent pathways and also includes
the planar cell polarity (PCP) pathway or the Wnt-calcium-dependent pathways (Li, et al.,
2005, Li, et al., 2006c, Maiese, et al., 2008d). A second pathway controls target gene
transcription through β-catenin, generally referred to as the canonical pathway that involves
Wnt1, Wnt3a, and Wnt8. Wnt signaling can prevent cell injury through a variety of
mechanisms. Wnt prevents apoptosis through β-catenin/Tcf transcription mediated pathways
(Chen, et al., 2001) and also can protect cells against c-myc induced apoptosis through
cyclooxygenase-2 and Wnt induced secreted protein (You, et al., 2002). Wnt signaling also
can inhibit apoptosis during oxidative stress (Chong and Maiese, 2004) and β-amyloid toxicity
that may require modulation of glycogen synthase kinase-3β (GSK-3β) and β-catenin
(Chong, et al., 2007a).

Abnormalities in the Wnt signaling pathways, such as with transcription factor 7-like 2 gene,
may impart increased risk for type 2 diabetes in some populations (Grant, et al., 2006,
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Lehman, et al., 2007, Scott, et al., 2006) as well as have increased association with obesity
(Guo, et al., 2006). Yet, intact Wnt family members may offer glucose tolerance and increased
insulin sensitivity (Wright, et al., 2007) as well as protect glomerular mesangial cells from
elevated glucose induced apoptosis (Lin, et al., 2006). These observations suggest a potential
protective cellular mechanism for EPO through Wnt signaling to improve clinical cardiac
function in diabetic patients (Silverberg, et al., 2006) and decrease complications in woman
with diabetic pregnancies (Teramo, et al., 2004). Cell culture studies demonstrate that the Wnt1
protein is necessary and sufficient to impart cellular protection during elevated glucose
exposure (Chong, et al., 2007c). Administration of exogenous Wnt1 protein can significantly
prevent apoptotic EC injury during elevated glucose exposure. EPO maintains the expression
of Wnt1 during elevated glucose exposure and prevents loss of Wnt1 expression that would
occur in the absence of EPO during elevated glucose. Blockade of Wnt1 with a Wnt1Ab also
can neutralize the protective capacity of EPO, illustrating that Wnt1 is a critical component in
the cytoprotection of EPO during elevated glucose exposure (Chong, et al., 2007c).

In the Wnt pathway, modulation of glycogen synthase kinase-β (GSK-3β) and nuclear factor-
κB (NF-κB) activity can affect cell survival during oxidative stress (Li, et al., 2005, Maiese,
2008b, Maiese, et al., 2008d). GSK-3β is considered to be a therapeutic target for some
neurodegenerative disorders (Balaraman, et al., 2006, Chong, et al., 2005e, Nurmi, et al.,
2006, Qin, et al., 2006) and also may to influence inflammatory cell survival (Chong, et al.,
2007b) and activation (Tanuma, et al., 2006). During models of diabetes, inactivation of
GSK-3β by small molecule inhibitors or RNA interference prevents toxicity from high
concentrations of glucose and increases rat beta cell replication, suggesting a possible target
of GSK-3β for pancreatic beta cell regeneration (Mussmann, et al., 2007). Clinical applications
for GSK-3β are attractive, especially in concert with EPO. For example, both the potential
benefits of EPO to improve cardiovascular function in diabetic patients (Silverberg, et al.,
2006, Silverberg, et al., 2001) and the positive effects of exercise to improve glycemic control
during DM (Maiorana, et al., 2002) appear to rely upon the inhibition of GSK-3β activity. EPO
blocks GSK-3β activity (Chong, et al., 2005e, Chong, et al., 2007b, Rowe, et al., 2007, Wu,
et al., 2007a) and combined with exercise may offer synergistic benefits, since physical
exercise also has been shown to phosphorylate and inhibit GSK-3β activity (Howlett, et al.,
2006). Expression and cytoprotection of EPO is dependent, in part, upon Akt and NF-κB. The
phosphorylation of IκB proteins by the IκB kinase (IKK) and their subsequent degradation lead
to the release of NF-κB for its translocation to the nucleus to initiate gene transcription (Hayden
and Ghosh, 2004). Dependent upon Akt controlled pathways, the transactivation domain of
the p65 subunit of NF-κB is activated by IKK and the IKKα catalytic subunit to lead to the
induction of protective anti-apoptotic pathways (Chong, et al., 2005b). Increased expression
of NF-κB during injury models can occur in inflammatory microglial cells (Chong, et al.,
2005d, Chong, et al., 2007b, Guo and Bhat, 2006) and in neurons (Sanz, et al., 2002). NF-κB
represents a critical pathway that is responsible for the activation of inhibitors of apoptotic
proteins (IAPs), the maintenance of Bcl-xL expression, (Chen, et al., 2000, Chong, et al.,
2005f), and protection against cell injury during oxidative stress (Chong, et al., 2005d). NF-
κB also is strongly associated with the cytopro-tection of trophic factors that includes EPO
(Chong, et al., 2005d, Nakata, et al., 2004, Sae-Ung, et al., 2005). NF-κB also plays a key role
in the expression of EPO during HIF-1 induction. Akt can significantly increase NF-κB and
HIF-1 activation resulting in the enhancement of EPO expression. Although NF-κB has not
consistently been found to be beneficial in all cell systems (Esposito, et al., 2006, Jacobsen, et
al., 2006) and may sometimes not be cytoprotective (Nurmi, et al., 2006, Xu, et al., 2005),
EPO subsequently uses NF-κB to prevent apoptosis through the enhanced expression and
translocation of NF-κB to the nucleus to elicit anti-apoptotic gene activation (Bittorf, et al.,
2001, Chong, et al., 2005d, Li, et al., 2006b, Spandou, et al., 2006).
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EPO AND CLINICAL ENTITIES
Cardiac and Vascular Integrity

The control of angiogenesis by EPO offers an important level of cytoprotection (Chong, et
al., 2002a, Walshe and D’Amore, 2008). In neonatal mesenteric microvascular ECs, EPO leads
to vasculogenesis (Ashley, et al., 2002). In clinical studies, EPO serum levels are significantly
associated with the number and function of circulating endothelial progenitor cells and EPO
can stimulate postnatal neovascularization by increasing endothelial progenitor cell
mobilization from the bone marrow (Heeschen, et al., 2003). Angiogenesis also has been
observed in endothelial samples derived from human adult myocardial tissue following
treatment with EPO (Jaquet, et al., 2002). In addition, the uterine endometrium and the ovaries
are dependent upon EPO for the induction of angiogenesis to compensate for lost vessels during
the estrus cycle. EPO has been shown to be necessary to foster blood vessel formation in the
endometrium in ovariectomized mice and to be required for the formation of a capillary network
for the development of follicles and the corpora lutea (Yasuda, et al., 1998). In models of
cerebral ischemia, EPO promotes factors for angiogenesis such as Tie-2 and Angiopoietin-2
that may assist with the restoration of cerebral blood flow to pre-ischemic levels (Li, et al.,
2007a). EPO controlled angiogenesis also may play a significant role during renal
inflammation and prevention of allograft rejection (Reinders, et al., 2006). Yet, it is important
to consider the inhibition of angiogenesis. Although EPO induced angiogenesis may impart
beneficial effects to ischemic cells of the nervous and cardiovascular systems for nutrient and
oxygen supply, other scenarios that involve ocular neovascularization may seek to block or
limit angiogenesis by EPO to prevent disease progression (Zhang and Ma, 2007).

In the vascular system, EPO also offers direct preservation of EC integrity (Chong, et al.,
2002a, Chong, et al., 2003a, Chong, et al., 2002b). EPO has both a mitogenic and chemotactic
effect that can lead to matrix metalloproteinase-2 production, cell proliferation, and vessel
formation in EC lines (Maiese, et al., 2004, Maiese, et al., 2005c). In cultured human and
bovine ECs, EPO stimulates EC proliferation and fosters the migration of ECs (Anagnostou,
et al., 1990). It is important to note that as a large molecule, EPO may maintain the
establishment of EC communication and function that could become crucial in a number of
scenarios, such as repair of the blood-brain barrier during injury (Martinez-Estrada, et al.,
2003). In addition, by assuring EC integrity, EPO prevents ischemic cardiac demise by reducing
myocardial injury and cardiomyocyte apoptosis (Burger, et al., 2006), lessening myocardial
ischemia (Bullard, et al., 2005), modulating cardiac remodeling (Miki, et al., 2006, Toma, et
al., 2007), reducing ventricular dysfunction (Parsa, et al., 2004, Parsa, et al., 2003), and
improving cardiac function (Gao, et al., 2007, Westenbrink, et al., 2007). Therefore, EPO plays
a critical role in the vascular and renal systems with the maintenance of erythrocyte (Foller, et
al., 2007) and podocyte (Eto, et al., 2007) integrity, regulates the survival of ECs (Chong, et
al., 2003a, Chong, et al., 2002b), and may act as a powerful endogenous protectant during
cardiac injury (Asaumi, et al., 2007). EPO can protect against myocardial cell apoptosis and
decrease infarct size, resulting in improved left ventricular contractility. In isolated rat heart
preparations following ischemia/reperfusion experiments, beneficial effects of treatment with
EPO have been shown to significantly improve post-ischemic recovery of left ventricular
pressure (Moon, et al., 2003, van der Meer, et al., 2004a). EPO treatment also can prevent
myocardial cell apoptosis and decrease infarct size, resulting in enhanced cardiac function and
recovery (Parsa, et al., 2004). At the onset of coronary artery occlusion, EPO administered also
can significantly inhibit apoptosis in the central region of myocardial ischemia (Tramontano,
et al., 2003). Even in acute scenarios following coronary artery ligation, EPO leads to a decrease
in apoptotic cells by fifty percent in the myocardium and significantly improves cardiac
function (Moon, et al., 2003, Parsa, et al., 2003).
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Although some cardiac injury experimental models do not consistently demonstrate a benefit
with EPO (Olea, et al., 2006), initial studies in patients with anemia or on chronic hemodialysis
have suggested a direct cardiac benefit from EPO administration (Goldberg, et al., 1992,
Silverberg, et al., 2001). Randomized control studies with EPO administration in patients with
congestive heart failure or diabetes combined with congestive heart failure also demonstrate
an improved cardiac output and a decrease in medical resource utilization (Maiese, et al.,
2005c, Silverberg, et al., 2006). Subsequent work has demonstrated that EPO administration
can improve exercise tolerance either during cardiac or renal insufficiency in patients with
anemia and congestive heart failure (Mancini, et al., 2003, Palazzuoli, et al., 2006) and that
this may be tied to improved pulmonary function (Wu, et al., 2006). Other studies have shown
that patients with acute myocardial infarction have increased plasma EPO levels within seven
days of the cardiac insult, suggesting a possible protective response from the body (Ferrario,
et al., 2007). Serum levels of EPO also may function as a biomarker for cardiovascular injury
(Fu and Van Eyk, 2006) as well as improve survival following out of hospital cardiac arrest
(Cariou, et al., 2008). A randomized, concealed, multicenter trail of 1460 patients who received
40,000 U of epoetin alfa up to a 3 week maximum following intensive care unit admission also
demonstrated a reduced mortality in patients with trauma (Corwin, et al., 2007).

Unfortunately, agents such as EPO may not be well tolerated by all individuals, especially
those with comorbid conditions such as congestive heart failure and hypertension. Some studies
suggest that elevated plasma levels of EPO independent of hemoglobin concentration can be
associated with increased severity of disease in individuals with congestive heart failure (van
der Meer, et al., 2004b) and that EPO may contribute to vascular stenosis with intima
hyperplasia (Reddy, et al., 2007). Adverse effects during treatment with EPO are not
uncommon, such as an increased incidence of thrombotic vascular effects (Corwin, et al.,
2007) or the use of EPO in cancer patients receiving chemotherapy that has been associated
with nonfatal myocardial infarction, pyrexia, vomiting, shortness of breath, paresthesias, and
upper respiratory tract infection (Henry, et al., 2004). In addition, the use of EPO in patients
with hypertension must proceed with caution, since both acute and long-term administration
of EPO can significantly elevate mean arterial pressure (Kanbay, et al., 2007).

Immune Function and the Nervous System
Given the impact that inflammatory cells may have upon the progression or resolution of
degenerative insults throughout the body, it becomes essential to consider agents that can
control inflammatory pathways (Chong, et al., 2005a, Chong, et al., 2004a, Kang, et al.,
2003b). Therefore, cytoprotective agents that are known to modulate inflammatory cell
function may offer attractive therapeutic considerations (Chong, et al., 2007b, Li, et al.,
2006b). EPO appears to fill such a need in regards to its role during periods of cellular
inflammation. EPO can reduce cytokine gene expression in endothelial cells exposed to tumor
necrosis factor (Avasarala and Konduru, 2005), prevent ulcer progression in cases of
scleroderma (Ferri, et al., 2007), and block primary microglial activation and proliferation
during oxidative stress (Chong, et al., 2003b, Chong, et al., 2005d). Furthermore, EPO can
block microglial cell activation and proliferation to prevent phagocytosis of injured cells
through pathways that involve cellular membrane PS exposure, protein kinase B (Chong, et
al., 2004a), and the regulation of caspases (Chong, et al., 2003a, Chong, et al., 2003b, Wu, et
al., 2007a). EPO can directly inhibit several pro-inflammatory cytokines, such as IL-6, TNF-
α, and monocyte chemoattractant protein 1 (Li, et al., 2004a, Maiese, et al., 2005c), as well as
reduce leukocyte inflammation (Contaldo, et al., 2007). In addition, EPO may foster the
preservation of microglial cells for neuronal and vascular restructuring by preventing apoptotic
injury in microglia (Li, et al., 2006b, Vairano, et al., 2002). In regards to the capacity of EPO
to maintain microglial cellular integrity, EPO retains its capacity to prevent early apoptotic
injury with membrane PS externalization as well as later stages of apoptotic injury involving
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DNA fragmentation in microglia (Li, et al., 2006b) similar to other cell systems of
neurovascular origin (Chong, et al., 2003b, Chong, et al., 2002b, Chong, et al., 2005d, Parsa,
et al., 2003, Sharples, et al., 2004).

As a robust cytoprotectant, EPO can enhance the survival of cells during several types of injury
models in the nervous system (Lykissas, et al., 2007, Maiese, et al., 2004, Maiese, et al.,
2005c). In cells that involve the brain or the retina, EPO can prevent injury from hypoxic
ischemia (Chong, et al., 2003b, Chong, et al., 2002b, Liu, et al., 2006, Meloni, et al., 2006,
Wei, et al., 2006, Yu, et al., 2005), excitotoxicity (Montero, et al., 2007, Yamasaki, et al.,
2005), infection (Kaiser, et al., 2006), free radical exposure (Chong, et al., 2003a, Chong, et
al., 2003e, Yamasaki, et al., 2005), staurosporine (Pregi, et al., 2006), and dopaminergic cell
injury (Demers, et al., 2005, McLeod, et al., 2006). In addition, administration of EPO also
represents a viable option for the prevention of retinal cell injury during glaucoma (Tsai, et
al., 2007). Systemic application of EPO also can improve functional outcome and reduce cell
loss during spinal cord injury (King, et al., 2007, Okutan, et al., 2007), traumatic cerebral
edema (Verdonck, et al., 2007), cortical trauma (Cherian, et al., 2007), and epileptic activity
(Mikati, et al., 2007, Nadam, et al., 2007).

EPO also may improve cognition, such as memory loss or psychiatric illness. In particular,
Alzheimer’s disease has become a prime consideration for the applications of EPO.
Alzheimer’s disease leads to a progressive deterioration of cognitive function with memory
loss and injury to hippocampal neurons. The generation of extracellular plaques of amyloid-β
(Aβ) peptide aggregates composed of a 39-42 amino acid peptide are considered to be one of
the pathological mechanisms that may promote the development of Alzheimer’s disease
(Chong, et al., 2005f). Accumulation of Aβ accumulation can lead to apoptotic injury with
chromatin condensation, DNA fragmentation, and cellular membrane PS exposure (Chong, et
al., 2005c, Chong, et al., 2005f). Aβ also can release reactive oxygen species and lead to toxicity
in neurons. In addition, Aβ can not only precipitate a significant inflammatory response with
microglial activation and the secretion of TNF-α (Bornemann, et al., 2001), but also Aβ can
elicit the neuronal expression of inducible nitric oxide synthase, peroxinitrite production, and
neuronal apoptosis during an acute inflammatory response (Chong, et al., 2005e, Combs, et
al., 2001). Furthermore, Aβ may lead to the induction of caspase mediated pathways
(Nakagawa, et al., 2000, Troy, et al., 2001) that work in concert with oxidative stress
(Tamagno, et al., 2003). As a result, therapeutic strategies that address the toxicity of Aβ as a
result of oxidative stress may foster novel developments for the treatment of Alzheimer’s
disease. EPO appears to be both necessary and sufficient to protect neurons from Aβ toxicity.
Application of a blocking antibody of EPO, which can bind to EPO and block its biological
activities in cells (Koshimura, et al., 1999), can otherwise negate the protective effects of EPO
to increase neuronal hippocampal cell survival and prevent apoptotic injury during Aβ exposure
(Chong, et al., 2005d).

Enhanced survival by EPO also extends to afford protection of the neurovascular unit during
cerebral vascular disease (Demers, et al., 2005, Dzietko, et al., 2004, Maiese, et al., 2004,
Wei, et al., 2006). In addition, EPO can protect sensitive hippocampal neurons from both focal
and global ischemic brain injury (Keogh, et al., 2007, Wei, et al., 2006, Yu, et al., 2005,
Zhang, et al., 2006). Systemic administration of EPO also represents a viable option for several
other disorders. EPO administration for retinal cell injury can protect retinal ganglion cells
from apoptosis (Grimm, et al., 2002), EPO can improve functional outcome and reduce lipid
peroxidation during spinal cord injury (Kaptanoglu, et al., 2004), and EPO can maintain
autoregulation of cerebral blood flow, reverse basilar artery vasoconstriction, and enhance
neuronal survival and functional recovery following subarachnoid hemorrhage (Olsen, 2003).
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However, it should be noted that the biological effects with EPO administration may not always
be entirely beneficial during cytoprotective therapy. Irrespective of the problems associated
with EPO abuse and gene doping (Baoutina, et al., 2007, Diamanti-Kandarakis, et al., 2005,
Segura, et al., 2007), EPO has been correlated with the alteration of red cell membrane
properties leading to a cognitive decrement in rodent animal models (Li, et al., 2004a,
Maiese, et al., 2004, Maiese, et al., 2005c). In addition, development of potentially detrimental
side-effects during EPO therapy, such as for cerebral ischemia with increased metabolic rate
and blood viscosity (Frietsch, et al., 2007), could severely limit or halt the use of EPO for
neurovascular diseases. As a result, alternate strategies have been suggested. New
investigations are studying the role of targeted bioavailability for EPO such as in bone marrow
stromal cells genetically engineered to secrete EPO (Eliopoulos, et al., 2006) and controlled
release of EPO from encapsulated cells (Orive, et al., 2005, Ponce, et al., 2006). The passage
of EPO entry into the central nervous system continues to attract significant interest
(Doolittle, et al., 2007) as well as does the use of novel intranasal routes for EPO administration
(Yu, et al., 2005). Other avenues of study are directed to the development of derivations of
EPO to reduce erythropoietic activity and the potential associated vascular complications
(Montero, et al., 2007). Yet, these lines of investigation are not without limitations, since
chemical derivatives of EPO can become absent of clinical efficacy (Maiese, et al., 2004,
Maiese, et al., 2005c) as well as possibly loose the ability to promote sustainable cytoprotective
effects, such as neurogenesis (Gonzalez, et al., 2007) and angiogenesis (Li, et al., 2007a,
Reinders, et al., 2006, Slevin, et al., 2006, Zhang and Ma, 2007).

Metabolic Disease
Clinical work indicates that EPO has a significant role during diabetes mellitus (DM). DM is
a significant health concern for both young and older populations (Maiese, et al., 2007a,
Maiese, et al., 2007c). Approximately 16 million individuals in the United States and more
than 165 million individuals worldwide suffer from DM. By the year 2030, it is predicted that
more than 360 million individuals will be afflicted with DM and its debilitating conditions
(Wild, et al., 2004). Type 2 DM represents at least 80 percent of all diabetics and is dramatically
increasing in incidence as a result of changes in human behavior and increased body mass
index (Laakso, 2001). Type 1 insulin-dependent DM is present in 5–10 percent of all diabetics
(Maiese, et al., 2007c), but is increasing in adolescent minority groups (Dabelea, et al.,
2007). Furthermore, the incidence of undiagnosed diabetes, impaired glucose tolerance, and
fluctuations in serum glucose in the young raises additional concerns (Jacobson, et al., 2007).
Both type 1 and type 2 DM represent important health concerns whether they begin early or
later in life (Maiese, et al., 2007a), since each can result in long-term complications throughout
the body (Daneman, 2006). In regards to the vascular and nervous systems, patients with DM
can develop severe neurological and vascular disease (Donahoe, et al., 2007, Singh, et al.,
2008) that can lead to an increased risk for cognitive decline especially from vascular disease
(Chong, et al., 2005e, Li, et al., 2006a Schnaider Beeri, et al., 2004). Disease of the nervous
system can become the most debilitating complications for DM and affect sensitive cognitive
regions of the brain, such as the hippocampus that modulates memory function, resulting in
significant functional impairment and dementia (Awad, et al., 2004, Gerozissis, 2003). DM
also has been found to increase the risk for vascular dementia in elderly subjects (Schnaider
Beeri, et al., 2004, Xu, et al., 2004). DM also may affect the course of Alzheimer’s disease.
Although some studies have found that diabetic patients may have less neuritic plaques and
neurofibrillary tangles than non-diabetic patients (Beeri, et al., 2005), contrasting work
suggests a modest adjusted relative risk of Alzheimer’s disease in patients with diabetes as
compared with those without diabetes to be 1.3 (Luchsinger, et al., 2001).

Both insulin resistance and the complications of DM are closely linked to the occurrence of
cellular oxidative stress (Maiese, 2008a, Maiese, et al., 2007a, Maiese, et al., 2007c). In patients
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with DM, elevated levels of ceruloplasmin are suggestive of increased reactive oxygen species
(Memisogullari and Bakan, 2004) and acute glucose fluctuations may promote oxidative stress
(Monnier, et al., 2006). Hyperglycemia can lead to increased production of reactive oxygen
species in endothelial cells, liver and pancreatic β-cells (Ceriello, et al., 1996, Ihara, et al.,
1999, Ling, et al., 2003, Yano, et al., 2004). Prolonged duration of hyperglycemia is not
necessary to lead to oxidative stress injury, since even short periods of hyperglycemia, generate
reactive oxygen species, such as in vascular cells (Yano, et al., 2004). Clinical correlates
support these experimental studies to show that acute glucose swings in addition to chronic
hyperglycemia can trigger oxidative stress mechanisms during type 2 DM, illustrating the
importance for therapeutic interventions during acute and sustained hyperglycemic episodes
(Monnier, et al., 2006).

Since administration of antioxidants during elevated glucose concentrations can block free
radical production and prevent the production of advanced glycation endproducts known to
produce reactive oxygen species during DM (Giardino, et al., 1996), EPO may offer an
attractive alternative therapy to maintain proper cellular metabolism and mitochondrial
membrane potential during DM. In clinical studies with DM, plasma EPO is often low in
diabetic patients with anemia (Mojiminiyi, et al., 2006) or without anemia (Symeonidis, et
al., 2006). Furthermore, the failure of these individuals to produce EPO in response to a
declining hemoglobin level suggests an impaired EPO response in diabetic patients (Thomas,
et al., 2005). Yet, increased EPO secretion during diabetic pregnancies may represent the
body’s attempt at endogenous protection against the complications of DM (Teramo, et al.,
2004). Similar to the potential protective role of insulin (Duarte, et al., 2006), EPO
administration has been shown both in diabetics as well as non-diabetics with severe, resistant
congestive heart failure to decrease fatigue, increase left ventricular ejection fraction, and
significantly decrease the number of hospitalization days (Silverberg, et al., 2006).

Cell culture studies with vascular cells exposed to elevated glucose also have elucidated a
strong cytoprotective effect of EPO (Maiese, et al., 2004). Administration of EPO can
significantly improve EC survival in a 1.0 ng/ml range (Chong, et al., 2007c). EPO
administration in patients also can significantly increase plasma levels of EPO well above this
range of 1.0 ng/ml that has been associated with potential EPO cellular protection in patients
with cardiac or renal disease (Mason-Garcia, et al., 1990, Namiuchi, et al., 2005), suggesting
that the effects of EPO observed during in vitro studies may parallel the cellular processes
altered by EPO in patients with DM (Bierer, et al., 2006). Furthermore, EPO can block
apoptotic DNA degradation in ECs during elevated glucose similar to other models of oxidative
stress in cardiac and vascular cell models (Avasarala and Konduru, 2005, Chong, et al.,
2003a, Chong, et al., 2002b, Chong and Maiese, 2007a, Moon, et al., 2006). The preservation
of cellular energy reserves is dependent upon the maintenance of mitochondrial integrity during
DM (Newsholme, et al., 2007). Cytoprotection by EPO also is closely related to the
maintenance of mitochondrial membrane potential (ΔΨm). Loss of ΔΨm through the opening
of the mitochondrial permeability transition pore represents a significant determinant for cell
injury and the subsequent induction of apoptosis (Leuner, et al., 2007, Maiese and Chong,
2004). EPO has the capacity to prevent the depolarization of the mitochondrial membrane that
also affects the release of cytochrome c (Chong, et al., 2002b, Chong, et al., 2003e, Miki, et
al., 2006).

Cancer
The possible induction or progression of cancer represents a significant concern with EPO
administration (Kokhaei, et al., 2007, Maiese, et al., 2005b). Not only has both EPO and its
receptor been demonstrated in tumor specimens, but under some conditions EPO expression
has been suggested to block tumor cell apoptosis through Akt (Maiese, et al., 2008a, Maiese,
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et al., 2008c), enhance tumor progression, increase metastatic disease, (Lai and Grandis,
2006), and negate the effects of radiotherapy by assisting with tumor angiogenesis (Ceelen, et
al., 2007). In studies of patients with head and neck cancer, EPO decreased disease progression-
free survival and overall survival (Henke, et al., 2003). Similar results were reported in trials
with metastatic breast cancer (Leyland-Jones, et al., 2005) and the expression of the EPOR in
tumors appeared to suggest a worse prognosis (Henke, et al., 2006). Yet, the potential risk of
EPO administration to either initiate tumor growth or lead to tumor progression is not entirely
understood. In regards to the possible tumor promoting ability of EPO (Rades, et al., 2007), a
number of competing factors must be considered that include the possible benefits of EPO
administration in patients with cancer that involve the synergistic effects of EPO with
chemotherapeutic modalities (Ning, et al., 2005, Sigounas, et al., 2004) and the treatment of
cancer-related anemia. New large scale prospective trials are necessary that can more clearly
examine the attributes and contraindications for EPO.

CONCLUSIONS
EPO is a unique agent in many ways offering potential clinical treatment for a diverse range
of disorders that can range from anemia to the restoration of cardiovascular and cognitive
function. Yet, treatment applications for EPO are not without controversy especially in regards
to the potential of this growth factor to promote tumorigenesis. Future cell and animal
investigations that parallel new clinical trials are surely warranted with a strong emphasis upon
the elucidation of the signal transduction pathways controlled by EPO to direct both successful
and safe clinical care.
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