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Abstract

Background: Prostate cancer (CaP) is one of the most relevant causes of cancer death in Western Countries. Although
detection of CaP at early curable stage is highly desirable, actual screening methods present limitations and new molecular
approaches are needed. Gene expression analysis increases our knowledge about the biology of CaP and may render novel
molecular tools, but the identification of accurate biomarkers for reliable molecular diagnosis is a real challenge. We
describe here the diagnostic power of a novel 8-genes signature: ornithine decarboxylase (ODC), ornithine decarboxylase
antizyme (OAZ), adenosylmethionine decarboxylase (AdoMetDC), spermidine/spermine N(1)-acetyltransferase (SSAT), histone
H3 (H3), growth arrest specific gene (GAS1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Clusterin (CLU) in
tumour detection/classification of human CaP.

Methodology/Principal Findings: The 8-gene signature was detected by retrotranscription real-time quantitative PCR (RT-
qPCR) in frozen prostate surgical specimens obtained from 41 patients diagnosed with CaP and recommended to undergo
radical prostatectomy (RP). No therapy was given to patients at any time before RP. The bio-bank used for the study
consisted of 66 specimens: 44 were benign-CaP paired from the same patient. Thirty-five were classified as benign and 31 as
CaP after final pathological examination. Only molecular data were used for classification of specimens. The Nearest
Neighbour (NN) classifier was used in order to discriminate CaP from benign tissue. Validation of final results was obtained
with 10-fold crossvalidation procedure. CaP versus benign specimens were discriminated with (8065)% accuracy, (8166)%
sensitivity and (7867)% specificity. The method also correctly classified 71% of patients with Gleason score,7 versus $7, an
important predictor of final outcome.

Conclusions/Significance: The method showed high sensitivity in a collection of specimens in which a significant portion of
the total (13/31, equal to 42%) was considered CaP on the basis of having less than 15% of cancer cells. This result supports
the notion of the ‘‘cancer field effect’’, in which transformed cells extend beyond morphologically evident tumour. The
molecular diagnosis method here described is objective and less subjected to human error. Although further confirmations
are needed, this method posses the potential to enhance conventional diagnosis.
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Introduction

Prostate cancer (CaP) is believed to become the most relevant

cause of cancer death in the Western Countries in the near future

because its incidence increases rapidly with age. Since prognosis is

generally unfavourable when disease is no longer organ-confined,

detection of CaP at an early curable stage is highly desirable, but

unfortunately available methods such as serum Prostate Specific

Antigen (PSA) present limitations [1]. The diagnosis of CaP is

conventionally obtained by saturation prostate biopsy and

morphological examination of tissue sections. This method is

reliable, but requires careful training. Nevertheless, intra- and

inter-observer incongruities may occur. In principle, molecular

diagnosis would be more objective and, hopefully, significantly less

subjected to human error if obtained with reliable methods. But

the ideal method should also be fast, standardized and

economically convenient. Such achievement is indeed possible in

theory, but results published are not completely satisfactory yet,

also because they are usually based on a conventional approach

with takes advantage of a single molecular predictor significantly

up- or down-regulated in the cancer specimen versus benign

control. A major obstacle to this goal is that the molecular events

causing CaP onset and progression are still far from being

completely revealed: very few well known oncogenes or tumor-

suppressors have been clearly linked to prostate tumorigenesis, and

for this reason CaP is still considered an elusive disease. Therefore,
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new molecular approaches for early screening and diagnosis are

urgently needed.

Gene expression analysis was recently used to increase our

knowledge about the biology of CaP [2]. Gene signatures at RNA

level are determined and often used as predictors to model

clinically relevant information (e.g. prognosis, survival time,

sensitivity to drugs, etc.). To this aim, final conclusions on the

classification power of the gene signature studied are entirely

drawn on the basis of the molecular data obtained at transcrip-

tional level by using methods such as DNA microarray or RT q-

PCR. By Northern blot analysis, we have previously identified 8

informative genes whose expression changes on the basis of the

presence of CaP malignancy in humans [3]. In a 5-year follow-up

study, we also showed that the levels of expression of this panel of

genes strongly correlate with differentiation and final outcome

(prognosis) of CaP patients. This result was obtained by combining

molecular data with standard clinical information [4]. But in our

mind the real challenge was to detect CaP by means of molecular

tools alone. Although the study of specifically altered gene

expression during CaP tumourigenesis is a difficult task, the

scientific information that will ultimately be obtained is an

important reward, leading to a better understanding of the

molecular basis of the disease which may lead to better methods

for diagnosis and therapy. This is particularly important when

considering the heterogeneity of CaP and the variability of clinical

progression, with some patients presenting with slow growing

indolent tumours and other patients having a disease that is

rapidly progressive.

The signature that we have identified is made of 4 metabolically

related genes, ODC, OAZ, AdoMetDC, SSAT, the regulatory genes of

the polyamine metabolism, 2 genes related to cell cycle

progression, H3 and GAS1, specific markers of S- and G0-phases,

respectively [5,6], GAPDH, an enzyme of the glycolitic pathway,

and CLU an enigmatic protein whose biological role is still a

matter of debate.

CLU, also known as SGP-2, TRPM-2 or ApoJ, is highly over-

expressed during prostate gland involution and remodelling [7,8].

Although there is a general consensus about the involvement of CLU

in regulating cell death, its specific role in the apoptotic process is still

controversial, as well as in cell transformation. More specifically, its

level of expression and regulation during CaP onset and progression

is debated [9,10]. A better understanding of this issue is of particular

importance not only because of the above considerations, but also

because a clinical trial aimed at silencing CLU gene by antisense

oligonucleotides in CaP patients is currently ongoing [11]. As a

matter of fact, we and others have found that CLU is down-regulated

during CaP progression [12–15], suggesting that it might act as a

tumour-suppressor factor [16,17].

Concerning the gene signature described here, all of the genes

studied have previously shown strictly related shifts in co-

expression during CaP progression [3]. Specific alteration of

transcription of the regulatory enzymes of polyamine metabolism

during CaP progression has also been validated by meta-analysis

of microarrays [18]. In the TRAMP mice model of CaP

progression, our gene signature alone as determined by RT-

qPCR, besides discriminating CaP from benign tissue, also

predicted individual response to treatment with Green Tea

Catechins (GTCs) [19]. Other individual marker genes have been

found of proven validity in this field, such as a-methylacyl

coenzyme A racemase (AMACR) [20,21] or Prostate Cancer

Antigen 3 (DD3/PCA3) [22], but at the moment no relationship

between the expression level of PCA3 and tumour grade or staging

was found yet. Our gene signature is made of informative genes

some of which are well known to play important roles in the

physiology of prostate cells, such as the genes coding for regulatory

proteins of polyamine metabolism [23] and CLU [7].

The aim of our study was to show that our gene signature alone

enhances the sensitivity and the specificity of molecular diagnosis of

CaP when compared to single marker identification. We used

histopathologic classification of fixed tissues specimens as final

reference, as usually done in similar circumstances [24,25]. The 8-

gene model was detected by RT-qPCR in frozen tissue specimens

obtained at Radical Prostatectomy (RP). Classification of tissue

specimens (i.e. presence or absence of tumour) was performed

without other pathological or clinical data. Furthermore, molecular

data were used for sub-classification of tissue specimens with regard

to Gleason score, age and total serum PSA of the patient at RP.

For specimen classification we used the Nearest Neighbour (NN)

classifier, a statistical multi-factorial analysis tool known to perform

well specifically for cancer classification when compared with

other methods. For validation of classification performance, we

used the 10-fold cross validation procedure, repeated 100 times

with different sub-samplings in order to estimate the mean

performance of the signature and the confidence interval (results

are expressed as mean695% confidence interval, approximately

corresponding to 2 standard deviations).

Results

The tissue specimens bio-bank
The bio-bank consisted of a collection of 66 human specimens,

see Table 1, matching our eligibility criteria for the study: i)

pathological evidence of presence or absence of CaP in the frozen

pre- and post-RNA sections; ii) benign specimens free of prostate

intraepithelial neoplasia (PIN) lesions or tumour invasion, taken

very far away (i.e. in different areas of the prostate, ideally in the

controlateral sextant) from the neoplastic lesion; iii) CaP specimens

having a cancer cell content covering at least 5% of the whole

section area; iv) good yield and high quality of RNA preparation.

Among these, 44 specimens were CaP-benign paired specimens

obtained from the same patient. Thirthy-five specimens were

classified as benign by the pathologist, while 31 were CaP.

How to get molecular and morphological data from the
same tissue specimen: the ‘‘sandwich’’ method

To obtain a direct comparison between molecular data and

pathological classification we developed a ‘‘sandwich’’ method (see

Figure 1 and Methods: Prostate Tissue Specimens Collection and

Handling). RNA extraction yielded an average of 50–60 mg of

total RNA from 20 mg of human prostate tissue. The amount of

total RNA obtained was high enough to directly check the quality

of the preparation by spectrophotometry, followed by convention-

al electrophoresis. Only good quality RNA was used for RT-

qPCR analysis. Eight informative genes plus 2 housekeepers were

analysed starting from the same RNA sample.

RT q-PCR and data analysis
Relative quantification of the target genes was performed with the

well known REST software tool [26]. Changes in the level of

expression of 7 out of 8 informative genes in CaP Versus benign

tissue did not reach statistical significance (not shown), while CLU

was significantly down-regulated in CaP (p,0.05). In Figure 2, the

relative gene expression of the signature obtained by the 2‘2DDCT

method is reported as a function of RP final Gleason score.

Interestingly, CLU is significantly and reversely related (p,0.01) to

the Gleason score of the tumour: i.e. lower expression levels of CLU

were found in higher Gleason score specimens. In Table 2 are shown

the final results of classification using the Nearest Neighbour (NN)
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classifier combined with the 10-fold cross validation. Although the

REST analysis showed that only the changes in CLU expression were

statistically significant, NN classification+10-fold cross validation

performed on DCt data revealed a very good performance, in that

the discrimination of CaP versus benign specimens was obtained

with a combination of 7 genes (H3, GAS1, SSAT, CLU, AdoMetDC,

Table 1. complete list of clinical cases with clinical data at radical RP and final pathological or molecular classification with Leave-
One-Out cross validation procedure in order to obtain a unique classification for each sample.

Patient # Age
PSAtot

(ng/ml)
Gleason score
(whole gland)

Pathological
diagnosis of tissue
specimen 1:

Molecular
diagnosis tissue
specimen 1:

Pathological
diagnosis of tissue
specimen 2:

Molecular
diagnosis tissue
specimen 2:

1 68 2,8 G2 score4 BENIGN BENIGN

2 66 4,72 G3 score5 BENIGN BENIGN

3 62 3,07 BENIGN BENIGN

4 76 5,74 G3 score6 BENIGN BENIGN CaP 15% CaP

5 72 11,9 BENIGN BENIGN CaP 80% CaP

6 69 38,82 BENIGN CaP CaP 25% BENIGN

7 61 6,32 CaP 50% CaP CaP 5% CaP

8 68 6,90 BENIGN BENIGN CaP 40% BENIGN

9 67 10,8 BENIGN BENIGN

10 64 4,42 BENIGN BENIGN

11 73 4,28 BENIGN BENIGN

12 72 3,72 BENIGN BENIGN

13 64 4,21 BENIGN BENIGN

14 71 6,39 BENIGN CaP CaP 65% CaP

15 68 8,53 BENIGN BENIGN CaP 15% CaP

16 75 8,16 BENIGN BENIGN CaP 5% BENIGN

17 64 4,2 G3 score7 BENIGN BENIGN

18 59 15,07 G4 score7 BENIGN BENIGN CaP 25% CaP

19 67 49,30 BENIGN BENIGN CaP 5% CaP

20 65 19,70 BENIGN BENIGN CaP 90% CaP

21 68 9,75 BENIGN BENIGN CaP 25% CaP

22 67 9,1 CaP 5% CaP CaP 90% CaP

23 74 12,1 CaP 25% CaP CaP 40% CaP

24 68 12 BENIGN BENIGN CaP 90% CaP

25 64 5,97 BENIGN CaP

26 71 9,04 BENIGN BENIGN

27 61 9,6 CaP 85% CaP

28 77 17,7 CaP 90% CaP

29 70 11,26 BENIGN CaP CaP 5% CaP

30 62 4,35 BENIGN BENIGN

31 72 4,5 BENIGN BENIGN CaP 10% BENIGN

32 72 6,55 G4 score8 BENIGN BENIGN CaP 20% CaP

33 60 11,7 BENIGN BENIGN

34 71 5,6 BENIGN CaP CaP 5% CaP

35 53 11,10 G5 score8 BENIGN BENIGN CaP 55% CaP

36 65 5,04 BENIGN BENIGN CaP15% CaP

37 66 5,2 BENIGN CaP CaP 5% CaP

38 71 16,8 BENIGN CaP CaP 30% CaP

39 70 4,68 CaP 15% CaP

40 65 7,78 G5score9 BENIGN BENIGN CaP 10% BENIGN

41 72 10,8 BENIGN BENIGN CaP 85% CaP

Mean age of the patients was 66.865.7. Mean PSA value at RP was 10.268.7 ng/mL. Gleason score is given by examination of the whole gland (fixed and embedded)
after RP. Pathological evaluation of the frozen sections is indicated, together with percent of cancer cells given as a mean of pre- and post-RNA frozen sections. 44/66
were CaP-benign paired specimens obtained from the same patient. Specimens misclassified by the molecular method are in bold italic.
doi:10.1371/journal.pone.0003617.t001
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OAZ, ODC), using 3 neighbours and the correlation-based distance.

This classification is statistically significant.

In this work we paid the highest attention to realize the best

possible quality of tissue sampling and characterization (Figure 1).

This is absolutely required giving the high heterogeneity of a

prostate cancer specimen. The combination of a ‘‘robust’’ and

widely tested approach for statistical analysis of data with high

quality specimen sampling allowed us to obtain the final validated

result with a dataset of 66 specimens.

The concordance between our gene signature classification and

final pathological classification (CaP versus benign) obtained by

the pathologist was (8065)%, with a sensitivity of (8166)% and a

specificity of (7867)%. Tissue specimens that have been

misclassified by the molecular method, with respect to pathological

classification, are indicated in Table 1 (bold). We remark that in

this case a Leave-One-Out cross validation has been considered,

since with the N-fold procedure misclassifications of single samples

may vary at each realization. With the same combination of genes

we correctly sub-classified 84% of tumour specimens with regard

of patient’s age, 71% with regard to final RP Gleason score and

42% with regard to PSA before RP (Table 2). The same signature

did not perform well for classification with regard to TNM staging.

Inter-laboratory validation methodology
A second laboratory was participating in an inter-lab validation

methodology. Each tissue specimen was analyzed individually,

determinations were in duplicate wells and each experiment was

run for 6 times in both independent laboratories, with Ct line set at

the same value. Inter-laboratory variability was less than 1 cycle

for each single determination. (data not shown). Such variability

did not affect significantly final classification.

As little as 1 mg of cancer tissue within 20 mg of benign
specimen was detected

As shown in Table 1, the amount of cancer tissue was only 5%

in 7/31 specimens (equal to 22.5% of total specimens; 6/7 have

been correctly classified), and less than 15% in 13/31 specimens

(equal to 42% of total specimens; 10/13 have been correctly

classified). Therefore, the relative cancer tissue component

accounted for only about 1–3 mg of tissue out of 20 mg total.

Table 1 provides a complete list of the clinical cases from which

each tissue specimen was obtained, also including clinical data,

classification by the pathologist and percent of cancer cells present

in the specimen, expressed as a mean value between the pre- and

the post-RNA sections (see Figure 1).

Discussion

Identification of novel and accurate molecular
biomarkers: the challenge

The identification of novel and accurate biomarkers for reliable

molecular diagnosis of CaP is a real challenge. Previous studies by

DNA microarray have identified molecular signatures that

significantly correlated with CaP progression [27] or grading

[28], leading to identification of informative genes (sometimes with

unknown functions) that are still awaiting further studies for

elucidating their role in CaP progression [29]. Other successful

studies resulted in molecular diagnosis of CaP, but they were only

Figure 1. Sandwich procedure developed for collection of
specimens and direct comparison of morphological and
molecular classification.
doi:10.1371/journal.pone.0003617.g001

Figure 2. Relative gene expression (cancer versus benign) as a function of RP Gleason score. * p value,0.01 (t-test). White bars = Gleason
score,7; Grey bars = Gleason score$7. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0003617.g002

Table 2. Final results of classification using the Nearest
Neighbour (NN) classifier.

DICHOTOMIES DISCRIMINATED % CORRECT CLASSIFICATION

CaP vs Benign (8065)

Age: #65 vs .65 84

Gleason score: ,7 vs $7 71

PSAtot (ng/mL): ,10 vs $10 ng/mL 42

The 10-fold cross validation procedure was used in order to estimate the mean
performance of the signature and the confidence interval. CaP versus benign
specimens were discriminated with (8065)% accuracy, (8166)% sensitivity and
(7867)% specificity. The result is expressed as mean695% confidence interval,
approximately corresponding to 2 standard deviations.
doi:10.1371/journal.pone.0003617.t002
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based on few selected, cancer-specific genes. PCA3 is the best

single CaP predictor: it is highly specific, but the sensitivity is

relatively low [30]. Moreover, the sensitivity did not improve even

when two more prostate-related genes were added [24,25].

A novel and reliable method based on a robust approach
Our work provides a reliable method for the molecular diagnosis

of CaP that takes advantage of a relatively simple method. The 7-

gene model here presented is based on the determination of genes

which are known to be expressed in both benign and cancer tissue,

and subjected to high individual variation. Therefore, the novelty of

our approach consist in achieving efficient molecular classification of

CaP with regard to final pathological diagnosis without using genes

that are specifically highly up- or down-regulated in benign versus

cancer tissue. In fact, our work is based on the detection and analysis

of the expression of genes which are long time known to be

physiologically expressed as well as essential for the biology of

prostate cells. For instance, aliphatic polyamines are produced at

very high levels by prostate epithelial cells and then released in

prostate fluid in mM amounts [31–33], although the precise role of

these compounds is still unknown. Detection of polyamines in urine

was already attempted long time ago for the diagnosis of CaP [34].

To achieve a reliable detection of our gene signature in cancer

tissue specimens and to implement practical use we had to address

several technical issues. In absence of any dedicated specific tool or

instrument, the development of a ‘‘sandwich’’ procedure was

necessary for obtaining morphological and molecular data from

the same tissue specimens (Figure 1).

Statistical analysis
In previous publications, working with both animal [14] and

human [3,4] CaP models we have demonstrated strictly related shifts

in the expression of all genes studied. Nevertheless, the REST

analysis showed that the relative expression of 7 genes besides CLU

did not reach statistical significance in malignancy. This was

somehow unexpected. The difficulty of pursuing a molecular

approach to CaP diagnosis in the real clinical setting is evident.

But this result is explained by the fact that polyamine genes

expression are known to be characterized by high individual

variation in the tissue specimens analysed. Nevertheless, this did

not jeopardize our analysis, because the molecular classification of

tissue specimens here presented takes into consideration the whole

gene signature, detecting a significant difference in the entire gene

expression profile regardless of individual variations. The final result

is that the integrated pattern of expression is significantly different in

CaP versus benign controls. This novel approach has been successful

using the NN classifier, a statistical method known to perform well

specifically for cancer classification even when compared with other

sophisticated methods [35,36]. NN is a nonparametric method that

belongs to the class of ‘‘robust’’ classifiers [37]. NN is well known to

render a good performance where the boundary between the two

classes to be discriminated is not clear-cut from the geometric point

of view. This condition often happens in clinical studies in which

individual variations may be much higher as compared to laboratory

samples obtained from in vitro experiments, providing ‘‘fuzzy’’

boundaries which might result from complex gene expression

profiles. NN is virtually not sensible to limited sampling of the classes

to be discriminated because of the very limited number of

parameters (namely, the choice of the distance function and the

number of neighbours). Nevertheless, NN renders very good

classification performances also compared to other multiparametric

well known classifiers like Neural Networks or Support Vector

Machines, methods that achieve optimal performance only when

large datasets are available.

To date, the best approach to reach a final evaluation on the

performance of even a ‘‘robust’’ statistical classifier such as NN is to

reuse the collected data both for the training and the validation of the

chosen classifier: this procedure is commonly referred to as cross

validation (well described in many "classical" statistical books [37]). In

N-fold cross validation, the dataset is randomly divided into N parts

and each part is used as a validation set using the other as training set.

Under these working conditions the classifier performance varies for

each random realization. We applied this procedure both with a 5-

fold (not shown) and a 10-fold cross validation, and obtained similar

performances. Because of the above considerations, the result

obtained by NN+10-fold cross validation procedure can be

considered as very reliable even with a small-size dataset. The same

statistical approach has been used already to analyze and validate

gene expression signatures in cancer research [38,39].

Under these conditions, the best classification performance was

obtained with a 7-gene model (H3, GAS1, SSAT, CLU, AdoMetDC,

OAZ and ODC). The concordance between molecular and final

pathological classification had an accuracy (8065)% with a sensitivity

of (8166)% and a specificity of (7867)%. This result demonstrates

that diagnosis of CaP by molecular data alone is feasible.

The gene signature detects very few cancer cells: the
cancer field effect

Notably, our method showed a very high sensitivity working on a

collection of CaP tissue specimens in which a significant portion of

the total, namely 7/31, were considered CaP on the basis of having

only 5% of cancer cells. This accounts for only 1 mg of cancer tissue

present in a total of 20 mg. A rationale consequence of this result is

that molecular events detected in pre-malignant tissue or in tissues

adjacent to cancer have provided diagnostic information, supporting

the hypothesis that a molecular approach for CaP diagnosis would

be a more sensitive and powerful tool than morphological

examination. This result is consistent with the ‘‘cancer field effect’’,

as recently hypothesized. According to this idea, transformed cells

extend beyond morphologically evident tumour. These events would

precede development of malignancy, because normal appearing

prostate tissue can undergo genetic changes in response to, or in

expectation of, morphologic cancer [40]. Recently, field effects based

on epigenetic events [41], nuclear matrix alterations [42], androgen

receptor immunoreactivity in the stroma surrounding cancer lesion

[43] have been discovered. Using oligonucleotide microarrays,

another confirmation derived by a study in which the expression

profiles of primary prostate cancer, adjacent normal tissue and

normal tissue from tumour free donors were compared [44]. This

scenario reinforce the requirement for objective molecular biological

markers of the aggressive phenotype to resolve uncertainties with

respect to identification of those precursor lesions which are most

likely to progress to invasive and metastatic prostate cancer. The

most likely explanation for misclassification between molecular and

morphological data obtained in our study is that very early molecular

changes may precede alteration of morphology, and therefore these

conditions would not overlap (or be associated with) the pathological

response. Molecular changes preceding changes in phenotype would

be detected by the molecular method for diagnosis, increasing its

sensitivity and explaining why 7 specimens (Table 1, bold) were seen

as cancer by the gene signature method, while the pathological

classification was benign. In this regard, higher sensitivity of the

method would result in reducing the number of samples that need to

be taken, with a clear advantage for the patient. It is known that

sensitivity of biopsy is a potential problem, explaining why saturation

biopsies have to be taken from patients. The procedure of saturating

the prostate with biopsies according to volume to maintain a

constant density of probing was developed in order to improve CaP

Gene Signature
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detection rate, and prostate biopsies are more and more often

becoming saturation biopsies [45]. Saturation biopsy can be

considered for patients at risk of cancer who are willing to accept

the side effects, but it is known that clinically insignificant cancers can

be detected [46].

On the other hand, the same rationale might also explain the

opposite result. In fact, the link between morphological lesions (i.e.

HG-PIN) and clinical CaP is still a matter of debate [47,48]. Also

PIN represents a ‘‘field effect’’ with a potential for cancer

progression, but may be not directly involved in or may not lead

to the development of invasive prostate cancer [49]. Therefore we

might hypothesize that certain changes in morphology might not

compulsory be associated to clinically relevant cell transformation.

Thus, specimens classified as benign by the molecular tool, but

cancer instead by the pathologist because of altered morphology (5/

31, Table 1, bold italic), might actually be different morphological

entities or clinically indolent lesions, possibly undergoing regression

because surrounded by reacting tissue. If so, this material would be

not significant from the clinical point of view, but clearly

distinguishable on a molecular basis from aggressive disease,

although we have no definitive evidence of this at the moment.

Clusterin and prostate cancer
CLU was cloned, sequenced and identified as the major up-

regulated gene during massive induction of apoptosis and prostate

regression caused by androgen depletion [7] or administration of

Finasteride [50] and vitamin D analogues [51,52]. The glycosy-

lated, extracellular form of CLU is produced at high basal level by

prostate cells and secreted in the prostate fluid, although its

possible role in reproduction is still puzzling the researchers [53].

Authors have proposed that CLU might be over-expressed in

cells surviving apoptosis, and not in cells doomed to die. Thus, a

cytoprotective role for CLU has been proposed [54]. The debate

on this issue is still wide open. It has been recently shown that

different protein forms can be originated from the same gene by

still unknown mechanisms [8]. TGF-beta and X-ray treatment

induce a truncated form of CLU that localizes to the nucleus [55–

58]. It is believed that different forms of CLU have different roles

in human cells [8], also depending by their sub-cellular

localization. Structural information concerning such protein forms

are still scarce. Data concerning the possible involvement of CLU

in transformation and tumour growth are still unclear or

contradictory in the literature.

The REST relative expression analysis demonstrated (data not

shown) that the down-regulation of CLU in CaP specimens is

statistically significant (p = 0.023). This is consistent with our

previous results [3,13]. Although the specific issue of whether CLU

is up- or down-regulated in CaP is still controversial [3,13,15,59–

61], confirmatory data supporting our hypothesis that CLU is not

only down-regulated in CaP, but also in the most of cancers, can

be easily retrieved from the Oncomine web site that collects data

from more than 20,000 independent microarray experiments

(http://www.oncomine.org). We have previously suggested that

CLU might be a potential tumor-suppressor gene [51] acting

through its nuclear form nCLU [57,63,64].

Potential prognostic value of the method
We previously found that our informative genes have prognostic

value [3,4]. It is known that Gleason score is the best single

predictor of CaP prognosis [65], but prediction of outcome in the

6–7 score range, comprising the most of clinical cases, is not

satisfactory [65]. We had 28/41 of patients in these conditions in

our bio-bank (Table 1). Unfortunately this analysis, as done before

[4], requires definitive outcome data on the whole cohort of

patient, and thus a minimum of a 5-year follow-up study will be

necessary as previously done [4]. We are strongly encouraged to

pursue this possibility because our informative genes have been

already found of prognostic value not only in human CaP [4], but

also in the TRAMP mice model. These animals were treated with

Green Tea Catechins (GTCs) for inhibition of CaP progression

[19]. In this experimental model, our gene signature was capable

to efficiently discriminate CaP tissue specimens of TRAMP mice

responding to GTCs treatment from those not-responding,

therefore suggesting that the biological behaviour of CaP might

be successfully investigated also in humans by the same approach.

In Table 2 it is also shown that the combination of 7 genes (H3,

GAS1, H3, SSAT, CLU, AdoMetDC, OAZ, ODC) correctly classified

84% of cancer specimens with regard to age of the patient, 71% with

regard to RP Gleason score and 42% with regard to PSA.

Misclassification with regard to PSA was actually expected, because

PSA is not a prostate tumour but, more properly, a prostate tissue

specific marker. As a matter of fact, also PSA cut-off values and CaP

detection rates are still a matter of debate [1]. Instead, we got a very

good performance on classification of age and Gleason score, both

widely used for clinical management of patients, with Gleason score

being the best predictor [65]. Also these results strongly suggest that

our approach is detecting important biological events occurring

during prostate cell transformation and cancer progression.

For the above reasons it will be fundamental to continue this

study by collecting clinical follow-up data, with a particular focus

on misclassified cases, for re-classification of patients as a function

of final outcome and possible validation of the potential prognostic

power of the method.

Final remarks
In conclusion, the RT-qPCR gene profiling method based on

the gene signature described here appear to be an appropriate and

reliable tool for molecular diagnosis of presence/absence of CaP

not subjected to intra- and inter-observer error. This test could be

of help to enhance diagnosis and particularly in those cases in

which it is necessary to resolve possible uncertainties. Our

approach, based on detection of a multiparametric expression

signature, yielded the best performance at detection of CaP ever

published with single predictors as far as we know. The method

has potential prognostic value, because we previously demonstrat-

ed that the expression level of these genes correlate with the final

outcome of CaP patients. Future research should be conducted to

obtain the gene signature using less invasive means than a biopsy.

Materials and Methods

Prostate Tissue Specimens Collection/Handling and
Pathological Classification:

Ethical approval for this work was granted by local Hospital

Ethical Committee (Azienda Ospedaliera-Universitaria di Parma)

and informed written consent was obtained from patients involved.

Prostate surgical specimens were obtained from patients diagnosed

with CaP by biopsy and recommended to undergo RP. No

therapy was given to patients at any time before RP. Tissue

specimens were excised out from the prostate gland immediately

after surgery and quickly frozen in dry ice as previously described

[3]. Two tissue specimens were obtained from the same prostate

gland: one from the (supposed) cancerous portion of the gland,

according to prostate mapping by biopsy. The second one from

the (supposed) benign tissue taken very far away (i.e. in different

areas of the prostate, ideally in the opposite sextant) from the

neoplastic lesion. Both specimens were quickly frozen with dry ice

to preserve RNA integrity, then embedded in OCT and frozen-
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sectioned. Representative serial sections (7 mm-thick) were E&H

stained (Figure 1). Right after the last section (the so-called ‘‘pre-

RNA’’ frozen section), 10–12 frozen sections at 30 mm-thickness,

for a total of about 20 mg of tissue, were collected and stored at

280uC for RNA extraction. Then the cryostat was set back to

7 mm thickness and ‘‘post-RNA’’ frozen section were cut for E&H

staining. This ‘‘sandwich’’ procedure (Figure 1) rendered 2 frozen

sections with a thickness of 7 mm named ‘‘pre-RNA’’ and ‘‘post-

RNA’’. They were both used by the pathologist for the

pathological classification of the 300–350 mm-thick tissue speci-

men contained in between. This material was then used for RNA

extraction. Classification by the pathologist of the pre- and post-

RNA sections was two-fold: presence or absence of cancer. No

Gleason grade or score was given on these frozen sections because

morphology was not preserved by fixation. Thank to this

procedure we gained as much morphological information as

possible from the tissue specimen that was homogenized for

molecular analysis. For RT-qPCR analysis we only used CaP

specimens with a cancer cell content covering at least 5% of the

whole section area. Only specimens with no PIN lesions or tumour

invasion were used as controls (benign). We also collected clinically

relevant parameters: age of the patient, total serum PSA before

surgery. Final Gleason score of the tumour was assessed after

formalin fixation and pathological examination of the whole gland.

RNA extraction
Total RNA was extracted from 20 mg snap-frozen human tissue

specimens using RNA-fast (Molecular Systems, San Diego, CA)

according to the manufacturer protocol. After spectrophotometric

quantification, 2-mg aliquots were routinely electrophoresed on a 1%

agarose gel to check quality and integrity as previously described [3].

Retrotranscription
Two mg of total RNA from each sample was primed with 50 ng

of random hexamers (Invitrogen) and incubated at 42uC for

60 min in a 30 mL (final volume) reaction mixture containing

50 mM tris HCl pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM

dithiothreitol, 0.5 mM dNTPs and 300 units of Superscript II

Reverse Transcriptase (Invitrogen).

Real-time PCR amplification
One mL of each cDNA preparation was PCR-amplified using the set

of primers described below. PCR conditions were: 95uC for 15 min

and then 95uC for 30 s, 60uC for 30 s and 72uC for 30 s repeated for 40

cycles, then 95uC for 30 s and 55uC for 30 s. Melting curves were

obtained. RT-qPCR was performed on the DNA Engine Opticon 4

machine (MJ Research, Wathman, MA, USA) using a 26 SYBR

Green customized master mix (Biodiversity s.r.l., Brescia, Italy).

Primers:

GAS1 DIR: 59- CGC TGA GCC GCT ACC TGA -39

REV: 59- CTT GGG CAT AGC CAG CAT GT -39

H3 DIR: 59- CAG GAG GCT TGT GAG GCC TA -39

REV: 59- AGC TGG ATG TCT TTG GGC AT -39

SSAT DIR: 59 - GGT TGC AGA AGT GCC GAA AG -39

REV: 59- GTA ACT TGC CAA TCC ACG GG -39

CLU DIR: 59- TGA TCC CAT CAC TGT GAC GG -39

REV: 59- GCT TTT TGC GGT ATT CCT GC -39

ODC DIR: 59- AGA CCT TCG TGC AGG CAA TC -39

REV: 59- AGG AAA GCC ACC GCC AAT AT -39

AdoMetDC DIR: 59- CAT CAC TCC AGA ACC AGA AT -39

REV: 59- TAA CAA ACA AGG TGG TCA CA -39

OAZ DIR: 59- CCT CCA CTG CTG TAG TAA CC -39

REV: 59- GAA AGA TTG TGA TCC CTC TG -39

GAPDH DIR: 59- AAC CTG CCA AAT ATG ATG AC -39

REV: 59- TTG AAG TCA GAG GAG ACC AC -39

HMBS DIR: 59- TGA AAT CAT TGC TAT GTC CA -39

REV: 59- ATG TTC AAG CTC CTT GGT AA -39

PGK1 DIR: 59- CTT TCA TGT GGA GGA AGA AG -39

REV: 59- TAG CTT GGA AAG TGA AGC TC -39

RT-qPCR data analysis
Analysis of the relative expression of target genes was performed

with REST 2005 (Relative Expression Software Tool) BETA

V1.9.9. [26]. Two housekeeper genes phosphoglycerate kinase 1

(PGK1) and hydroxy-methyl-bilane synthetase (HMBS) were used

in the study. Also primers efficiency was calculated and used for

REST analysis.

Statistical Analysis
Raw Ct data were normalized and transformed in DCt by using

the geometric mean of both housekeepers (PGK1 and HMBS).

Normalized DCt data were used for classification. The NN

classifier was used in order to discriminate CaP from benign tissue.

The 10-fold crossvalidation procedure was used for final validation

in order to reduce the underestimation of the misclassification

error due to over-fitting. All the possible combinations of the 8

genes, several numbers of neighbours and different distances

between sample profiles (Euclidean distance, Correlation-based

distance, Mahalanobis distance) were considered in the analysis.

The same procedure was used for sub-classification of CaP

specimens into several dichotomies: patients whose age was #65

versus .65; total PSA value at prostatectomy ,10 versus $10;

final Gleason score on fixed whole prostate gland ,7 versus $7.
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