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Stalled ribosomes in bacteria are rescued by the tmRNA system. In
this process, the nascent polypeptide is modified by the addition of
a short C-terminal sequence called the ssrA tag, which is encoded
by tmRNA and allows normal termination and release of ribosomal
subunits. In most bacteria, ssrA-tagged proteins are degraded by
the AAA� protease, ClpXP. However, in bacterial species of the
genus Mycoplasma, genes for ClpXP and many other proteins were
lost through reductive evolution. Interestingly, Mycoplasma ssrA
tag sequences are very different from the tags in other bacteria.
We report that ssrA-tagged proteins in Mesoplasma florum, a
Mycoplasma species, are efficiently recognized and degraded by
the AAA� Lon protease. Thus, retaining degradation of ssrA-
tagged translation products was apparently important enough
during speciation of Mycoplasma to drive adaptation of the ssrA
tag to a different protease. These results emphasize the impor-
tance of coupling proteolysis with tmRNA-mediated tagging and
ribosome rescue.

AAA� protease � Lon � reductive evolution � ClpX

S talled ribosomes in bacteria are rescued by tmRNA, the
product of the ssrA gene, in a process sometimes called

trans-translation (1–4). When ribosomes reach the end of a
mRNA lacking a stop codon, protein synthesis ceases, and
release factors cannot be recruited to allow disassembly. These
ribosomes are eventually rescued by tmRNA, which functions
initially as an alanyl-tRNA and next as a surrogate messenger
RNA to allow resumption of translation. A stop codon at the end
of the tmRNA open reading frame allows normal termination of
translation, release of the polypeptide, and recycling of the
ribosomal subunits for new rounds of protein synthesis.

As a result of the tagging and ribosome rescue process,
polypeptides liberated by the tmRNA system have an ssrA tag at
the C terminus. In Escherichia coli, this tag consists of 11 residues
with a C-terminal LAA-coo� that targets attached proteins for
degradation by ClpXP, an AAA� protease (1, 5–7). AAA�
proteases are responsible for most intracellular proteolysis and
can harness the energy of ATP hydrolysis to degrade native and
denatured proteins (for review, see ref. 8). Indeed, ClpXP is able
to degrade substrates with high mechanical stability, ensuring
elimination of ssrA-tagged proteins, regardless of their folding
state. Other AAA� proteases (ClpAP, FtsH, and Lon) and a
non-AAA� periplasmic protease Tsp also degrade ssrA-tagged
proteins under some conditions in E. coli, but ClpXP is respon-
sible for most degradation of ssrA-tagged substrates and is likely
to serve the same role in most bacteria (6, 9–14).

Bacteria of the genus Mycoplasma (class Mollicutes) comprise
a large group of nonmotile bacteria, characterized by the lack of
a cell wall and by small genomes (15). Mycoplasma branched
from Gram-positive bacteria by multiple rounds of reductive
evolution to reach a genome size of 0.45–1.35 Mbp and are
thought to be the smallest self-replicating organisms (16). Dur-
ing genome minimization, Mycoplasma discarded many genes
and became largely parasitic organisms that rely on their hosts
for many nutrients. Nevertheless, Mycoplasma retained the
tmRNA tagging and ribosome rescue system. Interestingly,
however, the ssrA tags encoded by the tmRNA molecules in most

Mycoplasma are very different from those found in other bac-
teria (Table 1). Moreover, most Mycoplasma genomes encode
only two AAA� proteases, Lon and FtsH, and have lost the
genes for ClpXP, ClpAP, HslUV, and Tsp. In the absence of
ClpXP, it is possible that the tmRNA system in Mycoplasma is
uncoupled from proteolysis. Alternatively, the unusual Myco-
plasma ssrA tag could serve as a degradation signal for the
endogenous Lon or FtsH proteases.

Because Lon is cytoplasmic, whereas FtsH is membrane-
bound, it seemed most likely to us that Lon plays a major role
in degrading ssrA-tagged proteins in Mycoplasma. To test this
idea, we focused on the ssrA tag sequence and the Lon protease
from Mesoplasma florum, a nonpathogenic and nonparasitic
Mycoplasma with a genome size of 793 kb. M. florum shares many
characteristics with its pathogenic cousins, but it can be cultured
without special safety precautions. Here, we show that the ssrA
tag sequence of M. florum (mf-ssrA) is efficiently recognized by
the M. florum Lon protease (mf-Lon). Appending this tag to the
C terminus of native or denatured proteins resulted in their rapid
proteolysis by mf-Lon. Furthermore, mf-Lon did not degrade
proteins bearing the E. coli ssrA tag (ec-ssrA), and E. coli Lon
(ec-Lon) did not efficiently degrade proteins bearing the mf-ssrA
tag. These results indicate that gene loss in M. florum forced
coevolution of both the ssrA tag and Lon protease to permit
efficient and specific degradation, supporting an important role
for degradation of ssrA-tagged proteins in the evolutionary
fitness of bacteria.

Results
Unusual Properties of ssrA Tags in Mycoplasma. The ssrA tag
sequences of diverse bacterial species usually exhibit similarity,
especially at their C terminus, which is important for interaction
with ClpXP (Table 1; refs. 6 and 7). This observation, together
with experiments in Gram-negative E. coli and Gram-positive
Bacillus subtilis (6, 10, 11, 14), suggests that ClpXP is the key
protease responsible for degradation of ssrA-tagged substrates in
most bacteria. Interestingly, the ssrA tags in most Mycoplasma
species are much longer than in other groups of bacteria and do
not terminate with the normal LAA-coo� ClpX recognition
motif (Table 1). For example, in E. coli and B. subtilis, the ssrA
tag sequences are 11 and 14 residues long and end with NYA-
LAA-coo� and NVALAA-coo�, respectively. By contrast, the
M. florum ssrA tag consists of 27 aa and terminates with
ANYAFA-coo�. The presence of several aromatic residues in
this region of the M. florum tag is reminiscent of sequences that
target certain substrates to ec-Lon (13, 17).

Activity of mf-Lon in E. coli. We cloned the lon gene from genomic
M. florum DNA, replaced its TGA codons, which encode
tryptophans in M. florum but are stop codons in E. coli, with
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TGG codons, and found that mf-Lon could be expressed in E.
coli (data not shown). We then coexpressed plasmid-encoded
mf-Lon with a variant of �-galactosidase bearing a C-terminal
mf-ssrA tag in an E. coli strain MC4100, which also contained the
normal set of AAA� proteases. Almost no �-galactosidase
activity was detected in these cells (Fig. 1A). By contrast, high
�-galactosidase activity was observed when ec-Lon was substi-
tuted for mf-Lon in the plasmid vector. �-Galactosidase activity
was highest when a mock vector was used (Fig. 1 A). These results

suggested that the mf-Lon protease recognizes and degrades the
mf-ssrA-tagged protein much better than do the ec-Lon, ClpXP,
ClpAP, HslU, or FtsH enzymes.

To test whether the mf-Lon enzyme could recognize a sub-
strate normally degraded by ec-Lon, we performed a comple-
mentation assay by using an E. coli lon-null mutant, which
exhibits a mucoid phenotype because ec-Lon normally degrades
RcsA, a transcriptional activator of capsule synthesis genes (18).
As expected, expression of ec-Lon complemented the mucoid
phenotype of the lon-null strain (Fig. 1B). Importantly, however,
expression of mf-Lon failed to suppress the mucoid phenotype
(Fig. 1B). This result provides additional evidence that the
specificities of the ec-Lon and mf-Lon proteases differ.

Degradation in Vitro. To provide evidence for direct recognition,
we purified mf-Lon and assayed degradation in vitro of model
proteins bearing the mf-ssrA tag. As potential substrates, we
used mf-ssrA-tagged variants of the I27 domain of human titin,
which has been used in previous studies of degradation by
AAA� proteases (13, 19, 20). In initial studies, we denatured
titin-I27-mf-ssrA by carboxylmethylation of its two buried cys-
teine residues (19) to ensure that degradation would not depend
on the unfolding power of the protease. As assayed by SDS/
PAGE, this substrate was degraded efficiently by mf-Lon but
poorly by ec-Lon (Fig. 2A). As additional specificity controls, we
assayed degradation of carboxylmethylated titin-I27 with no
degradation tag or with an E. coli ssrA tag. Neither protein was
degraded efficiently by mf-Lon. Thus, degradation is highly
specific and requires both the mf-Lon protease and the mf-ssrA
tag of the substrate.

The degradation assays shown in Fig. 2 A contained ATP. To
test whether mf-Lon degradation required this nucleotide, we
used a fluorescent unfolded variant of titin-I27-mf-ssrA, which
allowed continuous assay of the degradation rate. As shown in
Fig. 2B, mf-Lon degraded this f luorescent substrate in the

Table 1. ssrA-tag sequences and AAA� proteases in different bacteria

Type Bacterium ClpXP ClpAP HslUV Lon FtsH ssrA-tag sequence

Gram-negative
�-proteobacteria C. crescentus F F F F F AANDNFAEEFAVAA

�-proteobacteria N. gonorrhoeae F F – F F AANDETYALAA

�-proteobacteria E. coli F F F F F AANDENYALAA

�-proteobacteria M. xanthus F F F F F AANDNVELALAA

�-proteobacteria H. pylori F F F F F AVNNTDYAPAYAKAA

Gram-positive
Actinobacteria M. tuberculosis F C – – F AADSHQRDYALAA

Firmcutes/
Clostridia

C. botulinum F C — F F AANDNFALAA

Firmcutes/Bacilli B. subtilis F C F F F AGKTNSFNQNVALAA

Firmcutes/
Lactobacilli

S. pyogenes F C – F F AAKNTNSYALAA

Mollicutes
Mycoplasma M. florum – – – F F AANKNEENTNEVPTFMLNAGQANYAFA

Mycoplasma U. parvum – – – F F AAENKKSSEVELNPAFMASATNANYAFAY

Mycoplasma M. genitalium – – – F F ADKENNEVLVDPNLIINQQASVNFAFA

Mycoplasma M. pneumoniae – – – F F ADKNNDEVLVDPMLIANQQASINYAFA

Mycoplasma P. asteris – – – F F AGNNKQTVTNTQDFAGQTPVYQMNFANSFSSQLAFA

Mycoplasma E. dolichum – C – F F AGKTKFANIFGANQSVAFAA

Other
Cyanobacteria P. marinus F C – – F AANKIVSFSRQTAPVAA

Aquificae A. aeolicus F C F F F AAPEAELALAA

Thermotogae T. maritima F C F F F AANEPVAVAA

Deinococcus D. radiodurans F F – F F AGNQNYALAA

F, bacterium contains enzyme; –, bacterium does not contain enzyme; C, bacterium contains ClpCP, a relative of ClpAP. ClpCP does not appear to degrade
ssrA-tagged proteins (10).
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Fig. 1. Phenotypes of mf-Lon expression in E. coli. (A) E. coli strain MC4100
was transformed with a plasmid expressing an IPTG-inducible �-galactosidase-
mf-ssrA fusion protein and a second plasmid expressing either ec-Lon, mf-Lon,
or neither enzyme. Intracellular �-galactosidase-mf-ssrA was assayed by en-
zymatic cleavage of X-Gal as described in Materials and Methods. Values are
averages (�1 SD; n � 5). (B) Complementation of the mucoid phenotype of a
�lon strain by ec-Lon but not mf-Lon. E. coli strain JT4000 (MC4100 �lon) was
transformed with plasmids expressing ec-Lon, mf-Lon, or a mock vector, as
indicated. Cells were plated on minimal medium (45) agar plates with glycerol
(0.4%) as a carbon source and chloramphenicol (10 �g/ml). In both panels,
ec-Lon and mf-Lon were expressed at basal levels under control of an L-
arabinose promoter (PBAD) without added L-arabinose. Arabinose induction of
the expression of either Lon enzyme resulted in growth arrest.
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presence of ATP but not in the presence of ADP or without
nucleotide. E. coli ClpXP did not degrade the unfolded fluo-
rescent variant of titin-I27-mf-ssrA under any conditions (data
not shown). To establish the effect of environmental conditions
on mf-Lon activity, we measured degradation of carboxylmethy-
lated titin-I27-mf-ssrA at different temperatures and pH values.
Maximal activity was observed at 30°C between pH 6.5 and 8.5
(Fig. 2 C and D). M. florum, which was isolated from a lemon tree
flower, grows at temperatures that rarely exceed 30°C, and the
observed temperature dependence is therefore consistent with
its normal physiology.

mf-Lon Is a Fast and Powerful Enzyme. To measure kinetic param-
eters for degradation by mf-Lon, steady-state rates were deter-
mined at different concentrations of protein substrates. For the
unfolded substrate, carboxylmethylated titin-I27-mf-ssrA,
Michaelis–Menten analysis gave a Km of 3.5 � 0.3 �M (Fig. 2E).
This value is similar to the Km of ClpXP for substrates bearing
the E. coli ssrA tag (19, 21–23). Vmax for the mf-Lon degradation
reaction was surprisingly fast (11.5 � 0.3 min�1 Lon6

�1), ap-
proximately three times faster than either ec-Lon or ec-ClpXP
degrades unfolded titin (13, 19).

To determine whether mf-Lon could denature and degrade a
stably folded substrate, we assayed proteolysis of native titin-
I27-mf-ssrA. The titin-I27 protein is remarkably resistant to
mechanical unfolding and has been used as a stringent test of the
unfolding power of AAA� proteases (13, 19, 20, 24, 25). The
mf-Lon enzyme degraded native titin-I27-mf-ssrA efficiently,
with a Km of 3.7 � 0.4 �M and a Vmax of 4.3 � 0.1 min�1 enz�1

(Fig. 2E). Vmax for degradation of the native substrate was lower
than for the unfolded variant, indicating that unfolding is the
rate-limiting step in degradation.

Interestingly, mf-Lon degraded native titin-I27-mf-ssrA �8-

fold faster than ec-Lon degraded a similar titin-I27 substrate with
a different degradation tag (13). This result was not caused by a
destabilizing effect of the mf-ssrA tag on the thermodynamic
stability of native titin. As measured by changes in CD ellipticity,
untagged titin-I27 and titin-I27-mf-ssrA had almost identical
thermal stabilities (Fig. 2F). These results suggest that mf-Lon
is a more powerful unfoldase than ec-Lon. Moreover, mf-Lon
degraded native titin-I27-mf-ssrA �16-fold faster than ec-ClpXP
degraded titin-I27-ec-ssrA (19).

Peptide Degradation and Recognition Determinants. To test whether
mf-Lon recognized the mf-ssrA tag in the absence of an attached
protein substrate, we synthesized a peptide corresponding ap-
proximately to the C-terminal half of the tag sequence (the
full-length tag could not be synthesized easily). In this peptide,
a para-aminobenzoic acid (PABA) fluorophore was placed at
the N terminus, and a nitrotyrosine (nY), which serves as a
quencher, was inserted at position 5. The peptide sequence was
PABA-TFML-nY-NAGQANYAFA-coo� and is hereafter
called FQ14-mf-ssrA. Proteolytic cleavage between the fluoro-
phore and quencher results in enhanced fluorescence. By this
assay, the FQ14-mf-ssrA peptide was degraded rapidly by mf-
Lon in the presence of ATP (Fig. 3A). Degradation did not occur
in the presence of ADP and was very slow without nucleotide
(Fig. 3A). We conclude that the C-terminal half of the mf-ssrA
tag is sufficient for recognition by mf-Lon.

In Mycoplasma ssrA tags, the region of highest information
content is near the C terminus, where most sequences share the
consensus N�A�A (� � F/Y/L) (Fig. 3B). The C terminus of
the M. florum ssrA tag is NYAFA-coo�. When we replaced this
C-terminal sequence with NDADA-coo� in an FQ14-mf-ssrA
variant, the resulting peptide was degraded poorly by mf-Lon
(Fig. 3C). This result suggested that the substituted aromatic
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Fig. 2. Degradation activity and properties of mf-Lon. (A) SDS/PAGE assays of degradation of carboxylmethylated titin-I27 (5 �M) with different tags by mf-Lon
or ec-Lon (150 nM hexamer). (B) Degradation of fluorescein-labeled titin-I27-mf-ssrA (5 �M) by mf-Lon (150 nM hexamer) required ATP and was not observed
with ADP, without nucleotide, or in the absence of enzyme. Proteolysis resulted in an increase in fluorescence. (C) Rates at different temperatures for degradation
of carboxylmethylated 35S-labeled titin-I27-mf-ssrA (3 �M) by mf-Lon (30 nM hexamer) were determined at pH 7.5 by release of acid-soluble peptides. (D) Rates
at different pH values for degradation of carboxylmethylated 35S-labeled titin-I27-mf-ssrA (3 �M) by mf-Lon (30 nM hexamer) were determined at 30°C. The
maximal degradation rate is higher than in C because the sodium phosphate buffer (50 mM) used in the temperature experiments was slightly inhibitory. (E)
Michaelis–Menten plots. Steady-state rates of degradation of an unfolded substrate (carboxylmethylated 35S-titin-mf-ssrA) or a native substrate (35S-titin-mf-
ssrA) by mf-Lon (10 nM hexamer) were assayed by release of acid-soluble peptides and plotted as a function of substrate concentration. The solid curves are fits
(R2 � 0.99) to the Hill form of the Michaelis–Menten equation (V � Vmax�[S]n/(Km

n � [S]n). (F) The titin-I27 protein (4 �M; filled circles) and titin-I27-mf-ssrA protein
(4 �M; open circles) had the same thermal stability, as assayed by changes in CD ellipticity at 228 nm. Ellipticity data were fitted to a two-state model by nonlinear
regression (46). (Inset) CD spectra at 25°C show that both titin variants (40 �M) are natively folded. The differences in the two spectra result from the contribution
of the long unstructured mf-ssrA tag to the CD signal.
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residues play important roles in recognition of the mf-ssrA tag
by mf-Lon. Aromatic residues have also been implicated in
peptide recognition by ec-Lon (13). Changing the NYAFA
sequence of FQ14-mf-ssrA to DYAFA-coo� did not slow deg-
radation by mf-Lon significantly (Fig. 3B).

Discussion
Evolutionary Implications of the Proteolytic Specificity Switch. The
tmRNA system is encoded in all fully sequenced bacterial
genomes, which currently number �700. The apparently uni-
versal conservation of this system points to an important bio-
logical role. However, the entire tmRNA system is dispensable
for viability in many bacteria (for review, see refs. 2–4). More-
over, although tmRNA is genetically essential in Neisseria gon-
orrhoeae, degradation of the protein products of tmRNA tagging
is not required for viability (26). Nevertheless, our results
indicate that degradation of ssrA-tagged proteins is important
for the fitness of bacteria. First, ssrA tagging was retained in M.
florum, despite extreme evolutionary events involving massive
gene loss. Second, to maintain degradation in the absence of
ClpXP, the ssrA tag of M. florum had to adapt to allow
recognition by a different protease. This switch in proteolytic
specificity presumably required changes both in the tmRNA-
encoded degradation tag and in the Lon protease.

The switch from ClpXP to Lon degradation of ssrA-tagged

proteins represents a case of nonorthologous gene displacement
(27). It is plausible that the initial event in the proteolytic
specificity switch in M. florum was loss of ClpXP, which is
principally responsible for degrading ssrA-tagged proteins in
most other bacteria. However, the selective force driving coevo-
lution of Lon and the ssrA tag to allow efficient degradation
must have been a fitness advantage for mutants with improved
ability to degrade the protein products of tmRNA tagging.
Because ssrA-tagged proteins are generally incomplete proteins,
they are typically unfolded and nonfunctional (28, 29). Thus,
degrading these tagged proteins should allow productive recy-
cling of their constituent amino acids to prevent deleterious
effects caused by aggregation or other factors. Presumably, the
same fitness advantages led to the initial evolution of ClpXP
degradation of ssrA-tagged proteins. Indeed, many bacteria
contain adaptor proteins that enhance ClpXP degradation of
ssrA-tagged proteins and/or that redirect degradation of ssrA-
tagged proteins from ClpAP to ClpXP (7, 30–33). Some of these
adaptors recognize a portion of the ssrA tag, and it is possible
that the long ssrA tags of Mycoplasma also serve as docking sites
for adaptor proteins.

How complicated was the switch from ClpXP to Lon in
proteolysis of ssrA-tagged substrates in the ancestor of Myco-
plasma? E. coli Lon recognizes substrates with ec-ssrA tags
weakly (12, 13). If the same were true for Lon in the bacteria
from which M. florum evolved, then this would provide a low
level of starting activity after loss of ClpXP. Moreover, the
C-terminal sequences of Mycoplasma tags are sufficiently similar
to those in other Gram-positive bacteria (Table 1; Fig. 3B) that
only a few mutations would be required to convert a tag from the
major Gram-positive group into a tag with the Mycoplasma
consensus and thus presumably to improve Lon affinity. Our
results show that some residues in the C-terminal consensus
region of the M. florum ssrA tag are important determinants of
mf-Lon recognition.

Lon Is a Powerful Protein Unfoldase. Lon plays a major role in the
degradation of misfolded and damaged proteins in bacteria and
in the organelles of eukaryotes (34). As a consequence, its ability
to act as a robust protein unfoldase has generally been undera-
ppreciated. Using a tagged native substrate (titin-I27) that is very
stable to mechanical denaturation, we found that mf-Lon ap-
pears to be a more powerful enzyme than either ec-Lon or
ec-ClpXP. Under conditions of substrate saturation, each of
these AAA� proteases degraded tagged variants of native
titin-I27 more slowly than the tagged unfolded protein. Thus, in
each instance, enzymatic unfolding of the native substrate
appears to be the rate-limiting step in the degradation reaction.
However, mf-Lon degraded a tagged variant of titin-I27 �8-fold
more rapidly than ec-Lon and nearly 16-fold faster than ec-
ClpXP. Moreover, mf-Lon also degraded unfolded titin-I27
substantially faster than either ec-Lon or ec-ClpXP. The mf-Lon
enzyme may have evolved into a faster and more powerful
enzyme to compensate for the absence of ClpAP, ClpXP, and
HslUV in M. florum. The only remaining AAA� protease in this
organism is FtsH, and its E. coli ortholog has been shown to have
a weak unfoldase activity (35).

We anticipate that mf-Lon and other Mycoplasma Lon en-
zymes will play numerous biological roles both in regulation and
in maintaining protein quality control. In E. coli and Salmonella,
for example, lon mutants exhibit multiple defects, including
difficulties in cell division, excessive capsule synthesis, poor
survival after DNA damage, failure to degrade damaged pro-
teins, and reduced virulence (34, 36–38).

An Experimental Windfall. Although Lon was one of the first
ATP-dependent proteases to be purified and studied, mecha-
nistic studies of other AAA� proteases subsequently progressed
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Fig. 3. Degradation of an mf-ssrA peptide by mf-Lon. (A) Degradation of the
FQ14-mf-ssrA peptide (5 �M) by mf-Lon (0.15 �M hexamer) was assayed by
increased fluorescence in the presence of 2 mM ATP, 2 mM ADP, without
nucleotide, or without enzyme in the presence of 2 mM ATP. (B) WebLogo
representation (http://weblogo.berkeley.edu/logo.cgi; ref. 47) of ssrA tag
sequences from Mycoplasma and from other Gram-positive bacteria. Se-
quences of ssrA tags were obtained from the tmRNA website (http://
www.indiana.edu/~tmrna/; ref. 48) or from genomic sequences by using the
program ARAGORN (49). (C) The Y3D/F3D substitutions of the aromatic
residues in the C-terminal pentapeptide of FQ14-mf-ssrA (5 �M) slowed
degradation by mf-Lon (0.15 �M hexamer) dramatically. The N3D substitu-
tion in the C-terminal FQ14-mf-ssrA pentapeptide had little effect on degra-
dation under the same conditions.
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far more rapidly. A scarcity of soluble well behaved Lon sub-
strates for biochemical experiments and structural studies has
contributed to sluggish progress in understanding how this key
enzyme recognizes, unfolds, translocates, and degrades sub-
strates. By contrast, mechanistic studies of other AAA� pro-
teases, like ClpXP and ClpAP, were greatly accelerated because
fusion of the ec-ssrA tag to any well behaved protein resulted in
a good substrate, allowing steady-state kinetic constants to be
determined, the effects of substrate stability and dynamics to be
probed, and the design of novel substrates to address specific
experimental questions (6, 19, 21–23, 35, 39–42). Our finding of
a specific and tight interaction between mf-Lon and the mf-ssrA
tag provides an exceptional opportunity to deepen understand-
ing of Lon structure, function, and mechanism.

Materials and Methods
Plasmids. The LacZ-mf-ssrA protein contained the entire mf-ssrA tag fused to
the C terminus of the E. coli LacZ protein and was cloned under control of the
lacZ promoter into pSH21, which constitutively expresses the LacI repressor.
After changing all of the TGA codons to TGG codons, the gene encoding
mf-Lon was cloned into pBAD33. The ec-Lon enzyme was expressed from
pBAD33-lon (43). Variants of the human titin-I27 domain were expressed from
pSH21, under transcriptional control of a T7 promoter.

Proteins and Peptides. The ec-Lon protease was purified as described in ref. 13.
E. coli ClpXP was a gift from Mary Lee (Massachusetts Institute of Technology).
For purification of mf-Lon, a 2-liter culture of E. coli strain ER2566 (New
England Biolabs) carrying plasmid pBAD33-mf-lon was grown at 37°C in 2XYT
medium supplemented with chloramphenicol (20 �g/ml). At an A600 of 1.0,
L-arabinose was added (0.2%, wt/vol), and the culture was grown for an
additional 3 h before harvesting cells and freezing them at �80°C. After
thawing cells in 25 ml of cold MF buffer [25 mM Hepes (pH 7.5), 100 mM KCl,
10 mM MgCl2, 1 mM DTT], the cell suspension was lysed by using a French press.
The lysate was centrifuged (18,000 	 g, 30 min), and streptomycin sulfate was
added to the supernatant to precipitate nucleic acids. After gentile agitation
of the solution at 4 °C for 1 h, the solution was recentrifuged (18,000 	 g, 30
min), and the supernatant was decanted and loaded onto a hydroxylapatite
column equilibrated with MF buffer at room temperature. The column was
washed with MF buffer and developed with a linear potassium phosphate (pH
7.5) gradient from 0 to 0.5 M. Fractions containing mf-Lon were pooled,
concentrated with an Amicon concentrator with a 100-kDa cutoff, and loaded
onto a 26/60 Sephacryl S300 gel filtration column (GE Healthcare) preequili-
brated with MF buffer. Fractions containing mf-Lon at purity �90% were
concentrated as described above, aliquoted, and kept frozen at �80°C.

The titin-I27-mf-ssrA protein was purified by using the Impact-CN system
(New England Biolabs). The gene encoding titin-I27-mf-ssrA with an N-
terminal His6 tag was cloned into pTYB1 and transformed into an E. coli strain

ER2566. A culture was grown at 37°C in 2XYT medium supplemented with
ampicillin (100 �g/ml). At an A600 of 1.0, IPTG was added (0.5 mM), and the
culture was grown for an additional 2.5 h before harvesting cells and freezing
them at �80°C. After thawing cells in 25 ml of cold Ni buffer [25 mM Hepes (pH
7.5), 500 mM NaCl, 20 mM imidazole] containing 0.02 mg/ml lysozyme, the cell
suspension was lysed by using a French press. The lysate was centrifuged, and
the supernatant was mixed in a 50-ml tube with 2 ml of Ni-nitrilotriacetic acid
resin (Qiagen; prewashed with Ni buffer) and incubated at 4°C for 15 min. The
resin was washed three times with 20 ml of Ni buffer, resuspended in 5 ml of
buffer, transferred to a gravity column, and washed once with 10 ml of buffer.
The protein was eluted with 3 ml of Ni buffer containing 250 mM imidazole,
loaded onto a 10-ml chitin–agarose column, and cleavage, and purification
was performed according to the Impact-CN system protocol. Carboxylmethy-
lation and purification of all other titin-I27 variants were performed as
described in ref. 19.

FQ14-mf-ssrA peptides were synthesized by the Massachusetts Institute of
Technology Biopolymers Laboratory. Peptide concentrations were deter-
mined from absorbance at 381 nm (� � 2,200 M�1 cm�1).

Biochemical and Biophysical Assays. Unless noted, degradation assays using
mf-Lon were performed at 30°C in MF buffer. Degradation assays using ec-Lon
were carried out as described in ref. 13. Unless noted, degradation reactions
contained ATP (2 mM) and an ATP-regeneration system composed of 20 mM
phosphoenolpyruvate and 10 units/ml pyruvate kinase. For degradation of
radioactive substrates, trichloroacetic acid precipitation was carried out as
described in ref. 6.

�-Galactosidase assays were carried out based on described procedures
(44). Cells were grown at 30°C to midlog phase in LB broth supplemented with
ampicillin (100 �g/ml), chloramphenicol (10 �g/ml), and IPTG (1 mM), and
absorbance at 600 nm was measured. Cells (20 �l) were lysed by mixing with
80 �l of B-PER protein extraction reagents (Pierce) containing PMSF (1 mM)
and incubating the solution for 10 min at room temperature. To start the
�-galactosidase reaction, 670 �l of 100 mM sodium phosphate (pH 7.4), 10 mM
KCl, 1 mM MgCl2, 1 mM DTT, and 1 mg/ml o-nitrophenyl �-D-galactoside were
added. After incubation for 10 min at room temperature, 330 �l of 1 M Na2CO3

was added to stop the reaction, and the absorbance at 420 nm was measured.
Miller units were calculated as: (1,000 � A420)/(A600 � culture volume � incubation
time � 1.61).

CD spectra were taken at 1-nm intervals in a 1-mm path length cuvette on
an AVIV 400 instrument [40 �M protein in 10 mM potassium phosphate (pH
7.6), 20 mM KCl]. For thermal denaturation monitored by CD, the protein
concentration was 4 �M [10 mM potassium phosphate (pH 7.6), 100 mM KCl].
A 10-mm path length cuvette was used, the heating rate was 1°C/min, and
ellipticity at 228 nM was averaged for 10 s after temperature equilibration.
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