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Summary
The aim of the paper is to produce a methodology that will allow users of ordinal scale data to
more accurately model the distribution of ordinal outcomes in which some subjects are susceptible
to exhibiting the response and some are not (i.e., the dependent variable exhibits zero inflation).
This situation occurs with ordinal scales in which there is an anchor that represents the absence of
the symptom or activity, such as “none”, “never” or “normal”, and is particularly common when
measuring abnormal behavior, symptoms, and side effects. Due to the unusually large number of
zeros, traditional statistical tests of association can be non-informative. We propose a mixture
model for ordinal data with a built-in probability of non-response that allows modeling of the
range (e.g., severity) of the scale, while simultaneously modeling the presence/absence of the
symptom. Simulations show that the model is well behaved and a likelihood ratio test can be used
to choose between the zero-inflated and the traditional proportional odds model. The model,
however, does have minor restrictions on the nature of the covariates that must be satisfied in
order for the model to be identifiable. The method is particularly relevant for public health
research such as large epidemiological surveys where more careful documentation of the reasons
for response may be difficult.
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1. Introduction
One of the most common issues surrounding the analysis of clinical and utilization outcomes
is what statisticians refer to as the excess zero or zero inflation problem. This occurs when
an outcome is measured, e.g. counts of service utilization, and the resulting data collected
contain many observations that are zero, i.e., did not use the service being measured. In the
case of normal or lognormal data, there are a variety of applications where there are a
considerable number of subjects with zero values, either due to the fact that they do not
participate in the activity (e.g., drinking alcohol [1]) or that they are below a certain
threshold for detection [2]. These cases have both been dealt with through the application of
a mixture model with the appropriate continuous distribution and a built-in probability of
non-response, also known as a two-part model [3,4]. These models provide a conditional test
of association between the outcome and any predictor of interest, i.e., a test that removes the
effect of the zero responses, in order to answer meaningful research questions [5].

The need for a conditional test of association may also apply to ordinal scales in which there
are anchors that represent the absence of the symptom or activity, such as “none”, “never” or
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“normal”. A mixture distribution in this context would imply that there are patients who are
“susceptible” and patients who are not. However, for discrete data the definition of “excess”
zero is more complicated. The choice to be made is whether or not we wish to include some
of the zeros in the conditional test of association. If it is assumed that all zeros are “true”
zeros, then the second distribution in the mixture can be modified (e.g. truncated) to reflect
the association with the probability of response [6]. However, given sampling uncertainty
and measurement error, the usual approach has been to split the zeros into two distinct
populations: a group of subjects that do not have a response, and a group of subjects that
have a response, who nonetheless exhibit zero values. Farewell and Sprott [7] used the term
“sampling zero” for those zeros not attributed to “cure”. In the derivation for the zero
inflated poisson (ZIP) model [8], the mixture probability was referred to as the probability of
the “perfect state” and the second distribution referred to another state in which “defects are
possible, but not inevitable”, allowing for some zero counts in the conditional distribution.
For the ordinal case presented here, a zero measure would indicate that the symptom is not
present at the time of measurement but that the subject is still susceptible to the phenomenon
being measured. This pattern of response is particularly evident in the case of low incidence
sequelae such as side effects or suicidal ideation. For example, it is the case that
pharmacological side effects, when they are present, are usually dose related. However,
there are a considerable number of subjects who will not experience these side effects at any
dose, while others will not experience the side effect at their current dose at the time of the
assessment. If there are sampling zeros of this nature, we would expect an underlying
association between dose and severity of the side effect in those patients who are
susceptible. If the symptom is measured on an ordinal scale, this would coincide with a
relationship that is consistent with the proportional odds assumption. We would also expect
that dose may not be related to presence or absence of the side effect, but only related to the
severity of the side effect when it occurs. Thus we have two distinct reasons for the
application of a mixture model if there are, in fact, different populations of patients: 1) to
explicitly model the clinical source of the zero inflation, and 2) to clarify the relationship
with possible predictors.

The proportional odds (PO) model, when it applies, is unique among the ordinal regression
models in that it is invariant to collapsing across categories, which is often needed to
summarize results. More importantly to the current application, however, is its similarity to
the results of a traditional linear regression on the underlying variable in that it allows for a
test of association between a predictor and the outcome variable that is not category specific.
Given that most ordinal scales are constructed with an underlying variable in mind, it would
be desirable to the clinician to retain the ability to perform one test of association. It is
assumed that for ordinal regression, the direct results of a mixture of responders and non-
responders would be a deviation from the proportional odds assumption. When the
proportional odds assumption is violated, another alternative is the partial proportional odds
model (PPO) [9]. For this particular application, the constrained form of the model in which
only the zero category was specified to have non-proportional odds would be the most likely
analogue to the proposed model. It differs from the current model in that it does not allow
for sampling zeros, and it does not incorporate the probability of response into the
conditional (non-zero) distribution. However, we will consider this model further in our
clinical example.

Our aim is to produce a methodology that will allow users of ordinal scale data to more
accurately model the distribution of ordinal outcomes when it is assumed that not all patients
are susceptible to the phenomenon being measured, and that this is the primary reason for
any deviation from the proportional odds assumption. Since most applications we will
consider are measures of symptoms or side effects, we will refer to the two aspects of the
distribution as “incidence” and “severity” in order to simplify the discussion. Similar terms

Kelley and Anderson Page 2

Stat Med. Author manuscript; available in PMC 2009 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that have also been used are “occurrence” and “intensity”. The model proposed allows
modeling of the range (e.g., severity) of the scale, while simultaneously modeling the
presence/absence of the symptom, and allows the predictors of incidence and severity to
differ.

2. The zero inflated proportional odds model (ZIPO)
2.1 Model specification

The development of a zero inflated proportional odds model is similar in derivation to
previous zero inflated models [8,10], with the distribution component consisting of a
multinomial distribution with the logit link used for the linear predictor.

Let yi be an ordinal measure, on the ith subject, i=1,…, n, with levels 0,1,…, J with a
multinomial distribution:

with cumulative probabilities defined such that:

For this adaptation, the response is distributed as a mixture of two distributions, a point mass
at 0 and a multinomial:

so that

For the ordinal regression, the parameters p and (γ0,…,γJ) will be modeled via a canonical
logit link. If xi denotes the full covariate vector, we can choose any subset, including xi
itself, for Gi and Bi to form the linear predictors for the probabilities of the perfect state and
other state, respectively. The vectors of covariate effects corresponding to the perfect state
and the multinomial state will be denoted by τ and β, respectively. In order to maintain
notational consistency with proportional odds models, we use the parameter θ for the
intercept parameters in the ordinal regression, and we will identify the complete parameter
vector for the ordinal part as η′= (θ0,θ1,…,θJ−1, β)′. The model equations will then be:

with F being the cumulative distribution function for the logit:
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This results in an observed-data log-likelihood, in terms of the regression parameters, of the
form

(2.1)

If we could observe which data came from which part of the mixture in an indicator
variable, Z=(z1,…zn)′, i.e.,

where the “perfect state” refers to the point mass at zero (i.e., those subjects that do not
exhibit a response), then we could construct a complete data log-likelihood:

(2.2)

Rearranging and simplifying, we then have:

(2.3)

Thus, the complete data log-likelihood is easily maximized due to the fact that τ and η can
be maximized separately. It is also useful to note that the part involving η can be estimated
by using appropriate weights in the fit of a traditional proportional odds model. The part of
the complete-data likelihood involving τ is identical to the zero inflated poisson (ZIP)
model, and can be solved using the method derived by Lambert [8], which involves
augmenting the data with an indicator vector and then solving the resulting weighted logistic
regression using the appropriate weights for each piece of the likelihood. The ZIPO models
were estimated using S-PLUS® (Insightful Corporation, Seattle, WA) code adapted from the
Design library[11] and modified by the authors to fit the proposed models.
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2.2 Model estimation
The estimation process is a function of the ordinal link we use. We will show the derivation
for the logit link; the others can be derived similarly. The main problem in our estimation of
the zero-inflated model is that we don’t in fact observe the zi’s. We can, however, formulate
the problem with the zi’s as incomplete data and solve using the EM algorithm [12]. The EM
algorithm maximizes the log-likelihood iteratively by estimating the zi’s using the current
estimates of the parameters, and then maximizing the log-likelihood with the zi’s fixed at
their estimated expected values. This process is repeated until the algorithm converges.

E step—For iteration k, estimate E[zi | yi, τ(k), η (k)] by its posterior mean zi
(k) given the

data y, and the current estimates of τ(k) and η(k) (see Appendix for derivation):

(2.4)

M step—Given that the expected values of the zi’s are constants, the maximization of Q =
EZ[lC(Y, Z | τ(k), η(k))] is, in this instance, equivalent to maximizing the augmented logistic
and the weighted ordinal regression, using the current estimates of zi=zi

(k) as weights.

To initialize values for the conditional parameters (in this case η), we used the standard
proportional odds estimates. In order to point the algorithm towards the mixture solution, we
calculated a z-score using the mean and variance of the non-zero data and used it to derive
the expected proportion of zeros using the logistic cumulative distribution function., We
then used the logit transform of this value as the initial τ0, with τ1 initialized at zero. For
standard error estimates, we directly evaluated the observed information matrix using the
appropriate derivatives of (2.1).

2.3 Tests of significance
Traditional likelihood ratio statistics can be computed for the parameters as well as any test
statistics for nested hypotheses [13]. In addition, an hypothesis of the form H0: p=0, can be
tested using the method of Self and Liang [14] for hypothesis tests on the boundary of the
parameter space. This provides a likelihood ratio test of the benefit of the zero inflated
model over the proportional odds model, i.e., for the presence of “nonresponders”.

2.4 Special considerations for estimation in the multinomial setting
2.4.1 Identifiability—It can be shown that a single binary predictor for both portions of
the model will result in a non-unique solution. However, simple bounds on the predictors
can ensure identifiability of the proposed model. Given that the sufficient statistics for the
multinomial probabilities are the respective counts for that anchor, and these probabilities
are mutually exclusive, the only difference in estimation from the regular multinomial
problem is for the probability of a zero response. Given that the marginal distribution of any
particular response category is Bernoulli, the subject-specific probability of a zero response
will then be a mixture of two Bernoulli distributions. It has been shown that mixtures of two
binomials (parameters n and p) are only identifiable when n > 1 (Teicher [15]). However,
Follmann and Lambert [16] determined that finite mixtures of logistic regressions with a
Bernoulli response can be identified, as long as the number of unique predictor
combinations (covariates) is sufficient for identifiability. Specifically, they show that the
number of components of the mixture, c, is constrained by
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(2.5)

where N1 is the number of unique observed values of the covariate vector. Thus, a single
binary covariate will only support one component distribution. Given Follmann and
Lambert’s theorem (2.5), a mixture of two Bernoulli distributions is identifiable if the
number of unique combinations of the covariate vector is at least seven (i.e., seven is
sufficient, but not necessary). Given the nature of most applications, this restriction will
rarely be prohibitive. If the focus of inference is a comparison of groups, one can simply
incorporate a continuous but nonsignificant predictor to ensure identifiability that would
have little effect on the group comparison.

2.4.2 Boundary solution for multinomial probability of zero response—Because
the multinomial distribution has mutually exclusive categories, it is a possibility that the
estimate for the conditional probability of a zero response (γ0) can approach zero, resulting
in a corresponding regression coefficient (θ0) which tends to infinity. This would essentially
result in a solution in which all the zeros were classified as “non-responders” and the non-
zero data would be modeled using the resulting conditional probabilities. To provide an
empirical estimate, we decreased the convergence criterion until there was clear separation
between the valid solutions and those on the boundary. Then, in order to determine the
extent of the impact of this boundary solution, we tracked the percentage of occurrences of
this type of solution by considering any fitted model with θ0 > 5.6 as indicating a dataset
with the solution on the boundary.

3. Model evaluation/simulation
3.1 Generation of zero inflated ordinal variates

In order to simulate data with the expected underlying mechanism, we began with a choice
of regression coefficients (τ,η) and proceeded to determine the resulting binomial and
multinomial probabilities associated with a fixed covariate x (p, γ0,γ1,…γJ). We assumed the
same full linear predictor (i.e., B=G=x) for both parts of the mixture, although this is not
necessary for estimation. We then generated the ordinal variate, y, using the following
process:

1. Choose a sample size, parameters (τ,η) and a fixed covariate vector x. Then, for
each observation i:

2. Generate a set of probabilities from the specified linear predictor

(3.1)

3. Generate zi as a single random draw from a Bernoulli distribution with probability
pi

4. Generate a single uniform(0,1) variate, ui, and assign values to the categorical
variable ti:

(3.2)
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5. Generate yi by multiplication of zi and ti:

(3.3)

6. Repeat steps 2) – 5) S times.

3.2 Finite sample properties
The simulations were designed to test the asymptotic properties of the maximum likelihood
estimates in finite sample sizes (50,100,200,500). We used fixed parameters as indicated
below, and evaluated the following measures in S=2000 simulations (for definitions see the
Appendix):

1. sample mean and variance

2. averaged standard deviation estimate from the observed information

3. averaged tail probabilities, and overall confidence interval coverage (normal
theory)

3.3 Parameter choices
We created an example where the baseline (x=0) probability of nonresponse was 0.18, and
the baseline cumulative probabilities for the ordinal categories 0,1,2,3 were equal to 0.1, 0.3,
0.6, 1, which corresponds to multinomial probabilities of 0.1, 0.2, 0.3, 0.4. These correspond
to parameter values of τ0= −1.5 and θ=(2.1972,0.8473, −0.8473, −2.1972). For the
relationship with covariates we chose values of τ1=2.0, β=2.0, and the predictor x was given
equally spaced values between 0 and 1. This provided a range of the probability of response
(1−p) between 0.18 and 0.62 and the conditional probability of nonresponse (γ0) between
0.015 and 0.1. The appropriate probabilities were calculated for each subject based on their
linear predictor value.

3.4 Summary of simulation results
3.4.1 Sources of error—Some simulation data sets could not be used for assessment of
the asymptotic properties due to particular properties of the data set. These properties are
defined below and the frequency of their occurrence is documented in Table 1.

Incomplete scale: Because the proportional odds model has intercepts for each category of
the scale, we eliminated simulated datasets that did not have all possible values of the
dependent variable (e.g., 0,1,2,3,4), because the number of intercepts, as well as the values
of the intercepts, would not correspond to the proposed values. However, this would not be a
problem in practice, as the model fits only as many intercepts as are necessary for the data.

Singular information: In the evaluation of the ZIP model, Lambert discusses briefly that
some data sets exhibit singular observed information and that removing these instances from
the simulation results improves the estimation of the parameters considerably. In order to
further clarify this source of error for the proposed model, we tracked the occurrence of
singularity of observed information in the simulations. Singularity is clearly a function of
the sample size [Table 1], with larger sample sizes less likely to exhibit singular
information.

Boundary solution: The proportion of ordinal solutions on the boundary of the parameter
space decreases as the sample size increases, as expected [Table 1]. Given that the true
parameter value of θ0 was set to be in the interval (0.015–0.1) for this set of simulations, it is
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likely that the low values of this conditional probability were the cause of this numerical
problem, as the algorithm must choose which zeros are from which distribution. In those
cases in which the probability of a sampling zero is low, either higher sample sizes can be
used, such as with the clinical example presented here, or a two-part model [3] should be
considered.

3.4.2 Asymptotic properties—Assessment of the valid simulations revealed that while
estimates of the linear predictor parameters are variable [Table 2], the nature of the logistic
function is such that the convergence of the underlying probabilities was reasonably
accurate [Table 3]. As with the ZIP model [8] the linear predictor for the probability of a
“perfect” zero is not estimated well. We assume that this is partly due to the indeterminate
nature of assigning the zeros to the two distributions, and perhaps also due to the over-
parameterization of what is essentially a point mass. We suspect that this is a property of all
discrete zero inflated models, and possibly the continuous two-part models as well.
Unfortunately, simulations of this nature are not available for the majority of other zero-
inflated models so we have no way of examining this proposition without additional
investigation. In this multinomial extension of the problem, it appears that this over-
parameterization also effects the estimation of the probability of a sampling zero, which is
consistently underestimated.

It is encouraging, however, that the covariate parameters have the desired qualities. Wald
confidence intervals were surprisingly accurate for the ordinal parameter at all sample sizes
[Table 4]. In contrast, the corresponding confidence intervals for the predictor of non-
response (τ1) are somewhat conservative for the smaller sample sizes (n< 200). This is an
interesting result and requires further investigation using other zero-inflated models to
determine if an adjustment could be made that would correct this problem. Although the
proposed method is much more suitable for larger (n ≥ 200) sample sizes, analyses of
smaller data sets using this technique could still provide more accurate results if it is
assumed that there is a mixture of subjects in the sample.

4. Motivating clinical example: Alcohol consumption data
The Alcohol Use Disorders Identification Test (AUDIT) is a frequently used measure of the
level of consumption as well as some of the negative consequences resulting from the
consumption of alcohol [17]. Recently, a focus of primary care services research has been to
identify hazardous drinkers, i.e., those patients who drink at a level that may cause health
and legal repercussions but have not yet developed clinically diagnosable alcoholism [18].
In studying these patients, many of the traditional measures used for alcoholics have been
used despite the fact that some items may not directly apply to this population. Many
primary care patients do not drink at all, resulting in an inflation of “never” responses. This
provides a setting for the mixture model proposed in order to correctly determine the
predictors of severity. A similar approach was used by Olsen and Schafer [1], who used a
continuous mixture model to assess predictors of alcohol consumption in teenagers. The data
used for the example come from a study of Early Lifestyles Management (ELM), which
identified possible hazardous drinkers through the use of a screening evaluation of alcohol
consumption in the waiting room of 12 primary care clinics in the Pittsburgh area [19]. For
the main predictor variable, we chose gender, which is a general demographic also collected
on a large number of screens. There is considerable evidence of gender differences in
consumption [20,21], with males commonly reporting more drinks per week than females.

We included an additional covariate, age group, for two purposes: 1) to force the model to
be identifiable and 2) because age was a significant confounder as indicated by its
association with both gender and consumption. For our sample, the males were considerably
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older than the females (grouped means of 55 and 45 years, respectively) and those who
reported never drinking alcohol tended to be older than those who drink (grouped means of
54 vs 48 years). Unfortunately, due to the brief nature of the survey, age was not a
continuous variable but a categorical variable with nine categories. We chose to keep age
group as a continuous variable in the analysis, however, to simplify the interpretation and
keep the focus on our primary variable of interest, gender. We did this by substituting the
midpoint age value for each category and treating the resulting variable as continuous. The
corresponding frequency distribution for the 11,492 completed screening data forms with
valid age group and gender is shown in Figure 1. It can be seen that a large proportion of the
subjects chose the “never” option. However, the next anchor, monthly or less, may be more
frequent than some occasional drinkers were willing to admit, making it possible that not all
zeros were true abstainers. In addition, we have sufficient reason to believe that the
predictors of abstinence may be quite different from predictors of consumption in drinkers.
This provides initial justification for use of the new model.

4.1 Existing method results
Although the observed proportion of non-drinkers is nearly identical in male and female
patients [40.3% vs. 40.5%, χ2 =0.041, p=0.840], the test of association between gender and
consumption level is highly significant in the ordinal regression, indicating that males
consume more alcohol [Table 5]. This apparent contradiction leads us to pursue a different
model from a clinical perspective. One way of reconciling the discrepant results is if we
consider abstinence as an additional factor. Our clinical objective would then be to
determine if there is a gender difference in prevalence of abstinence and subsequently if
there is a gender difference in consumption in those who are not abstinent. The proposed
model tests this explicitly, as stated in the introduction; however we will first consider
possible constraints for the PPO model that might allow us to incorporate abstinence in a
similar way. If we fit equal slopes to all categories but the first (zero), we get the results in
Table 5. The interpretation of the gender effect for this model is similar to the PO model in
that males have a lower probability of being in the “never” category only the difference is
less pronounced for the constrained PPO model due to the significant offset to the parameter
in that group. However, the data are not consistent with this result as the proportions in the
“never” category are nearly identical.

4.2 New model results
If we incorporate the concept of abstinence as an additional source of “never” responses that
is separate from the level of consumption, the results indicate that males have a slightly
higher proportion of abstainers than females [Table 6], which could then account for the fact
that there is no gender difference in the observed proportions in the “never” group.
Coincidentally, both information criteria (AIC and BIC) as well as a comparison of the
likelihoods show a preference for the zero-inflated model over the PO and PPO models for
these data. A likelihood ratio test indicating the improvement with the mixture can be
constructed using a boundary test as discussed by Self and Liang [14]. This test is based on a
reference distribution of a 50:50 percent mixture of χ2 distributions with 0 and 1 degrees of
freedom respectively. This result is highly significant [χ2=428.94, df=0.5, p < 0.0005]
although in the case of the current model, it is somewhat less informative as it cannot
indicate if the lack of fit is due to the need for a mixture or the assumption of proportional
odds.

Due to the nature of the cumulative logit models, both the PO and the PPO model predict
higher incidence of “never” responses among females due to the fact that males drink more
at the higher levels of consumption [Table 6]. However with the mixture model, the data
indicate that for these data males are abstainers in higher proportions, but when they do
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drink, they also have higher levels of consumption [Table 6]. This interpretation of the
current sample fits better with existing data on gender and alcohol use. The National Health
Interview Survey of drinking [20] differentiated between total abstainers and what they
called “lifetime infrequent drinkers”, which would correspond to the two populations of
zeros we suspect. However, the national data shows that females have higher proportions in
both groups, thus we would not expect to see equal proportions of “never” responses across
gender. The only group of non-drinkers with higher proportions in males is “previous
drinkers”, or those who abstain most likely due to prior issues with drinking. Thus, the
current data could be explained if there were a significant proportion of previous drinkers in
the current sample. It turns out that the recruitment strategy for this study focused on areas
in which high levels of drinking were expected and thus, may also have higher incidence of
previous drinkers.

5. Conclusions
In this article, we have adapted the use of mixture models for zero inflation in categorical
data such as the ZIP and zero inflated binomial (ZIB) [10] models to include ordinal level
variables fit using the multinomial distribution. The extension to the multinomial
distribution requires a few more restrictions on the nature of the predictors in the model;
however, these restrictions can easily be met in most modeling applications. The model,
however, does tend to require larger sample sizes (n ≥ 200) due to the number of additional
parameters involved. This should not be a problem for large survey applications, but for
smaller samples any opportunities to collapse across categories should be considered
carefully in order reduce the number of parameters under consideration. Although our model
can potentially be used for any type of ordinal variable, it appears to apply best to ordinal
scales where there is an anchor that represents a lack of response so that there is a
justification for the existence of true nonresponders and thus can be easily interpreted from a
clinical perspective.
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Appendix

1. Simulation statistics
S=number of simulations; β represents the parameter of interest; vjj is the appropriate
diagonal of the observed information matrix; I is the generic indicator function

Sample mean and variance were defined as

Averaged standard deviation estimate from the observed information
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Averaged tail probabilities, and overall confidence interval coverage (normal theory):

2. Derivation of zi(k)

Given that zi=0 when yi ≠ 0 (because (Pr[perfect state=0]) the calculation is only for when
yi=0

the calculation then equals

given that

and

then zi is
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Figure 1.
Legend: Alcohol consumption as measured by the first item of the Alcohol Use Disorders
Identification Test in a primary care screening sample [17]
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Table 1

Sources of error in the simulated datasets by sample size (% of 2000 simulations):

Sample size % incomplete scale % singular information % valid sims (n) % boundary solution (of valid)

50 1.8 6.0 92.4 (1847) 16.5

100 0.0 1.5 98.6 (1971) 12.8

200 0.0 0.2 99.8 (1996) 10.0

500 0.0 0.0 100.0 (2000) 7.3

Legend: Incomplete scale=dataset did not have all possible values of y; Singular information = datasets for which the information matrix was not
invertible; boundary solution= dataset in which the estimate for the probability of a conditional zero approached zero, resulting in infinite
estimates;
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Table 5

New method results compared to ordinal regression: Alcohol consumption data

PO Constrained PPO ZIPO

Model LL −16570.98 −16456.825 −16354.66

AIC 2.885 2.865 2.845

BIC −74245.32 −74454.93 −74649.92

Beta(se) Beta (se) Beta (se)

Incidence:

Intercept −1.826 (0.135)

Gender* −0.442 (0.035) −0.304 (0.060)

Age (group median) −0.003 (0.001) 0.031 (0.002)

Severity:

Intercepts: y>=0 −1.362 (0.057) −1.574 (0.064) 4.439 (2.258)

 y>=1 −0.527 (0.055) −0.338 (0.060) 0.385 (0.097)

 y>=2 0.467 (0.056) 0.660 (0.060) −1.038 (0.080)

 y>=3 1.511 (0.061) 1.710 (0.065) −2.241 (0.082)

Gender 0.597 (0.036) 0.808 (0.040) 1.004 (0.052)

Age (group median) −0.025 (0.001) −0.024 (0.001) −0.004 (0.002)

*
coding for gender: 0=female, 1=male
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