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Abstract
The ultimate objective of laser speckle flowmetry (and a host of specific implementations such as
laser speckle contrast analysis, LASCA or LSCA; laser speckle spatial contrast analysis, LSSCA;
laser speckle temporal contrast analysis, LSTCA; etc.) is to infer flow velocity from the observed
speckle contrast. Despite numerous demonstrations over the past 25 years of such a qualitative
relationship, no convincing quantitative relationship has been proven. One reason is a persistent
mathematical error that has been propagated by a host of workers; another is a misconception about
the proper autocorrelation function for ordered flow. Still another hindrance has been uncertainty in
the specific relationship between decorrelation time and local flow velocity. Herein we attempt to
dispel some of these errors and misconceptions with the intent of turning laser speckle flowmetry
into a quantitative tool. Specifically we review the underlying theory, explore the impact of various
analytic models for relating measured intensity fluctuations to scatterer motion, and address some
of the practical issues associated with the measurement and subsequent data processing.

1. INTRODUCTION
Over 25 years ago, Fercher and Briers [1] put forth the idea of estimating flow velocity based
on the contrast of laser speckle. The concept was to infer a temporal correlation time constant
from the observed speckle contrast and subsequently to relate this time constant to the flow
velocity. Since that time, various researchers [2–4] have demonstrated this qualitative
relationship, yet no convincing quantitative relationship has been shown. One reason is a
persistent mathematical error that has been propagated by a host of workers. Another is a
misconception about the proper statistical relationship between motion of the scatterers and
the resulting spatial and temporal speckle contrast. Many researchers use the Lorentzian model
for such a relationship. In fact, the Lorentzian is a homogeneous line profile appropriate only
for Brownian motion. In such a case, the dynamics of a single particle are representative of the
ensemble. The other extreme is an inhomogeneous (Gaussian) profile that corresponds to a
process in which the dynamics are particular to the individual scatterers. The proper model for
complex motion such as blood flow is undoubtedly intermediate between these two extremes.
Still another hindrance to the development of laser speckle flowmetry as a quantitative tool
has been an unsubstantiated proposed relationship between decorrelation time and local flow
velocity. Herein we address each of these three general issues. The intention is the realization
of this measurement concept as a quantitative tool for full-field flow assessment.

2. THEORY AND RESULTS
Here we review the theory of laser speckle contrast imaging for the assessment of flow and
discuss a number of issues that have impeded its becoming a quantitative tool. Specifically we
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address persistent mathematical errors, discuss various mathematical correlation functions, and
finally treat the issue of interpretation of the data inferred from a typical measurement.

A. Persistent Mathematical Error
The concept of laser speckle flowmetry relies on the association between speckle contrast and
camera integration time. This is expressed at a fundamental level by the relationship between
the instantaneous intensity i(r ̄,t) and its corresponding measured intensity,

(1a)

where T is the camera integration time, the integration window is defined as

(1b)

and dependence on the spatial coordinate r ̄ is denoted explicitly. Contrast is typically defined
as the quotient of the mean and standard deviation of the measured intensity,

(2)

We are specifically interested in the imaging condition. In such a situation, subject motion, or
flow, is reflected as a boiling of the speckle pattern rather than a translation. Experimentally a
combination of boiling and translation is observed in the vicinity of the image plane, and pure
boiling only at the precise focus [5]. Note that ordered motion results in a translating speckle
pattern only for the condition of misfocus. Under these conditions, the speckle motion and
object motion are related through the misfocus distance (and the direction from focus) and the
image magnification.

From Eq. (1) it is easily shown that the first-order statistics of the integrated intensity in Eq.
(2) are given by

(3a)

and

(3b)

where E denotes expectation and Ci is the covariance of the instantaneous intensity. Note that
the term in square brackets in Eq. (3b) was missing in the original publication by Fercher and
Briers [1] and although this omission has been pointed out by numerous authors [6–8], the
incorrect formula persists in the literature [9,10].

Note that the variance of the integrated intensity in Eq. (3b), which is a first-order statistic,
requires knowledge of the second-order statistic of the instantaneous intensity. The covariance
of the instantaneous intensity in terms of its autocorrelation is

(4)

Under the assumption that the instantaneous intensity is due to scatter from a large number of
particles, one can argue that the field is a complex circular Gaussian process. As such, one can
invoke the complex Gaussian moment theorem [11] that expresses the fourth-order statistical
moment in terms of products of second-order moments with the result that

(5)
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This association between the correlation function for the intensity and that of the field (denoted
by the subscript E) is known as the Siegert relation [12]. At this point, the usual practice is to
assume that the scattering particles are undergoing Brownian motion with the result that the
correlation function for the particle velocity (and thus the field) takes the form [13]

(6)

where τc is a characteristic correlation time depending on the mass of the particle and the
frictional forces in its environment. From this relationship we have for the covariance of the
instantaneous intensity

(7)

and thus for the contrast [Eqs. (2),(3), and (7)],

(8a)

The corresponding result as given by Fercher and Briers [1] without inclusion of the triangular
window in Eq. (3b) is

(8b)

Equations (8a) and (8b) are plotted in Fig. 1, thus illustrating the importance of including the
triangular window. One may argue that operation in the long-exposure regime, where the effect
of this triangular window is minimal, renders this distinction academic [14]. In the past,
limitations imposed by video rate cameras indeed have forced operation in the long-exposure
regime. However, with recent advances in CCD and CMOS technologies, this is no longer the
case. A more general formulation is now relevant, as data acquisition using shorter integration
times has some distinct advantages.

B. Proper Statistical Model
As originally proposed by Fercher and Briers [1], the relationship of Eq. (8b) could be used in
a single exposure (photograph) to assess flow velocity. This argument relies on the relative
values of the correlation time τc and the camera integration time T. The idea further assumes
that the correlation time is inversely proportional to the velocity of the scatterers. Thus if the
camera integration time is long compared to the correlation time, the motion of the scatterers
will blur the speckle and the contrast will be reduced. On the other hand, if the integration time
is short with respect to the correlation time, the speckle motion will be effectively frozen and
the contrast will remain high. In the intermediate regime, the contrast should bear a functional
dependence on the ratio T/τc. The difficulty with this argument is that there are multiple
characteristic correlation times. One is associated with the ordered flow τc=τF, while another
is associated with the unordered Brownian motion τc=τB. The desired behavior is observed
only if τF <τB. Otherwise, the speckle motion associated with the random Brownian motion
destroys the contrast.

Another fundamental problem with this approach is that it is often assumed that the exponential
correlation function associated with Brownian motion is appropriate for organized motion. As
pointed out by Fercher and Briers [1], the exponential correlation function corresponds to a
Lorentzian line shape, which in the nomenclature of laser engineering is referred to as a
homogeneously broadened line or spectral feature [15]. Such a correlation law describes a
collection of scatterers with identical dynamic behavior. As an alternative viewpoint, one might
view organized flow as a totally inhomogeneous broadening phenomenon. For this process,
the dynamic behavior is particular to the individual scatterers. In this case the line shape for
an ensemble of scatterers is Gaussian and as a result, so too is the correlation function. Such a
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phenomenon is often referred to as Doppler broadening. If we adopt such a Gaussian model
for the covariance of instantaneous intensity [16]

(9)

then the measured contrast is given by

(10)

The substantial differences between the resulting contrasts for the Lorentzian [Eq. (8a)] and
Gaussian [Eq. (10)] line shapes are shown in Fig. 2. We view these two results as limiting
behaviors. Undoubtedly the actual correlation behavior is some mixture of the two statistically
independent processes. In such a case the true model would be given by the convolution of the
two line shapes, Lorentzian and Gaussian, i.e., a Voigt profile [15]. Historically, the distinction
between these two behaviors was academic because typical camera integration times were so
long that only the asymptotic (large T/τc) behavior was of interest. In this regime we find

, where a is of the order of unity for each of these two limiting behaviors. The
factor T/τc is the expected reduction in the variance due to the number of independent samples.

Note that in the above discussion we have referred to the convolution of the two line shapes.
While it is obvious through the Wiener–Khinchin theorem [13] that the exponential and
Lorentzian functions form a Fourier transform pair (as do the Gaussian and Gaussian), it is
often not appreciated that these “line spectra” are actually the first-order probability-density
functions (PDFs) of the corresponding stochastic processes [13]. Further recall that for addition
of statistically independent random variables, the PDF of the sum is the convolution of the
respective PDFs. By the convolution theorem, therefore, the net correlation function for a
combined process involving ordered and unordered motion is the simple product of the
Gaussian and exponential correlation functions [17].

In the absence of any a priori knowledge of the proper correlation behavior, therefore, the
inferred ratio τc/T for a measured contrast K will display an uncertainty as shown in Fig. 3. As
seen in this figure, even for operation in the asymptotic regime, the uncertainties are substantial.

Finally, one must address the issue of the sensitivity of the measurement. We define this
sensitivity factor as the fractional change in the inferred time constant for a fractional change
in the measured contrast

(11)

Note that the definition of sensitivity in Eq. (11) differs from that of Yuan et al. [18] because
it is the decorrelation time that is of ultimate interest, not the contrast. As shown in Fig. 4 the
sensitivity factors for these two limiting correlation laws are essentially constant in the
asymptotic regime. These results predict, for example, that within the asymptotic regime, a 2%
change in measured contrast results in a 4% change in the inferred time constant. The slopes
of the curves in Fig. 4 further illustrate that operating in this asymptotic region (i.e., where T/
τc is large) is a poor choice for discriminating between regions that exhibit similar flows, as
the sensitivity to different flow velocities is very low. If operation in the (long-exposure)
asymptotic regime is unavoidable due to equipment limitations, then a means of obviating the
issue of the proper correlation law is to adopt a common definition of the correlation law such
as in Ramirez-San-Juan et al. [14]. These authors make the point that a common definition of
coherence time of the speckle intensity [19],

(12)
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renders the asymptotic behavior of the contrast for the Lorentzian and Gaussian models
identical. This concordance, however, does not make it possible to discriminate between
random and ordered flows. In fact, because the objective is to assess ordered flows, it is highly
desirable to be able to distinguish between random and ordered flows.

C. Data Acquisition and Processing Issues
A data acquisition issue that is often treated in an ad hoc fashion is the limiting form of the
speckle contrast. This issue comes about because heretofore all the statistical relationships
discussed have been analytic ones. Specifically, it is often pointed out, e.g., [6], that the
intensity may be measured over an extended spatial domain (rather than by a point sensor),
and as a result, the speckle contrast is reduced. Commonly this effect is expressed in terms of
the contrast relationship

(13)

where β≤1 is a parameter that accounts for the reduction in the measured contrast due to
averaging (by the detector) over uncorrelated speckles [20], and g1(τ) is the field
autocorrelation coefficient. The parameter β is sometimes called a “coherence factor” that
depends on the detection optics [7], but is actually the inverse of Goodman’s integrated speckle
parameter ℳ[21]. Unfortunately, the nomenclature “coherence factor” is sufficiently similar
to the “complex coherence factor” of Mandel and Wolf [22] to cause confusion. Further, the
nomenclature “coherence factor” may suggest that it is related to the (temporal) coherence of
the source [23]; under practical measurement configurations, it is not. To see this, one need
only consider the vastly different time scales of the typical source coherence time and the
motion correlation time.

As suggested by the preceding discussion, the mathematical foundations of quasi-elastic light
scatter (QLS) [12] and LSCA are sufficiently similar, that it is often assumed that the
measurement requirements are identical. Specifically, it appears to be a foregone conclusion
that for LSCA measurements, the acquisition geometry should be chosen such that the speckle
size matches the detector pixel size, e.g., [18]. This has been demonstrated as optimum for
QLS measurements in order to maximize the signal [6]. That this matching condition violates
the (spatial) Nyquist sampling requirement is usually ignored. Further, the data processing for
LSCA and QLS are substantially different. In particular, subsequent to LSCA data acquisition,
one must calculate a local speckle contrast from the appropriate sample statistics. Implicit in
the use of these sample statistics is the assumption that the initial speckle image(s) as acquired
by the camera faithfully represent(s) the speckle field. This can be so only if the sampling is
at or above the Nyquist rate, i.e., the smallest speckle is at least twice the size of the pixel. This
is most easily accomplished by a reduction of the f-stop of the lens [21]. While violation of
this sampling criterion technically does not result in aliasing, because the integration over the
individual detector elements is effectively a spatial low-pass filtering operation [21], the spatial
structure of the speckle pattern under the matching condition is not preserved.

Calculation of the local speckle contrast subsequently uses the sample statistics for the mean
and variance. Specifically, the local contrast is given by the following:

(14)

where the region in question is Ns=L×W pixels. Subsequently one could invert the relationship
of Eq. (8a) or Eq. (10) to obtain an estimate of the correlation time. Note, however, as
demonstrated by Duncan et al. [24], the local contrast computed as in Eq. (11) displays a
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probability distribution function depending on the size of the local neighborhood and the
speckle size with respect to the pixel. These local contrast values, even for a fully developed,
polarized speckle pattern can depart substantially from the theoretical value of unity. Thus one
could attach error bounds to the correlation times inferred through such a process.

The sample statistics of Eq. (14) are explicitly for the local spatial contrast within a single
image. Extension of the definition of these statistics into the temporal direction is possible as
in the temporal LASCA (tLASCA) [9], modified laser speckle imaging (mLSI) [25], or
quantitative temporal speckle contrast imaging (qTSCI) [26] concepts. Such temporal statistics
are effective for dealing with scatter from stationary structures. Local neighborhoods
encompassing both spatial and temporal domains can prove useful as well [24].

D. Interpretation of Inferred Correlation Time
In addition to the uncertainties associated with a proper choice of correlation behavior and
statistical distribution of the sample statistics for local contrast is the problem of the relationship
between the inferred time constant τc and the velocity V. It has been assumed that τc and V are
inversely related, however, a specific relationship remains elusive. One suggested relationship
[27] is

(15)

that is, the correlation time is the quotient of a physical length scale (in this case the wavelength)
and the local velocity. The authors [27] admit that this relationship is speculative and give no
first principles argument as to its veracity. Nevertheless this relationship has entered the
literature as fact [9]. A more physically realistic relationship, however, can be found from the
expression for the normalized intensity covariance due to Goodman [19]:

(16)

where D is the pupil diameter. This result is based on a phase screen model of the object motion
and predicts decorrelation for a physical length scale of the order of the point-spread function
(PSF), which, for a circular pupil as assumed here, is a simple Airy function [28]. Contrast as
a function of integration time for this model is compared to the Brownian and Gaussian forms
in Fig. 5. Clearly this behavior is intermediate between these two limiting forms, more closely
resembling the Lorentzian results for long-time exposures and the Gaussian for short-time
exposures [16]. This effect could easily account for the nonlinear relationship between time
constant and velocity as observed by Parthasarathy et al. [29]. Consistent with the correlation
functions previously discussed, it is easily shown that in the asymptotic regime, the contrast
is .

Finally, from Eq. (16), we obtain the decorrelation time

(17a)

where ω is the characteristic width of the Airy function

(17b)

and the velocity V and PSF are referred to a common plane. This result makes physical sense;
once the volume of scatters moves a distance of the order of ω, it is replaced by a new volume
containing scatterers that are un-correlated with those in the previous volume element. Again
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note that if the velocity is defined within the object plane, the PSF must be referred to the object
plane as well.

3. DISCUSSION AND CONCLUSIONS
We have highlighted a number of issues that have hindered the concept of LSCA becoming a
quantitative tool for the estimation of flow:

1. a persistent erroneous formula expressing contrast as a function of integrated
instantaneous covariance of intensity;

2. the inappropriate use of the Lorentzian field correlation relationship;

3. a tendency to operate in the long-exposure asymptotic regime and the subsequent lack
of sensitivity;

4. a common assumption that the requirements of QLS and LCSA measurements are the
same; and

5. the oft-cited, nonphysical association between the decorrelation time and its
associated flow velocity. In particular, we emphasize that association of the
exponential correlation model with any ordered motion is patently inconsistent, as
such a model is valid only for completely nonordered motion.

The situation for multiple scattering is equally challenging. In this regime one must consider
the absorption and scatter “coefficients” μa and μs in relation to the dimensions of the structures
being probed. As example, for whole blood at the He–Ne wavelength of 633 nm, 1/μs ~3 μm
[30], so that for any vessel of this order or larger, one must consider the possibility of higher-
order effects. Based on the previous discussions, it is clear that the correlation function for an
nth-order process is simply the nth power of the correlation function (appropriately weighted
by the probability of the higher-order effects [31]). For example a second-order exponential
process has an effective correlation time that is half that of the first-order process. In the limit
of diffusing wave spectroscopy (DWS), motions of the order of  are sufficient for
decorrelation [32]. Higher-order scatter has the effect of shifting the contrast curves to the right.
Interpretation of the speckle contrast of such higher-order process in terms of a first-order
process would thus have the effect of overestimating the true first-order correlation time.

On the other hand there are approaches for mitigating the effects of these higher-order scatter
processes. One is to employ linearly polarized illumination and to assess the contrast of only
the co-polarized backscatter component. The cross-polarized component (if there is one) is
undoubtedly associated with a higher-order scatter event. Of course a separate measurement
of any cross-polarized component can give valuable clues as to the existence of these higher-
order scatter events. Other discrimination methods include the use of multiple illumination
wavelengths or multiple detectors viewing the same scatter volume from different perspectives
[32].

Substantial challenges remain if LSCA is to become a quantitative tool for assessing flow. The
proper correlation law undoubtedly lies between the Lorentzian and Gaussian limits. A
plausible correlation law based on rigid-body motion has been hypothesized, but remains to
be verified experimentally. An advantage of this rigid-body model is that it offers a compelling
physical link between the decorrelation time constant and the local velocity. However, this too
must be verified experimentally.

Much effort remains in linking the uncertainties in the estimated local velocities to the measured
contrast, taking into account the probability distributions of the sample statistics. Note that one
important parameter in the distribution of the sample statistics of speckle contrast is the
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relationship between speckle size, detector size, and processing neighborhood. In particular,
the proper relationship between speckle and detector sizes is an important issue to be addressed.
It is often assumed that the matching condition [18], which has been demonstrated as optimum
by researchers in the field of QLS [6], should be applied to LSCA measurements. That this
condition violates the Nyquist (spatial) sampling requirement is usually ignored.

Finally, the issue of optimum integration time with respect to the decorrelation time needs to
be resolved. One way to proceed would be to acquire data at much higher frame rates and to
subsequently explore this relationship numerically, after detection. This approach was indeed
chosen by Yuan et al. [18], but their conclusions suffered from a number of the errors and
misconceptions cited herein.

Much effort is required before LSCA can be claimed to be a quantitative tool for flow
assessment. The issue is not whether there is an answer (i.e., a quantitative link between speckle
contrast and local velocity), but rather that there are many answers, each dependent on specific
assumptions about the relationships between particle dynamics and light scatter.
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Fig. 1.
(Color online) Historical result due to Fercher and Briers [1] and correction.
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Fig. 2.
(Color online) Speckle contrast as a function of relative integration time for Lorentzian and
Gaussian autocorrelation functions.
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Fig. 3.
(Color online) Fractional uncertainty in decorrelation time due to uncertainty in proper
correlation model.
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Fig. 4.
(Color online) Sensitivity factors for two limiting correlation behaviors.

Duncan and Kirkpatrick Page 13

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2008 October 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
(Color online) Speckle contrast as a function of integration time for various intensity correlation
laws.
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