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Abstract
Contemporary brain theories of cognitive function posit spatial, temporal and spatiotemporal
reorganization as mechanisms for neural information processing. Corresponding brain imaging
results underwrite this perspective of large scale reorganization. As we show here, a suitable
choice of experimental control tasks allows the disambiguation of the spatial and temporal
components of reorganization to a quantifiable degree of certainty. When using electro- or mag-
netoencephalography (EEG or MEG), our approach relies on the identification of lower
dimensional spaces obtained from the high dimensional data of suitably chosen control task
conditions. Encephalographic data from task conditions are reconstructed within these control
spaces. We show that the residual signal (part of the task signal not captured by the control spaces)
allows the quantification of the degree of spatial reorganization, such as recruitment of additional
brain networks.
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1. Introduction
Current research suggests that brain areas constitute neurocognitive networks responsible for
information processing and are omnipresent in the brain with similar operational principles
(Sporns et al. (1989); McIntosh (2004); Bressler and Tognoli (2006))). The selection and
subsequent activation of these networks are governed by context (McIntosh (2004)) and
spatiotemporal coordination with other networks (Kelso (1995)); Bressler and Kelso
(2001)). Temporal (re)organization in the neurocognitive networks may occur via amplitude
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modulation of activity in distant neuronal populations (Bressler et al. (1993); Rodriguez et
al. (1999)). On the other hand, spatial (re)organization processes entail recruitment or
disengagement of certain brain areas and are found to be involved in information processing
mechanisms such as multisensory integration (Damasio (1989); Calvert et al. (2001);
Dhamala et al. (2007))). Mesulam (1998) argued that synaptic inputs from low level
unisensory cortical areas follow multiple pathways and finally get integrated in transmodal
areas for cognitive processing. Experimental evidence suggests that the two aforementioned
mechanisms of neural information processing are not necessarily mutually exclusive and
may occur simultaneously (Bushara et al. (2003)) resulting in a spatiotemporal large scale
network reorganization. Recent literature such as Bressler and Kelso (2001); Bushara et al.
(2003); Jirsa and Kelso (2004); Kelso and Engstrom (2006) emphasizes the existence of
spatiotemporal (re)organization processes in the context of integration and segregation of
perceptual and motor behavior.

To characterize temporal modulation between coupled brain areas Rodriguez et al. (1999)
and Ding et al. (2000) used phase and frequency based measures, respectively. On the other
hand a common approach to identify spatial reorganization is the comparison of two sets of
data, one of which serves as control condition to the other (Sanders (1980); Friston et al.
(1996)). Cognitive subtraction methods that advocate linear subtraction of control and task
condition assume that there are no temporal interactions between cognitive components and
any additional activity will inevitably involve a change in amplitude thereby asserting pure
insertion (Friston et al. (1996)). Nonetheless, because of its simplicity and intuitive
principles cognitive subtraction methods have been used to characterize the interactions
within brain areas (Meredith and Stein (1983)) and between brain areas responding to
unisensory and multisensory inputs (Molholm et al. (2002)). The residual data following a
cognitive subtraction operation can be analyzed via two concepts: 1) inverse techniques that
estimate the exact location and dynamics of the cortical sources by fitting dipolar generators
with varying orientations at anatomically motivated locations and comparing subsequently
generated forward solution with the event related signal (Geselowitz (1967); Grynszpan and
Geselowitz (1973); Hämäläinen and Sarvas (1989); Mosher et al. (1999); Jirsa et al. (2002))
2) mode decomposition techniques that do not perform source localization (though often aid
in this process). The latter assume scalp potentials or fields to be a mixture of low
dimensional scalp components in a high-dimensional space spanned by the sensors.
Techniques such as Principal component analysis (PCA) or Independent component analysis
(ICA) (Bell and Sejnowski (1995)) and Second order blind identification (SOBI) (Tang et al.
(2005)) have been used to obtain these components. Nevertheless, the biological
significance of the individual components has always been an issue of controversy because
of the constraints (orthogonality and statistical independence) implied by the algorithms.

In this article, we develop a general approach to disambiguate between the spatial and
temporal contributions of spatiotemporal network activity in an additive factor based
experimental paradigm. A lower dimensional space (defined as the control space) is
constructed by the major scalp topographies present in multiple control conditions. The key
idea is to analyze the projections of the task condition data in the control space. We test
systematically to what degree the control space captures the scalp activations present in the
task condition. As our analysis is inspired by the decomposition of a higher dimensional
EEG signal to a lower dimensional subspace of spatial modes we refer to it as “Mode Level
Cognitive Subtraction (MLCS)”. The algorithm is straightforward (with the underlying ideas
based on the theory of linear vector spaces), computationally parsimonious and easy to
implement.

Our paper is structured as follows: In section 2 we develop the mathematical framework of
MLCS. In section 3 we apply MLCS to computationally generated data for various
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dynamical scenarios including temporal, spatial and spatiotemporal reorganization. Our
conclusions are presented in section 4.

2. Mode-Level Cognitive Subtraction
2.1. Theory

We consider an area or network of areas in the brain to be activated under suitably chosen
experimental control conditions (Fig 1 a and 1b). Areas labeled as 1 and 2 in Fig 1 are
involved in the information processing underlying control condition 1 and 2 respectively.
Now, a task condition may require the activation of both areas. We posit that the brain
dynamics underlying this task condition might occur via the following mechanisms which
are shown in Fig 1 c, d, e and f..

i. No reorganization: Uncoupled dynamics of areas 1 and 2 is a superposition of the
electromagnetic activity from the two sources that generate scalp potential (Fig 1
c).

ii. Temporal reorganization: Temporal modulation of areas 1 and 2 exhibit a coupled
dynamical behavior (Fig 1 d).

iii. Spatial reorganization: Recruitment only where the area 1 and 2 recruit a third area
resulting in an altered scalp topography (Fig 1 e).

iv. Spatiotemporal reorganization: Mixed conditions where both contributions
(temporal modulation and recruitment ) are parametrically varied (Fig 1 f).

The scalp potentials measured by k electrodes during a control condition compose the k-
dimensional vector Ψc(t) as a function of time t and may be expressed as a sum of
spatiotemporal patterns

(1)

where,  is the temporal coefficient of the n-th spatial pattern (or mode) ϕn of the control
condition. A spatial mode is the scalp topography suitable to capture the time course of the
EEG. The set of spatial modes {ϕn} spans a space Φ, in which the spatiotemporal scalp
dynamics of the particular control condition evolves. If the dimension m of the space
spanned by {ϕn} is smaller than the number of sensors k, then dimensional reduction can be
obtained using established mode decomposition techniques. Prime candidates for mode
decomposition are principal component analysis (PCA), independent component analysis
(ICA) or Second Order Blind Identification (SOBI) (Bell and Sejnowski (1995); Tang et al.
(2005)). Ideally, the high dimensional data should be reduced to a few spatial modes in the
control conditions, m < k, and hence result in a low-dimensional representation of the
dynamics. The low dimensional approximation is usually done under the usage of a
threshold eigenvalue which separates the noise from signal. This threshold can also be set
parametrically by using techniques of Mitra and Pesaran (1999). Since PCA components are
highly affected by background noise, a high signal to noise ratio is desired. For our
simulated data, in the absence of background noise, both PCA and ICA give similar
dimensional reduction. If multiple control conditions c1, c2, … are used, then the control
space Φ is spanned by the unity of the individual subspaces from the control conditions, that
is Φ = Φc1×Φc2×. … Generally the modes spanning the individual subspaces will be linearly
independent, but non-orthogonal, and together they span the complete control space Φ.
Alternatively, new orthogonal modes can be constructed, for instance, using Schmidt-
Graham-orthogonalization (Hoffman and Kunze (1961)).
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We now wish to express the scalp potentials of the task condition, Ψ(t), within the control
space Φ. To do so, we perform a decomposition as follows,

(2)

where the residual term R is that part of the data not explained by the control space Φ; and
ηn(t) are the projections of Ψ(t) onto the individual modes, i.e. they are obtained from the

dot product of the task signal and the adjoint modes 

(3)

where the adjoint modes satisfy the biorthogonality condition

(4)

and =δij is the Kronecker symbol. The residual data, R, that cannot be explained by temporal
modulation of the sources of present in the control conditions will reflect the recruitment of

additional networks absent in control conditions, since  holds. For the case of
complete temporal modulation |R| = 0. The goodness of fit of the reconstruction is obtained
from

(5)

where < . > denotes the temporal average. Any significant deviation from a 100% value of
goodness of fit can be attributed to a spatiotemporal reorganization.

2.2. Spatial sensitivity analysis
To obtain a quantification of the spatial sensitivity of MLCS, we perform the following
analysis: We simulate two control conditions by placing sources at two different locations in
the half-sphere (our approximated cortical volume) and then compute forward solutions on
its surface (conductivity σ = 1). As a next step, we create a grid of 2890 points inside the
cortical volume (see Fig 3a). At each grid point (X(r, Θ) in spherical polar coordinates) we
place a dipolar source and compute the forward solution, Ψ(X(r, Θ)) for 25 different

orientations (5 azimuthal angles between 0 to 2π in steps of  and 5 vertical angles between

0 to  2 in steps of ). To obtain a measure ρ for the degree of containment of Ψ within the
control space Φ we determine the reconstructed signal

(6)

for each location and orientation (ηn are scalar, in absence of temporal dependence) and
compute

(7)
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MLCS is insensitive to detection of any recruitment at ρ = 1 when Ψ lives completely in the
space Φ. Complementarily, MLCS is perfectly sensitive to any dipole location and
orientation at ρ = 0 when no component of Ψ ever projects into θ. Now, a threshold ρth may
be defined to choose the degree of overlap that may be allowed between the two spaces to
make a statement about the existence of the third source. For example at ρth = 0.9 the third
source projects completely into Φ when it was placed at the grid points shown in Fig 3b. In
Fig 3c, we show how the fraction of insensitive locations (out of all possible locations and
orientations) vary when ρth is set at different values between [0, 1]. The choice of
conductivity σ = 1 simplifies our analysis as we can ignore the several layers of complexity
that is associated with a realistic head model. However, we show in Fig 3c that at ρth = 0.5,
the fraction of insensitive location and orientation is approximately 0.2. Or in other words at
50% sensitivity threshold we can still discriminate 80% of the third source locations and
orientations while 20% are blind to our analysis. The volume defined by the blind locations
is related to the well-known half-sensitivity volume of a forward model in
electroencephalography (see Ferree and Nunez (2007) for details). Note that disengagement
of networks from the control space during the task condition cannot be detected by MLCS
and would be erroneously interpreted as temporal modulation.

3. Application to synthetic EEG data
The key question we wish to address in this section is how well does MLCS characterize
temporal modulation of the control modes, recruitment of additional networks and mixed
cases where both mechanisms affect the coupled networks. The measure for such
characterization is the goodness of fit of the reconstruction. For high goodness of fit, there is
a strong likelihood that the effective connectivity is primarily mediated by temporal
modulation whereas a low value indicates a likelihood of spatial reorganization. To perform
a systematic testing of our interpretation we create synthetic data, briefly described in the
next section with technical details provided in the appendix. In the subsequent sections we
apply MLCS to the various connectivity scenarios and compare these directly with results
obtained from cognitive subtraction.

3.1. Generation of synthetic EEG data
We assume that the scalp potentials are generated by neural masses inside the cortex, which
are used extensively in the literature of encephalographic source modeling Lopes da Silva et
al. (1974); Freeman (1974); Nunez (1974); Valdes et al. (1999); David and Friston (2003).
Here we use in particular the neural mass models by De Monte et al. (2003); Assisi et al.
(2005), which are derived from networks of globally coupled FitzHugh-Nagumo neurons
(FitzHugh (1961); Nagumo et al. (1962)). Essentially the neural masses are approximated by
the dynamics of an “effective” neuron (Buhmann (1989); Assisi et al. (2005)) for certain
parameter regimes of coupling strength and dispersion. The details used for the various
connectivity scenarios are presented in the appendix. In particular, we also include
situations, which correspond to more complex dynamics such as in rotating wave patterns,
commonly seen in spatiotemporal brain maps of α – rhythms (Fuchs et al. (1987); Friedrich
et al. (1991)). Given the locations of the neural masses, the scalp potential is computed by
means of a spatial forward solution (Mosher et al. (1999)) which can be mathematically
expressed as

(8)

where x(t) is the source dynamics, q is position, and Θ is the orientation of the dipole. For a
spherically symmetric head model, the orientation is defined by the azimuthal (ϕ) and
vertical (θ) angles. H is the forward matrix and Ψ(t) is the electromagnetic activity
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measured on the scalp from all the sensors. In the entire paper we use a spherical 1-shell
model with conductivity, σ = 1 for our simulations (Mosher et al. (1999)).

3.2. Analysis of synthetic EEG data
We consider the following connectivity scenarios:

3.2.1. Uncoupled Sources, Fig 1c—Here, the two cortical sources are uncoupled and
hence the forward solution for the task condition is just a linear summation of the activities
for each control condition. In other words, there is zero temporal modulation and no
additional networks are recruited. Hence, a perfect reconstruction is expected from both
MLCS and pure insertion based cognitive subtraction. The latter is expressed as

(9)

The residuals obtained from both methods are zero complemented by a 100% goodness of
fit of the reconstruction using MLCS. One of the motivations behind a cognitive subtraction
approach (both MLCS and pure insertion) is to investigate the individual contributions of the
control spaces in a task condition. Under most circumstances, a direct mode decomposition
of the task condition will not be able to extract such information about each of the control
spaces. This is shown in Fig 6 where the principal components of the task condition did not
recover the control spaces unambiguously. Hence, MLCS retains one key attribute of regular
multifactorial experimental designs, namely, it is able to quantify the contributions of the
controls in a task condition.

3.2.2. Temporally Coupled Sources, Fig 1d—Temporal coupling between two control
cortical sources can be induced by non-linear coupling functions as illustrated in section 3.1.
Following the application of MLCS we obtain a 100% reconstruction of the task condition
as shown in Fig 7. As expected, the residuals from such an approach are zero and goodness
of fit is 100% and temporal modulation can be characterized by high goodness of fit of the
reconstruction. As in the previous case of uncoupled sources, a direct PCA on the task data
(Fig 6) did not elicit the scalp components whose superposition generated the task condition.
Here, additional activity in the task signal did not involve additional brain areas. This is a
prototypical non-linear brain interaction in which a standard cognitive subtraction based on
pure insertion (Friston et al. (1996)) will fail. For comparison, we perform cognitive
subtraction by computing the residual Rc (see equation 9). As evident in Fig 5, principal
components of Rc project in the same subspace as that of controls. However, the temporal
coefficients of the corresponding spatial modes are completely dissimilar to the time course
of the underlying control spaces (see Fig 4).

3.2.3. Recruitment of additional networks, Fig 1e—For recruitment only cases,
reconstruction quality for the task condition is reduced by a significant extent to goodness of
fit= 25% (we plot a representative time series obtained from one of the sensors in Fig 7).
Earlier we stated that pure insertion-based cognitive subtraction is primarily tuned for
detecting spatially linear recruitment. To validate this point, the principal components of
residuals computed via MLCS and cognitive subtraction are plotted in Fig 5. Both methods
yield equivalent results. As a result of MLCS the residual data R is reorganized to a
subspace which is orthogonal to the control space. We perform a principal component
analysis of the raw task signal and obtain the scalp components along with corresponding
temporal coefficients (see Fig 6). However, these components do not reflect any similarity
with the control modes shown in Fig 4. Hence, it is evident that the direct decomposition of
the task signal is not an appropriate technique to comment on the contribution of underlying
control spaces.
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3.2.4. Mixed cases, Fig 1f—For mixed cases, both temporal modulation and recruitment
of additional networks occur simultaneously. We implemented this in the task condition by
parameterizing effective connectivity using a continuously varying parameter, r ∈ [0, 1] in
section 3.1. MLCS is applied to the task signals which are obtained for discrete values of r ∈
[0, 1]. A plot of the goodness of fit versus r (Fig 8) encapsulates the results. Consequently,
we argue that the reconstruction capability from the MLCS technique rises with an increase
in effective connectivity between the two control sources (increasing values of r). A
saturation of the curve at r < 0.6 allowed us three distinct possibilities. For high goodness of
fit ( > 85% and corresponding r > 0.9) we argue that temporal modulation is more likely to
be the mechanism for information processing. For medium goodness of fit (40% < goodness
of fit < 85%) there is more likelihood of mixed conditions (0.25 < r < 0.9) being dominant
and for low goodness of fit (< 40%) recruitment of additional networks (r < 0.25) seems to
be the primary mechanism for information transfer. We address these criteria more
systematically in the following section.

3.2.5. Rotating and traveling wave patterns—The spatial maps of control 2 and task
conditions show rotating wave dynamics. In analogy with the earlier work (Fig 4), the
principal components of the control conditions which constitutes the control space are
plotted (Fig 10). A 100% goodness of fit is obtained for the reconstruction when 5 coupled
sources (same as the controls) generated a task condition data by temporal modulation only.
For illustration, representative time series at one sensor and its corresponding reconstruction
using MLCS and cognitive subtraction are plotted in Fig 11. As a result the residual is zero
under application of MLCS and non-zero during cognitive subtraction. Thus, MLCS
predicted that the task signal is primarily generated from temporal modulation of control
sources whereas cognitive subtraction failed. The ‘recruitment only’ scenario is obtained in
section 3.1 via inclusion of an additional area which lies outside the control space. Here
MLCS yielded a considerable reduction in the goodness of fit = 64% compared to temporal
modulation scenario (where goodness of fit = 100%). Representative time series and its
reconstruction at one sensor via cognitive subtraction and MLCS are presented in Fig 11. In
addition, a principal component analysis on the residual R is performed, which extracts the
activity of the additional subspaces as seen from the spatial maps and its contribution to the
temporal dynamics of the task signal Fig 12. One source from the control condition is
disengaged in the network which generated the task condition. A new source of similar
strength and orientation is placed in a different location while the total number of sources
remained the same as in the control conditions. The presence of this additional network is
characterized by a considerable depreciation in reconstruction quality from temporal
modulation scenario.

3.3. Sensitivity to orientation of dipolar sources
A crucial aspect of the forward solution is the dependence of the scalp potential on the
location and orientation of the dipole source. For a spherically symmetric geometry, the
relevant orientation variables are the azimuthal ϕ and vertical θ angles, which we simulated
for multiple vales (see 9). We plot the goodness of fit as a continuous surface under varying
orientations (θ, ϕ) of the third dipole and its effective connectivity r. The location and
orientation of control sources are fixed. It is evident from Fig 9 that the goodness of fit
surface saturates for a parameter regime r < 0.6 for all θ and ϕ.

4. Summary and Discussion
Mode Level Cognitive Subtraction (MLCS) motivates the design of behavioral paradigms
from the perspective of network reorganization. Spatial reorganization involves the
recruitment of additional networks during neural information processing, for instance, as
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known from multisensory integration (Meredith and Stein (1983); Molholm et al. (2002)). In
contrast, temporal reorganization may result in amplitude modulation of electromagnetic
activity in existing networks. To disambiguate these mechanisms of neural information
processing, MLCS identifies the control space on the scalp level (obtained from the
experimental control conditions), into which the scalp activity of task conditions are
projected. Frequently evoked alternative interpretations to the presence of residual signals,
including non-stationarity, non-linear coupling between the control condition networks and
the experimental task networks, and simple temporal reorganization of the existing network
that results in cancelation of observed electrical fields, do not pose a problem for MLCS,
because MLCS measures the confinement of a signal to the control space and is not affected
by the varying degrees of complexity in the time domain. For instance, the last alternative
interpretation raised, cancellation of observed electrical fields, is particularly relevant in a
sensorimotor coordination task where dipoles on opposite sides of the central sulcus are
likely to be present and which will interfere with one another. Here all spatiotemporal
reorganization will remain - by construction - confined to the control space and MLCS will
identify a residual signal of zero.

Hence, it is actually the experimental design and the control conditions which have most
influence upon the usefulness of MLCS. Typically, a guideline for a good MLCS
experimental design is a well-defined hypothesis of the information processing mechanism
underlying the actual cognitive operation. For instance, multifactorial experimental designs
(Sternberg (1969)) in multisensory and sensorimotor paradigms are often based upon control
conditions distinguishing cognitive, perceptual and motor components. It is worthwhile to
note that the decompositions are usually functionally motivated and generally do not make
any conclusive reference to the underlying neural sources. For example, auditory and visual
evoked potential time locked to external auditory and visual stimuli or motor evoked
potentials time locked to flexion and extension movement cycles can serve as very useful
control signals as they seem to have the most widely accepted waveform shapes in the
literature. Also, the selection of the stimuli type (example, flash or checker board patterns
for visual) and epoch lengths are crucial for obtaining stationary signals (Picton et al.
(2000)). Subsequently, statistical significance of the goodness of fit measure is also affected
by these design principles as well as the number of observations. Significant differences in
the goodness of fit across two or more task conditions may be computed by the analysis
paradigm of repeated measures. Picton et al. (2000) also suggest standard corrections that
need to be employed in such measurements. Proper care should be placed to select the
modes that span the control basis. One possible way is to plot the eigenvalue spectrum of the
principal components on a logarithmic scale. The noise tail can be identified on this plot for
normally distributed noise (Mitra and Pesaran (1999)). Identification of the signal space will
be simpler when it is a low rank structure in the entire data matrix or complementarily the
corresponding eigenvalues are significantly higher than the noise tail. More complex
cognitive paradigms, for instance involving speech or emotion, may require more
functionally based control conditions, which cannot be assigned to individual cortical
sources. However, such is not even necessary in this context as MLCS is not an inverse
technique and hence the control conditions may be chosen arbitrarily complex in their
network organization (spatial and temporal). The key aspect, though, that may be addressed
by MLCS is the degree to which the brain signal of the actual task condition is captured by
the networks present in the control conditions. Furthermore, following the lines of thought
of Picton et al. (2000) a source analysis on the residual signal can also be performed.
Resampling methods such as bootstrapping may improve the goodness of fit measurements.
Our spatial sensitivity analysis (see Fig 3 and corresponding text) shows that the likelihood
of two control networks projecting into the same subspace on the scalp level can be
quantified with a forward model. Hence, large-scale brain networks are best-suited for this
approach.
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The major benefit of the application of MLCS is that it is able to capture the time course of
recruited network activity as well as the temporal modulation of subspaces identified in the
control conditions. In conjunction with other functional imaging techniques such as fMRI
and PET, complementary information on the actual underlying sources may be obtained to
refine the interpretation of the MLCS subspaces.
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Appendix A. Generation of synthetic EEG data
To simulate the cortical dynamics of a neural mass or a effective neuron located at different
locations, we use the neural mass following generalized FitzHugh-Nagumo neurons (see
Buhmann (1989); Assisi et al. (2005)):

(A.1)

where x is related to the mean membrane potential and y is related to the membrane current.
The dot indicates the time derivative. a and c are constant parameters and define the position
of the equilibrium point and the time scale, respectively. I is an external input and the

functions  define the dynamic flow in the state space as a function of
the behavioral task. We used c = 1; a = 1.08; b = 0 to restrict the dynamics of effective
neuron in the excitable regime where given an input at time t, membrane potential completes
a cycle and then goes to a fixed point. Input to a effective neuron is usually triggered by
external sensory stimuli such as flashes of light or auditory tones as well as certain patterns
of motor behavior such as flexion and extension cycles of human finger movement.

The source dynamics for each case of Fig 1 is set up as follows.

a. One source located at rq1, following equation A.1. The scalp potential is expressed
as

(A.2)

where H(rq1, θ) is the forward solution for the dipole at rq1 with orientation Θ =
(θ, ϕ). θ, ϕ are vertical and azimuthal angles.

b. Same procedure is followed as in (a) at location rq2. So,

(A.3)

c. Two sources (1 and 2) are located at rq1 and rq2 respectively. For j = 1, 2

(A.4)

Hence

(A.5)

d. Two sources (1 and 2) are located at rq1 and rq2 respectively and coupled. For j =
1, 2; k = 1, 2 and j ≠ k

(A.6)

where the coupling is expressed as
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(A.7)

The coupling is chosen following (Haken et al. (1985)). The scalp potential is
obtained by equation A.5

e. Two sources (1 and 2) are located at rq1 and rq2 and an additional one (3) at rq3. 1
and 2 projects to 3 such that unidirectional coupling existed between 1 → 3 and 2
→ 3. No direct coupling existed between 1 and 2 like the previous case (d). For j =
1, 2

(A.8)

The scalp potential for this task condition is expressed as

(A.9)

f. Here, the contributions from scenarios (d) and (e) are weighted via a continuously
varying parameter r. For j = 1, 2; k = 1, 2 and j ≠ k

(A.10)

In the limit case scenario of r = 0 one obtains recruitment only and for r = 1, temporal
modulation is realized. Scalp potential is obtained by using expression A.9.

Generation of rotating waves
The dipole orientations of two sources is chosen to be 90 degrees. The source dynamics for
control condition 2 is simulated by three coupled sources following equation A.10. Sources
for control 1 are at {rq1, rq2} and for control 2 are at {rq3, rq4, rq5}. Thereafter, the scalp
potential for control 2 is obtained by expression A.9.

For simulating temporal modulation in a task signal we introduce coupling between control
1 and control 2 networks. The equations for each source involved in the dynamics are
expressed as,

(A.11)
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Temporal modulation is realized for r = 1 and recruitment only is obtained for r = 0. We
place a fifth source at rq5 (of equation A.11) at the same location as control condition 2 to
generate the temporal modulation scenario and in a different location rq6 for recruitment
only scenario (for rq6 location, see Fig 12).
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Fig. 1.
Networks involved under different scenarios of neural information processing are illustrated
via a cartoon. a) and b) show the sources activated during the control conditions 1 and 2
(refer to text) respectively. Both sources are activated during the task conditions in
following ways: c) without coupling, d) via non-linear temporal modulation, e) through a
spatially linear recruitment of additional area 3, f ) via the mixed contributions from (d) and
(e). The location of the sources in the brain are chosen arbitrarily for illustrative purposes
only.
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Fig. 2.
Summary of the key steps involved in MLCS articulated by a cartoon: A) High dimensional
EEG/ MEG data from control conditions are decomposed into a set of low dimensional scalp
components (green coordinates) and corresponding temporal coefficients (time series in
black) using PCA/ICA/SOBI, etc. B) Projection of the task signal (blue scalp) onto the
control modes space created from the scalp components of step (A). Resulting temporal
coefficients represent the contribution from solely control space stimulation in the task
signal. C) The temporal coefficients obtained from step B are now projected back to the
control basis created in step A to reconstruct the task signal (green scalp). D) Goodness of fit
of the reconstruction quantifies the degree with which the control modes space is
reorganized in the task signal. As a rule of thumb, if the reconstruction is high (~85 % 90%),
temporal modulation is the dominant mechanism involved in generating the task condition,
and absence of additional networks in subsequent dynamics would be the likely inference.
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Fig. 3.
Spatial sensitivity analysis of the forward solution: A) Blue circles show all locations in the
cortical volume at which the forward solutions are calculated, red triangles show the source
locations and their scalp projection mapped onto a half-sphere B) For ρth = 0.9, blue circles
show the blind locations where an additional source cannot be resolved. C) Effect of the
sensitivity ρ on the ability of MLCS to distinguish additional network locations. At the limit
case of ρth = 1, almost all the locations are resolved
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Fig. 4.
Spatial modes generated for the control conditions (two side columns) and their
corresponding temporal coefficients (center column). The time courses are plotted in
arbitrary units (A.U.). Black dots are the sensors on the scalp (shown as a 2D projection
from the top) and red triangles are sources inside the brain. For all simulations the dipolar
sources for control conditions are directed along z – axis direction and placed at symmetric
location (−0.3, 0, 0.3) and (0.3, 0, 0.3) in Cartesian space. The sources are excited at t = 20
(blue arrow) and t = 35 (red arrow) for control 1 and 2 respectively. The eigenvalue for each
spatial mode is 1 which reflects that 100% of the control condition can be decomposed into
temporal dynamics of one spatial mode.
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Fig. 5.
Analysis of the residuals R12 for cognitive subtraction and MLCS for the different task
conditions. In the case of uncoupled sources (left column), the residual is null for both the
cognitive subtraction and the MLCS. In the case of recruitment (right column), both
methods identify a residual in the posterior regions. In the case of temporal modulation
however (center column), MLCS shows that there are no other spatial modes recruited
during the task while cognitive subtraction shows residual activity. λ represents the
eigenvalue of the corresponding spatial mode normalized to 1.
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Fig. 6.
Decomposition of scalp potentials obtained from the task signal by principal component
analysis. The figure illustrates that the proper contribution of underlying control spaces is
not isolated by direct decomposition of the task signal in uncoupled (top), temporal
modulation (middle) and recruitment (bottom) scenarios.
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Fig. 7.
Representative time series (black lines) from one sensor and corresponding reconstruction
(green lines) by cognitive subtraction (top row) and MLCS (bottom row) respectively. In the
center is a scalp map in which the control source 1 is labeled as blue, control source 2
labeled as red and the additional source for recruitment only case is labeled as black
triangles. The purple circle is the sensor location where the time series is recorded. Left
column illustrates temporal modulation. Right column shows recruitment.
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Fig. 8.
MLCS applied to data obtained for mixed cases. Here, we plot the goodness of fit vs r to
summarize the results obtained for all values of r.
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Fig. 9.
Goodness of fit vs r when θ is varying from 0 to Π, ϕ from 0 to 2 Π. We plot here the
minimum and maximum projections on 2D which quantify the boundaries between which
the goodness of fit values are distributed. In other words all surfaces GF(r, ϕ, θ) are bounded
by these curves. Note that a saturation occurs for all surfaces at r < 0.6. Hence for any
spatiotemporal reorganization with r < 0.6, reconstructions of task signal will not fit well.
This analysis emphasizes the need for a model for estimation of effective connectivity from
the goodness of fit measure.
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Fig. 10.
Rotating waves example Spatial modes generated for the control conditions (side columns)
and their corresponding temporal coefficients (center column). Black dots are the sensors on
the scalp (shown as a 2D projection from the top) and red triangles are sources inside the
brain. Control condition 1 is generated by two temporally coupled excitators at the two
locations shown in red triangles on the left column. Control 2 exhibited a rotating wave
dynamics in the scalp map and is generated by three temporally coupled excitators, locations
of which are shown with three red triangles in the right column.
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Fig. 11.
Rotating waves example Time series and corresponding reconstruction at a location marked
by the purple circle in the scalp map (center), via cognitive reconstruction (top row) and
MLCS (bottom row). Left column illustrates temporal modulation. Right column shows
recruitment
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Fig. 12.
Rotating waves example Principal component analysis of the residuals obtained during
recruitment only scenarios. For reference only the additional source is shown with the red
triangle. Spatial maps are shown for the two most dominant eigenvalues.
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