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Abstract
Expression QTL mapping by integrating genome-wide gene expression and genotype data is a
promising approach for identifying functional genetic variation, but is hampered by the large number
of multiple comparisons inherent to such studies. A novel approach for addressing multiple testing
problems in genome-wide family-based association studies is screening candidate markers using
heritability or conditional power. We apply these methods for the setting in which microarray gene
expression data are used as phenotypes, screening for SNPs near the expressed genes. We perform
association analyses for phenotypes using a univariate approach. Simulations were also performed
on trios with large numbers of causal SNPs to determine the optimal number of markers to use in a
screen. We demonstrate that our family-based screening approach performs well in the analysis of
integrative genomic datasets, and that screening using either heritability or conditional power produce
similar, though not identical, results.
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The advent of high-throughput genotyping platforms has revolutionized disease gene mapping
by making genome-wide association (GWA) studies both physically and technically feasible.
The typical GWA study entails genotyping several hundreds of thousands of genetic variants
in large, well-characterized cohorts and subsequently testing these variants for evidence of
association with clinical disease or health-related quantitative phenotypes. Initial studies have
resulted in the successful mapping of a number of disease susceptibility traits, including body
mass index [1] (but see [2;3;4;5] for comments), and susceptibility loci for age-related macular
degeneration [6], Crohn’s disease [7] and type 2 diabetes [8]. Despite these early successes
and the ever-increasing number of GWA studies being performed, a consensus regarding the
optimal statistical approach for analyzing these large datasets remains elusive. Of particular
interest is the ability to detect significant association when the functional variants confer only
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modest individual genetic effect sizes, such as are expected in complex diseases where many
genes each contribute only modestly to the complex clinical phenotype.

Furthermore, while some adjustment for the large number of comparisons performed is
required in order mitigate against overwhelming type I error, most multiple comparison
adjustment methods (such as Bonferroni or False Discovery Rate [9]) further compromise this
limited statistical power. One promising approach to address the multiple comparisons
dilemma is the family-based screening algorithm described by van Steen et al. (2005), a two-
stage procedure whereby all testable SNP are first ranked according to their expected influence
on phenotype (measured either as SNP-specific heritability or conditional power - step 1) and
then only those markers with the highest expected effect are formally tested for genetic
association (step 2). As such, only those markers with the highest pre-test probability of
demonstrating association are actually tested, thereby dramatically reducing the number of
comparisons performed (Bonferroni adjustment only needs to be done for this smaller number
of comparisons). The two stages are statistically independent and are robust to the effects of
population stratification [10] and the approach was used to identify a genetic determinant of
obesity, a finding which has subsequently been replicated in no fewer than six populations
(Herbert et al. 2006; Lyon et al. 2007).

While this family-based screening approach largely addresses the multiple comparison issues
of GWA studies, it, like all other multiple comparison corrections, does not address the
prevailing issue, namely that most genetic variants influencing common, complex clinical
phenotypes likely confer relatively small genetic effects, making their identification via direct
association mapping very difficult, even with extremely large sample sizes. For complex
diseases, phenotypes are typically indirectly related to underlying genetics. This is so not only
because such complex traits largely manifest through the combined interaction of several (if
not many) genes with multiple environmental factors, but also because the majority of common
genetic variation influencing complex phenotype likely exert their function by subtly altering
gene expression (regulatory variation) rather than radically altering the structural integrity of
genes (coding variation) [12;13].

This latter realization has prompted the development of new experimental models for the rapid
identification of regulatory variation. One such design that is gaining increasing attention as a
practical and feasible approach is that of expression quantitative trait locus (eQTL) mapping.
First proposed by Jansen and Nap [14], eQTL mapping aims to identify regulatory
polymorphism using an integrative genomics approach whereby both genome-wide gene
expression data and genome-wide genotype data are measured in a population, and thousands
of GWA studies are performed in which each measured gene expression as a separate
quantitative trait. Using this approach, SNPs can then be tested as potential disease-
susceptibility variants. Using SNPs is appealing because the direct genetic effects of such
variants on gene expression is likely considerably stronger (i.e. explain a larger proportion of
the total genetic variance) than the variants’ ultimate effects on the complex clinical trait (which
result from interactions of multiple genes and multiple environmental factors); thus the power
to map such regulatory variation is greater than that required to map clinical phenotypes.
Moreover, if eQTL mapping is limited to genes whose expression has been implicated in the
pathobiology of the disease in question, those variants that associated with both gene expression
and clinical phenotype are more likely to be truly functional (or in linkage disequilibrium with
functional variants) than SNPs who show some association with clinical phenotype but have
no demonstrated regulatory impact.

Proof of concept eQTL studies in both animal models [for example, 15] and humans [16] have
demonstrated the potential power of this approach. However, because these studies involve
performing repeated GWA studies for thousands of expression traits, the number of multiple
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comparisons quickly balloons. We suggest that in family-based eQTL association studies, the
family-based screening approach may be a powerful approach for analyzing this data. Herein
we explore this potential application using both simulated and real data.

The Screening Algorithm
The screening algorithm is based on the method described by van Steen et al. 2005. The
algorithm is based on only performing FBATs on only a subset of the markers in the original
study so that Bonferroni adjustment only needs to be done for a small number of multiple
comparisons. The subset of markers can be chosen based on some criterion such as heritability
or conditional power (see methods).

For this paper, association tests are only performed on the k marker-phenotype combinations
that satisfy some criterion independent of the FBAT p-values, such as heritability or conditional
power [17]. Note that in this setting, the same SNP may be analyzed more than once (if it is
close to more than one gene), and likewise the same expressed gene may be used more than
once if it is close to several SNPs.

We consider using heritability and conditional power as criteria. These are computed using
parental markers and expected offspring phenotype markers given the parental markers (see
[18]). Because conditional power and heritability are independent of observed offspring
genotypes conditional on the parents, the conditional power and heritability are statistically
independent of the FBAT p-value. Therefore the number of tests that need to be accounted for
when doing multiple comparisons is the number of marker-phenotype combinations in the
screen. Because there are many fewer marker-phenotype combinations surviving the screen
than the original number of combinations, it is possible to use a conservative multiple testing
correction such as Bonferroni and still obtain genome-wide significance.

The screening algorithm can be outlined as follows:

1. Choose k, the number of marker-phenotype combinations to be in the screen. E.g. k
= 10 or k = 100.

2. Compute heritability or conditional power estimates for all SNP-gene expression
combinations.

3. Rank (or sort in decreasing order) SNP-gene expression combinations according to
either heritability or conditional power.

4. Compute FBAT p-values for the top k combinations, where k was chosen in step 1.

5. SNP-gene expression combinations are genome-wide significant if p ≤ α/k, where α
is the chosen significance level.

Results
Simulation

We simulated trios to show the power of the screening methodology in a genome-wide setting
and to find optimal numbers of marker-phenotype combinations to retain in a screen when
there a large number of causal loci, as would be expected when looking for cis-regulatory
SNPs. For each individual, we generated 1000 independent SNPs with 10 gene expression
values each, resulting in 10,000 marker-phenotype combinations. Of these, 100 of the SNPs
were chosen to be causal for one expression level, resulting in 100 out of the 10,000 marker-
phenotype associations being true associations. This was done for 200 trios. The genetic effect
size a is a function of the heritability and minor allele frequency. Expression levels were drawn
from a N(aX, 1.0) distribution, where a is the effect size, and X is the number of minor alleles
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at the causal SNP. Here a = 0 for phenotypes with no cis-acting SNP. This procedure was
repeated 1000 times. The number of SNPs detected based on screening the k SNP-phenotype
combinations with the highest conditional power was then recorded for k = 1, …, 10000.

We used the screening method of van Steen, et al. (2005) to rank marker-phenotype
combinations, and pick the top k combinations, where k = 1, …, 10000, to show the power of
the screening method for every choice of k. The case of k = 10, 000 corresponds to the classical
Bonferroni correction. Figure 1 shows the power of the screening method as a function of k
using both heritability and power as screening criteria. The results are very similar, with
conditional power being slightly more powerful for each k. In spite of the large number of
potential tests, we found the optimal choice of k to be much smaller than the number of tests.
Using heritability as a criterion, the maximum number of true significant associations found
was with k = 108 and k = 110, which tied for an estimated power of 34.9%. The power was
over 34% for k = 76 to k = 194, and over 30% for any k between 49 and 500. Thus power decays
only gradually from the optimum choice for the number of markers in the screen. Using power
as a criterion gave very similar results, with an optimal k = 124, which had an average power
of 35.1%. In this case, power was over 34% for k = 73 to k = 204, and power was over 30%
for any k between 48 and 505. Although sorting by power had slightly higher estimated power
for most (5609 out of 10,000) choices of k, neither criterion was uniformly more powerful.

We note that optimal choices of k are slightly higher than, but still fairly close to the true number
of causal marker-phenotype combinations in the study. The Bonferroni correction method,
however, detected an average of 14.8% of the causal SNPs, or approximately 42% of the
maximum power of the screening method. This is also lower power than any choice of k > 17
for either screening criterion.

The simulations also illustrate the independence (under the null hypothesis of no association)
of the FBAT p-value with heritability and conditional power. To show this, a single run of the
simulation is shown with heritability and conditional power plotted against the p-value for the
9,900 marker-phenotype combinations in which the SNP was noncausal, resulting in
correlations of −0.005 and 0.002 respectively (Fig. 2).

Data Analysis
We report the candidate marker-phenotype associations that had nominal p-values below 0.05
and that survived screening the top k marker-phenotype combinations based on both the
absolute value of heritability (k = 110) and conditional power (k = 124). Choices of k in each
analysis are based on the results of the simulation study.

Screening using either heritability or conditional power resulted in 12 marker-phenotype
associations with p < .05. There were seven associations that overlapped between the two
criteria. For both methods, only markers for which there were at least five informative families
were included in the screen; however, this did not affect the screening algorithm when
conditional power was used since only those markers with relatively large numbers of
informative families were highly powered; however, it did affect the ranks when sorting by
heritability.

Based on the simulation study, we used α = 0.05/110 = 0.000455 as our significance level when
sorting by heritability and α = 0.05/124 = 0.000403 when sorting by conditional power. There
were three genome-wide significant associations found using either criteria. Two of the
genome-wide significant associations were for two SNPs (rs178814 and rs178815) located
1226 bp apart that were associated with the same gene (Contig47134_RC) (p = 1.39 × 10−5

and p = 1.36 × 10−5, respectively). These associations were both detected using either
heritability or conditional power as the screening method. Using heritability, a significant
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association between rs2172962 and Contig45657 was found (p = 4.46 × 10−4. Screening by
conditional power did not detect this combination, but did result in one significant association
not detected using heritability: rs925197 and Contig20565_RC (p = 8.28 × 10−5). Thus each
screening criteria was able to find a genome-wide significant association not detected by the
other criterion. There was substantial overlap in the SNP-phenotype combinations detected
under the two types of screening, with seven associations (including the two that were genome-
wide significant) detected under both screening criteria (Table 1 and Table 2). To compare
gene expression for genes that survived the screen versus those that did not, we averaged
expression levels across all parents (to avoid the nonindependence of children) for each gene.
Using the top 118 uniquely occurring genes when sorting by power (six of the 124 top genes
occurred twice in the screen), these genes had similar means, medians, ranges, and variances
in terms of expression (p > 0.05 in each case). Although these measures did not show dramatic
differences, those genes that survived the screen tended to have more SNPs within 1.0 Mb (p
= 4.9 × 10−9), with an average of 3.67 SNPs, compared to an average of 40227/14219 = 2.83
SNPs per gene for the entire dataset (Table 3).

Discussion
Heritability versus conditional power

An open question in using screening methodology is whether it is better to screen based on
heritability or power. In particular, heritability would seem to be a promising criterion because
the phenotypes can be much more highly heritable than is typical in genetic association studies.
Also, the CEPH dataset used has a small sample number of families and therefore low power.
Not surprisingly, sorting by power tended to favor marker-phenotype combinations that had
higher numbers of informative families than did sorting by heritability (Table 1 and Table 2).
Based on this study, however, we find the performance of the two methods to be very similar
in the number of SNPs detected, both in the simulation study and using real data. Since more
SNPs can be detected using both approaches than using one alone, we cannot recommend using
one criterion exclusively. A possibility to explore would be combining criteria. For example,
a method for combining objective criteria for ranking genes in expression studies was
developed by [19].

Computational issues
The amount of computation time is linear in the number of marker-phenotype combinations.
We note that this problem is highly parallel, with each of the 40,227 associations being
computed independently. For this data set, the total computation time was under 24h running
PBAT [20] on 20 processors in parallel on a linux cluster. Thus, if parallel processing is
available, an entire genome-wide dataset with this type of data can be analyzed quickly by
using the strategy of analyzing SNP-phenotype associations where SNPs are within some
window of the expressed genes. The method could also be used for extended pedigrees by
taking advantage of parallel computing, although computation time can increase significantly
compared to nuclear families for some combinations of missing parental and grandparental
markers.

Conclusions
In the analysis presented, we limited the number of associations by only considering SNPs on
the same chromosome as the gene transcripts which were within 1.0 Mb of the gene. Although
this method is useful for looking for possible cis-acting SNPs, the method could be extended
to look for trans-acting SNPs by considering markers further from the gene transcripts or even
on different chromosomes. This would have the cost of increasing the number of conditional
power and heritability estimates to be computed, but this could be accomplished with parallel
computing. A strategy for reducing the number of associations to be computed is to use
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principle components (FBAT-PC; [21]), in which multiple phenotypes are analyzed for each
SNP by finding the linear combination of phenotypes which maximizes heritability (the first
principle component). This linear combination is then analyzed as a single phenotype, thus
greatly reducing the total number of phenotypes (and therefore SNP-phenotype combinations)
to be analyzed. Although generally the large number of gene expression values increases the
severity of the multiple testing problem in association studies, the methods of this paper
demonstrate the feasibility of incorporating integrative genomics data in GWA studies in a
family-based setting.

Methods
We used data from 15 CEPH families (IDs 1334, 1340, 1345, 1346, 1349, 1350, 1358, 1362,
1375, 1377, 1408, 1418, 1421, 1424, 1477) also used in Monks et al. (2004). To use only
nuclear families we did not include grandparents in the analysis. This resulted in 142
individuals, 112 of whom were offspring. Gene expression data were available for 24 of the
30 parents and 91 of the offspring. Data were available for 23,880 expressed genes and 2322
genotyped SNPs on the 22 autosomal chromosomes. We performed association analysis on
the 40,227 SNP-gene expression combinations where the SNP was within 1.0Mb of one end
of the gene. This resulted in 2279 SNPs and 14219 expressed genes, with an average of 17.65
genes per SNP (Table 3).

To screen for cis-acting SNPs, we considered all combinations of markers and phenotypes
where the SNP was within 1.0 Mb of either end of the expressed gene, resulting in 40,227
marker-phenotype combinations. See Table 3 for the number of combinations as a function of
distance from genes. Because of computational difficulties when there were missing markers
in both parents and grandparents, we limited our analysis to nuclear families obtained by only
considering parents and offspring; i.e., by excluding the grandparental generation. Univariate
family-based association analyses were then performed on the marker-phenotype
combinations. An additive genetic model was used in all analyses. The dataset was then sorted
using two different criteria: heritability and conditional power.

Heritability is defined as the proportion of phenotypic variability that can be explained by
genotypic variability [23]. We use SNP-specific heritability. The conditional power is
computed from the conditional mean model using the methods in [24]. In the model, the
genotype of the offspring is a random variable conditioned on the genotypes of the parents,
and the phenotype Yij (e.g., the gene expression level) depends on the expected conditional
offspring genotypes:

(1)

Here observed genotypes of the jth offspring in the ith family, Xij , have been replaced by their
expected values given the parental values. Under an additive inheritance model, Xij is the
number of minor alleles for the individual at a locus. If parental values are missing, sufficient
statistics for the parental markers can be used instead [25]. The term Zij allows for covariate
adjustment.

In each analysis, the top 100 combinations among the 40,227 were retained for statistical
testing, i.e. computing FBAT p-values when there is a continuous phenotype, the gene
expression value. The FBAT test statistic is

(2)
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where Yij represents the phenotype (e.g. gene expression) of the jth offspring in family i.
Because an additive genetic model is being used, Xij denotes the number of minor alleles for
the jth offspring in the ith family. The parameter µ is an offset parameter which is estimated
from the data [18]. The FBAT statistic has an approximate standard normal distribution under
the null hypothesis of no linkage and no association. For an overview of generalizations of the
FBAT statistic, see Laird and Lange (2006).
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Figure 1.
Average number (out of 100) of causal SNPs detected as a function of the log10 number of the
top k marker in the PBAT screen, k = 1, …, 10, 000, based on 1000 simulations and using either
heritability or power as the screening criterion.

Degnan et al. Page 9

Genomics. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Heritability (top) and conditional power (bottom) plotted against p-values for one of the 1000
simulated data sets using noncausal SNPs only.
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Table 3
Number of Marker-phenotype combinations for the CEPH dataset within a given distance from the gene. The same
SNP may occur in more than one combination, and similarly, the same expressed gene may occur in more than one
combination.

Distance Marker-phenotype combinations Number of SNPs Number of
Expressed Genes

Genes per SNP

50 kb 2241 1090 1495 2.06
100 kb 4181 1462 2388 2.86
500 kb 19913 2122 8757 9.38

1 Mb 40227 2279 14219 17.65
2 Mb 79009 2314 19352 34.14
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